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Abstract
Current studies in few-shot semantic segmentation mostly utilize meta-learning frameworks to obtain models that
can be generalized to new categories. However, these models trained on base classes with sufficient annotated
samples are biased towards these base classes, which results in semantic confusion and ambiguity between base
classes and new classes. A strategy is to use an additional base learner to recognize the objects of base classes and
then refine the prediction results output by the meta learner. In this way, the interaction between these two learners
and the way of combining results from the two learners are important. This paper proposes a new model, namely
Distilling Base and Meta (DBAM) network by using self-attention mechanism and contrastive learning to enhance
the few-shot segmentation performance. First, the self-attention-based ensemble module (SEM) is proposed to
produce a more accurate adjustment factor for improving the fusion of two predictions of the two learners. Second,
the prototype feature optimization module (PFOM) is proposed to provide an interaction between the two learners,
which enhances the ability to distinguish the base classes from the target class by introducing contrastive learning
loss. Extensive experiments have demonstrated that our method improves on the PASCAL-5i under 1-shot and
5-shot settings, respectively.
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1 Introduction
Semantic segmentation is to perform per-pixel classifica-
tion on an image, which partitions the image into sec-
tions according to categories. Thanks to the availability of
large amounts of data, deep neural networks have been de-
veloped rapidly. Various computer vision tasks based on
deep neural networks have made great progress. However,
collecting and labeling large amounts of data are time-
consuming and laborious. Moreover, the neural network
trained by the fully supervised learning relying on a large
number of data cannot be extended to new classes. To
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deal with the above problems, weakly supervised learning
[1], few-shot learning [2], and zero-shot learning [3] have
emerged. Few-shot learning is proposed to learn the deep
learning model on seen categories that can be generalized
to unseen classes with a few annotated samples.

The research topic of this paper is few-shot semantic
segmentation (FSS), where the model utilizes only a small
number of annotated samples to segment the objects of
new categories from the image. Most existing FSS meth-
ods [2, 4–10] achieve the generalization using the meta-
learning framework which enables a model to transfer pre-
vious knowledge to unseen categories. During the meta-
training phase, the model is trained with a batch of train-
ing episodes sampled from the set of base classes. Then,
the knowledge learned from base categories is used to seg-
ment objects of novel categories during the meta-testing.
Most previous approaches have attempted to segment new
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classes by using parameters trained on base classes with-
out fine-tuning, such as PFENet [4], PANet [5], CANet [6],
ASGNet [7], and so on. However, the parameter-sharing
mechanism in the meta-learning framework inevitably re-
sults in the network being biased toward base classes,
which leads to semantic confusion and ambiguity between
the new classes and the base classes. For instance, the ob-
jects of base classes would be segmented in meta-testing
when the new classes have similar semantic concepts to
base classes. Recently, BAM [11] has introduced an ex-
tra branch (base learner) to the meta-learning framework
(meta learner) to identify the regions of base classes. Then,
the coarse outputs from the two learners are fused into
more precise predictions through an ensemble module. In
this ensemble module, an adjustment factor has been in-
troduced to estimate the scene differences between the in-
put image pairs. This approach can distinguish base classes
from novel classes, providing a new perspective for fu-
ture work in the FSS field, but there is still potential room
for improvement. Firstly, the base learner and the meta
learner are independent of each other without any inter-
actions, so the knowledge of the base learner is unable
to affect the meta-training. Secondly, the ensemble mod-
ule uses features extracted from the low-level block of the
backbone network to calculate the adjustment factor with-
out attention, which hinders the key features from con-
tributing to the adjustment factor.

Based on BAM [11], the model proposed in this paper
introduces contrastive learning to connect the two learn-
ers. Also, our model utilizes the self-attention module to
weigh the low-level features. To sum up, the primary con-
tributions can be summarised as follows:

• We propose to use contrastive learning loss to enable
the base learner and the meta learner to interact with
each other, supervising meta learner to learn better
image representations to distinguish novel classes
from base classes.

• We apply the self-attention module to low-level
features extracted from the backbone network to
obtain a more accurate adjustment factor in the
ensemble module.

• Sufficient experiments on PASCAL-5i verify the
effectiveness of our methods, and our performance
exceeds the original BAM [11] model.

2 Related works
2.1 Semantic segmentation
Semantic segmentation is an essential computer vision
task that aims to classify each pixel in the given im-
age according to predefined categories. Benefiting from
fully convolutional networks (FCNs) [12], there is great
progress in the field of semantic segmentation. Recently,
numerous FCN-based models have been designed to ac-
complish semantic segmentation. For instance, [13] pro-
posed a symmetrical encoder-decoder structure based

on FCN, termed U-net, to reconstruct segmentation step
by step. Yu and Koltun [14] proposed the dilated convo-
lution to enlarge the receptive field without resolution
loss, thereby improving segmentation by using contex-
tual information. The pyramid pooling module (PPM) pro-
posed in PSPNet [15] aggregates multi-scale information
by pooling in different sizes. DeepLab V2 [16] developed
atrous spatial pyramid pooling (ASPP) to obtain and fuse
multi-scale information by using filters with different ex-
pansion rates. However, these approaches rely on large-
scale annotated samples and cannot work well on novel
classes, thereby hampering segmentation in real-world ap-
plications.

2.2 Few-shot learning
Many tasks are researching how models trained on base
classes can be devised to recognize new classes, such as
works in image classification [17–19], object detection
[20, 21], and semantic segmentation [2, 5, 6, 10]. These
works are classified into the field of few-shot learning or
zero-shot learning. Few-shot learning (FSL) aims to rec-
ognize objects of novel classes given a small number of
annotated samples. Most recent works in few-shot learn-
ing employ the meta-learning framework proposed by
Vinyals et al. [22]. In meta-learning approaches, there is
a batch of learning episodes during the training stage.
Each learning episode consists of several images sam-
pled from the dataset of a base class, which simulates the
few-shot scenarios of novel classes. The FSL approaches
under the meta-learning framework can be subdivided
into three categories: (a) model-based, (b) metric-based,
and (c) optimization-based. Santoro et al. [23] proposed a
model-based approach to access cross-task knowledge us-
ing an external memory network. [22, 24, 25] exploited the
metric-based idea of transforming data into embedding
vectors in high-dimensional space, thus converting the
classification problem into the nearest neighbour problem
in embedding space. [26–29] explored the optimization-
based idea in order to design an update strategy of model
parameters that can converge with a few samples, thus
enabling the model to generalize quickly to unseen cate-
gories. Our work introduces metric-based FSL to address
the few-shot semantic segmentation.

2.3 Few-shot semantic segmentation
Few-shot segmentation aims to make dense pixel-level
predictions for novel classes given only a few annotated
samples. Since the OSLSM for FSS was proposed by Sha-
ban et al. [30], many excellent models have emerged. Most
approaches to solving FSS use the metric-based meta-
learning framework. Specifically, this kind of framework
usually employs two branches to generate a foreground
prototype of a support image from the support branch
first, and then obtain predicted segmentation of the query
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Figure 1 Summary of recent parametric-based FSS models under the meta-learning framework. The grey box indicates the Meta learner section

image by pixel-level matching between the support pro-
totype and the query feature. Depending on the met-
ric tools, metric-based meta-learning methods are di-
vided into parameter-based and prototype-based models.
Parameter-based framework shown in Fig. 1 usually uses
convolution to build a feature matching block for explor-
ing the relation between support features and query fea-
tures. Following this framework, CANet [6] firstly utilized
convolution to refine the segmentation result. Inspired by
CANet [6], PFENet [4] designed the feature enrichment
module using convolutions instead of cosine similarity to
fuse support and query features.

The prototype-based framework shown in Fig. 2 uses
a non-parameter metric way such as cosine similarity
to measure the similarity between the extracted support
prototypes and the query features. PANet [5] firstly uti-
lized the pseudo-label of the query image represented by
the distance between the prototypes and the query im-
age to segment the support images. ASGNet [7] employed
a superpixel-guided clustering strategy to produce some
part-aware prototypes for support images and then allo-
cate these prototypes to each pixel according to the sim-
ilarity between each prototype and the query features.
NTRENet [8] proposed background and distracting ob-
ject prototypes to explicitly mine and eliminate the back-
ground and distracting regions in the query image.

These approaches mentioned above are based on the
meta-learning framework, but their trained models are
usually biased towards seen categories, which leads to se-
mantic confusion between seen classes and similar unseen
classes. Therefore, the preference of these models results
in a generalization problem hindering the recognition of
new categories. To address this problem, Lang et al. [11]
proposed BAM which introduces an extra semantic seg-
mentation model (base learner) trained on the base dataset

to segment objects of base classes in the image. In addi-
tion, BAM [11] designed an ensemble module to obtain
the final prediction by integrating the coarse results from
the base learner and the meta learner. Although BAM [11]
has achieved the state-of-the-art performance, we observe
the two learners are independent without interaction. This
paper focuses on generating the interaction between these
two learners for achieving more accurate segmentation re-
sults.

2.4 Contrastive learning
Contrastive learning aims to learn better feature represen-
tations by automatically constructing positive and nega-
tive samples, by which positive pairs are made closer to-
gether in the projection space. In contrast, negative pairs
are forced away from each other. SimCLR [31] used vari-
ous data argumentation methods to construct positive and
negative sample pairs of each image for learning a robust
image representation space. Wang et al. [32] considered
the global semantic similarity of all pixels in the whole
training set, reducing the distances between positive pairs
and enlarging the distances between negative pairs. Liu et
al. [8] first introduced contrastive learning to FSS, so as to
learn more precise prototypes that help the model distin-
guish target objects from distracting objects. Inspired by
this work, we introduce contrastive learning to generate
the interaction between the two learners of BAM [11].

3 Method
In this section, we first give the definition of FSS in Sub-
sect. 3.1. Then, we describe the details of our proposed
model in Subsects. 3.2, 3.3, 3.4, and 3.5. Figure 3 gives an
overview of our Distilling Base and Meta (DBAM) model
which consists of the base learner, the meta learner, the
self-attention-based ensemble module (SEM), and the pro-
totype feature optimization module (PFOM).



Chen et al. Autonomous Intelligent Systems            (2023) 3:11 Page 4 of 11

Figure 2 Summary of recent prototype-based FSS models under the meta-learning framework. The grey box indicates the Meta learner section

Figure 3 Overall framework of our DBAMmodel. (xs , xq) are input image pairs to the shared encoder. The shared encoder extracts different levels of
feature maps. The two learners use the extracted features to generate the coarse predictions. The coarse predictions from the two learners are then
fused by the adjustment factor in the self-attention-based ensemble module to get the final prediction pf which is utilized for generating the
prototype of target P. In addition, the prediction from the base learner is used to generate the base prototype Pbase . Finally, base prototypes and
target prototypes are regarded as negative and positive samples, optimized by the prototypical contrastive learning module. The function of “red
lines” is to provide base prototypes Psbase from support images

3.1 Problem definition
For the FSL task, the whole dataset is divided into a base
dataset Dbase and a novel dataset Dnovel by categories,
where the Dbase with base classes Cbase contains sufficient
annotated images for the meta training phase only, and the
Dnovel with novel classes Cnovel has scarce annotated sam-
ples for meta testing phase only. These two sets are dis-
joint (Cbase ∩Cnovel = ∅). Current methods use the episodic
paradigm [30] during the meta training and testing. For
1-way K-shot segmentation, in each episode, K + 1 image-
mask pairs randomly sampled from the Dnovel are divided
into the support set S and the query set Q. After complet-

ing the episodic training, we evaluate our model on all test
episodes sampled from the Dnovel.

3.2 Base learner
To address the problem of FSS models being biased to-
wards the seen classes, the BAM [11] model introduces a
base learner using PSPNet [15] to predict the regions of
base classes in the query images. It initially uses the en-
coder network E and a following convolutional block Fconv
to extract feature maps f q

b of the query image xq, which the
following equation can conclude:

f q
b = Fconv

(
E
(
xq)) ∈R

c×H×W , (1)
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where Fconv denotes Block4 shown in Fig. 3. Then, the de-
coder network Db are applied to get the prediction result
pb, which can be formulated as:

pb = softmax
(
Db

(
f q
b
)) ∈R

(1+Nb)×H×W , (2)

where softmax(•) represents the operation of generating
probability maps pb along the channel dimension. Nb de-
notes the number of base classes, and Nb + 1 represents
the number of base classes and a background class. Base
learner measures the difference between the prediction
pb and the ground-truth mq

b using standard cross-entropy
(CE) loss.

Lbase =
1

nbs

nbs∑

i=1

CE
(
pbi, mq

bi
)
. (3)

3.3 Meta learner
Given a set of support images and the corresponding
masks S = (xs, ms) and a query image xq, the meta learner
aims to segment objects in the query image that belong to
the same class as provided support mask. Following BAM
[11], we use the meta learner to produce the class-related
prototype vs, which can be formulated as:

f s
m = F1×1

(
E
(
xs)), (4)

f q
m = F1×1

(
E
(
xq)), (5)

vs = Fpool
(
f s
m �R

(
ms)), (6)

where F1×1 is a 1 × 1 convolution operation for reduc-
ing the dimensionality. f s

m, f q
m denote the intermediate fea-

ture maps for support images and the query image. R is
the operation for reshaping support mask. � represents
Hadamard product. Fpool is the average-pooling for gener-
ating vs of c × 1 × 1. Afterwards, we feed the combination
of expanded vs and f q

m into the decoder network Dm to get
the final prediction result pm, which can be formulated as:

pm = softmax
(
Dm

(
C
(
P(vs), f q

m
))) ∈R

2×H×W , (7)

where P and C represent the dimensional expansion and
the concatenating operation, respectively. Meta leaner
adopts binary cross-entropy loss (BCE) to evaluate the dif-
ference between the prediction pm and ground truth mq:

Lmeta =
1
ne

ne∑

i=1

BCE
(
pmi, mq

i
)
. (8)

3.4 Self-attention-based ensemble module
Since the meta learner receives features from both sup-
port and query images, the meta learner is susceptible to

the large difference between the input image pairs, caus-
ing some regions in the query image to be incorrectly ac-
tivated [33]. The ensemble module proposed in BAM [11]
leverages the adjustment factor to suppress the incorrectly
activated region of the meta learner output and then fuse
the output of the two learners. Firstly, the adjustment fac-
tor is obtained from the difference in scenes between the
query and supports. Specifically, the Gram matrices Gs and
Gq of the low-level features f s

low and f q
low of the query and

support images are computed respectively. Then, the ad-
justment factor ψ can be obtained by Frobenius norm F
of the difference between two Gram matrices Gs and Gq.

ψ =
∥
∥Gs – Gq∥∥

F . (9)

In the next step, the adjustment factor is used to refine
the predictions of the meta learner. Specifically, ψ is ex-
panded to the same dimension as meta output to obtain
an adjustment map Mψ , and then the foreground p1

m and
background p0

m obtained from the meta learner are con-
catenated with adjustment map Mψ respectively. Refined
results p1′

m and p0′
m are obtained after 1 × 1 convolution op-

eration respectively.

p0′
m = FMψ

(
p0

m
)
, (10)

p1′
m = FMψ

(
p1

m
)
, (11)

where “0” and “1” denote the background and foreground
respectively. Finally, the fine-grained results of the meta
learner are fused with the predictions of the base learner.
The foreground in the base learner prediction result is ob-
jects of base classes in the query image pf

b, which also be-
longs to the background in the meta learner prediction re-
sult. Therefore, pf

b and p0′
m are concatenated and fused by

a 1 × 1 convolution operation Fensemble to obtain the back-
ground of the final prediction result p0

f .

p0
f = Fensemble

(
pf

b, p0′
m
)
. (12)

Then, the final prediction result pf is generated by concate-
nating the background p0

f and the foreground p1′
m as follow:

pf = p0
f

⊕
p1′

m. (13)

We propose the improved ensemble module, namely the
self-attention-based ensemble module by applying the
self-attention mechanism to low-level features to obtain a
more semantically explicit re-weighted feature map. Be-
cause self-attention can capture the semantic relation-
ship between any two positions in the feature map, so
the obtained re-weighted feature’s semantic information is
clearer. Therefore, the adjustment factor (see Fig. 4) pro-
duced by our self-attention based ensemble module guides
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Figure 4 The workflow of calculating the adjustment factor ψ in the self-attention-based ensemble module

the fusion of two images more exactly than before. The
low-level features f q

low, f s
low ∈ R

C1×H1×W 1 extracted from
the shared encoder are fed into the self-attention module
to obtain re-weighted features f q′

low, f s′
low ∈ R

C1×H1×W 1 with
more clearer and explicit semantic information. The self-
attention operations of the two input features are the same,
and that of the query one can be expressed as:

Qq = F1×1
(
f q
low

) ∈R
C
8 ×W1×H1 , (14)

Kq = F1×1′
(
f q
low

) ∈ R
C
8 ×W1×H1 , (15)

Vq = F1×1′′
(
f q
low

) ∈R
C
8 ×W1×H1 , (16)

f q′
low = softmax

(QqKT
q√

dk

)
Vq ⊕ f q

low ∈ R
C1×W1×H1 , (17)

where F1×1, F1×1′ and F1×1′′ denote three 1 × 1 convo-
lution operations which can project input features into a
high dimension space. ⊕ indicates the concatenation op-
eration along the channel dimension. Re-weighted feature
f q′
low can be obtained by residual concatenating original in-

put f q
low with attention map.

3.5 Prototype feature optimization module
The base learner and the meta learner are independent of
each other in BAM [11]. In other words, the meta learner
is still likely to confuse the features of base classes and
the target class with the help of the base learner. We aim
at enabling the meta learner to distinguish base classes
from the target class by distilling the knowledge of the
base learner into the meta learner, in order to obtain better
segmentation results. A recent work of prototypical con-
trastive learning proposed by Liu et al. [8] regards the re-
gion which is complementary to the union of the back-
ground region and target region as the distracting object

region. For the query prototype Pq, the corresponding sup-
port prototype Ps is the positive sample, while the distract-
ing object prototypes in both query and support are neg-
ative samples. Inspired by this approach, we propose the
prototype feature optimization module to make the proto-
type feature of the target object in the query image differ-
ent from that of the objects of base classes and the proto-
type of the target object in the query image close to that
of the support image. Different from [8], we propose to
treat query prediction prototype and corresponding sup-
port prototype (Pq, Ps) as the positive pair, while the query
prediction prototype and the prediction prototypes of base
classes in support and query images, predicted by the base
learner, (Pq, Ps

base) and (Pq, Pq
base) as negative pairs. We use

the masked average pooling (MAP) to extract the proto-
types for positive and negative pairs respectively, which is
shown in Eq. (18) and Eq. (19).

positive =

{
Ps = FMAP(ŷs

novel),
Pq = FMAP(yq

novel),
(18)

negative =

{
Ps

base = FMAP(ys
base),

Pq
base = FMAP(yq

base),
(19)

where ŷs
novel is the ground-truth mask of support image,

yq
novel is the predicted mask of query image. Both ys

base
and yq

base are predicted masks output by the base learner.
The generation process of these prototypes can be seen in
Fig. 3. Afterwards, the contrastive learning loss LCL shown
in Eq. (20) is introduced to optimize the above prototypes:

LCL = – log
ecos(Pq ,Ps)

∑
B(ecos(Pq ,Pq

base) + ecos(Pq ,Ps
base))

, (20)

where cos denotes cosine similarity and e is the natural
constant. Finally, we use the new total loss Ltotal to super-
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vise the training of our model, which can be summarised
as:

Ltotal = Lfinal + λLmeta + βLCL, (21)

where Lfinal is the BCE loss between the final prediction pf
and ground truth mq. λ,β are adjustable loss weights and
are set to 1.0 and 0.01, respectively.

4 Experiments
4.1 Setup
4.1.1 Datasets
We evaluate our model on PASCAL-5i dataset which is
widely used in the field of FSS. The PASCAL-5i dataset
is proposed by Shaban et al. [30], created from the PAS-
CAL VOC 2012 [34] dataset with the SBD dataset (Seman-
tic Boundaries Dataset and Bench-mark) [35] as augmen-
tation, which includes images of ordinary objects in daily
life in a total of 20 categories. PASCAL-5i has randomly
divided 20 classes by category into 15 base classes and five
novel classes and evenly split the dataset into four folds,
each containing five categories.

4.1.2 Evaluation metric
Following [36], we use mean intersection-over-union
(mIoU) to quantitatively measure the experimental results.
We use Cnovel as the number of classes during the testing
stage, the mIoU calculates the average of IoUs over all test-
ing classes, which can be expressed by the following for-
mula:

mIoU =
1

Cnovel

Cnovel∑

i=1

IoUi. (22)

For an individual class, the IoU metric is defined as:

IoU =
TP

TP + FP + FN
, (23)

where the TP, FP, FN are the number of true positives,
false positives and false negatives of the predicted masks.
A higher IoU indicates a more accurate segmentation re-
sult.

4.1.3 Implementation details
All experiments are based on the ResNet50 [37] backbone
and PASCAL-5i. We adopt a two-stage training strategy
similar to BAM [11], where the base learner is trained
using fully-supervised learning protocol on each fold of
the PASCAL-5i dataset, and the meta learner is trained
jointly with the ensemble module using a meta-training
paradigm. In the first stage, we train PSPNet [15] as a base
learner on 15 base classes and the background class for
PASCAL-5i. In each fold, we obtain a separate PSPNet af-
ter training for 100 epochs. The stochastic gradient de-
scent (SGD) optimizer with a learning rate of 2.5e-3 is uti-
lized to update the network parameters during training. In

the meta-training phase, the two learners share the back-
bone of the base learner who trained in the first stage. We
freeze the parameters of PSPNet during the meta learner
training phase. To train the meta learner, we use the SGD
optimizer on PASCAL-5i for 200 epoches at a learning rate
of 5e-2, and the training batch set is set to 8. We compute
the average outcomes of 5 runs with various random seeds
to reduce the performance effect of chosen support-query
image pairings. To facilitate a comparison of results with
BAM [11], we use the same data argumentation strate-
gies as BAM. All experiments are implemented in the Py-
Torch 1.7.0 environment and conducted on the NVIDIA
GeForce RTX 3090 GPUs. For a better comparison of per-
formance, we output the results without performing any
post-processing and fine-tuning.

4.2 Comparison with state-of-the-art methods
We compare the performance of our method with sev-
eral state-of-the-art (SOTA) FSS methods [4, 6–11] using
the PASCAL-5i dataset. The experiments are conducted
with the ResNet50 backbone under 1-shot and 5-shot set-
tings. The performance of our method is illustrated in both
quantitative and qualitative forms.

4.2.1 Quantitative comparison
Table 1 illustrates the performance comparison of our
DBAM method equipped with the ResNet50 backbone
with other FSS methods. Our method achieves the best
performance. Specifically, under the 1-shot setting, the av-
eraged mIoU of our method outperforms that of BAM*
(our implementation) by 0.53. In the 5-shot setting, our
method shows improvements of 0.87 over the reproduced
BAM*.

4.2.2 Qualitative comparison
We visualize the segmentation results of some episodes
in the meta-testing phase to better illustrate and under-
stand the effect of our approach. In Fig. 5, the first and
second columns are the support and query images with
corresponding masks. The third and fourth columns show
the segmentation result of the original BAM model and
our method. In Fig. 5, our method reduces the activated
base class regions better than the original BAM model. For
example, the box behind the wine glass in the last one of
the second row and the hand next to the pigeon in the last
place of the third row are both well suppressed. This shows
that the self-attention module can obtain more accurate
adjustment factors and thus produce better segmentation
results. Contrastive learning allows the two learners to in-
teract with each other so that the meta learner can learn
better image representations allowing the novel and base
class samples to be further apart. However, the contribu-
tion of each module to the performance improvement can-
not be seen from the figure. Hence we conduct extensive
ablation experiments to observe the specific contribution
of each module.
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Table 1 Performance comparison of BAM with contrastive learning loss and self-attention on PASCAL-5i . Results in bold indicate the
top performance. * denotes the results that were obtained by our own implementation

Backbone Method 1-shot 5-shot

Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean

ResNet50 CANet [6] 52.50 65.90 51.30 51.90 55.40 55.50 67.80 51.90 53.20 57.10
PGNet [9] 56.00 66.90 50.60 50.40 56.00 57.70 68.70 52.90 54.60 58.50
PPNet [10] 48.58 60.58 55.71 46.47 52.84 58.85 68.28 66.77 57.98 62.97
PFENet [4] 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90
ASGNet [7] 58.84 67.86 56.79 53.66 59.29 63.66 70.55 64.17 57.38 63.94
NTRENet [8] 65.40 72.30 59.40 59.80 64.20 66.20 72.80 61.70 62.20 65.70
BAM [11] 68.97 73.59 67.55 61.13 67.81 70.59 75.05 70.79 67.20 70.91
BAM* [11] 68.39 73.47 67.46 60.58 67.48 70.09 74.93 70.69 66.65 70.59
DBAM (ours) 69.34 73.71 67.66 61.36 68.01 71.71 75.42 71.19 67.50 71.46

Figure 5 The examples of the segmentation results for the original BAMmodel and our method on PASCAL-5i under the 1-shot FSS setting. The
support images and corresponding masks are in yellow, the query images with ground-truth masks are in green, and the BAM and our method
prediction results are in red

4.3 Ablation study
We conduct sufficient ablation studies using the ResNet50
backbone on PASCAL-5i under a 5-shot setting to inves-
tigate the effect of each component on segmentation per-
formance.

4.3.1 Ablation study on self-attention module
The adjustment factor ψ is an essential component of
the ensemble module. It is derived from the scene differ-
ences between the feature maps of the support-query im-
age pairs. Thus, selecting suitable feature maps from the
backbone block is critical to the fusion results. We conduct
extensive experiments on the impact of the feature maps
extracted from each layer of the backbone network (i.e.,

ResNet50 [37]) on the segmentation performance. As can
be seen from Fig. 6, the B2 feature map shows the optimal
segmentation performance in B0-B3. We attribute this to
the fact that B2 associates some low-level features, such as
colour, texture, image style, etc., while B3 associates some
more abstract high-level features that are not conducive
to computing scene differences in query-supported image
pairs. The Bl and B2 feature maps are insufficient to com-
pletely explore the features of the image pairs and perform
relatively poorly.

Moreover, adding the self-attention module to the B2
feature map shows better segmentation results under the
1-shot and 5-shot settings. The quantitative result (see Ta-
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Figure 6 Ablation studies on the low-level features with ResNet50 backbone. “Bi” represents the feature maps that the backbone’s i-th convolutional
block produced, “B2+Sa” denotes the additional self-attention module after Block2

Table 2 Ablation study on self-attention module, ‘S’ denotes the self-attention module (Top performance in bold mIoU)

Backbone Methods 1-shot 5-shot

Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean

ResNet50 DBAM(w/o S) 68.39 73.47 67.46 60.58 67.48 70.09 74.93 70.69 66.65 70.59
DBAM(w/ S) 69.10 73.71 67.66 61.10 67.89 71.48 75.62 71.07 66.89 71.27

Table 3 Ablation study on contrastive learning loss, where ‘CL’ represents the contrastive learning loss (Top performance in bold mIoU)

Backbone Methods 1-shot 5-shot

Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean

ResNet50 DBAM(w/o CL) 68.39 73.47 67.46 60.58 67.48 70.09 74.93 70.69 66.65 70.59
DBAM(w/ CL) 69.22 73.69 67.65 61.25 67.95 71.37 75.27 70.93 67.26 71.21

ble 2) shows that our DBAM with the self-attention mod-
ule improves by 0.41 and 0.68 under the 1-shot and 5-shot
settings, respectively.

4.3.2 Ablation study on contrastive learning loss
The contrastive learning loss introduced by the PFOM
helps the two branches to interact with each other and
enables the meta learner to learn the knowledge of the
base learner. Thus, to investigate the impact of contrastive
learning loss on segmentation performance, we conduct
experiments on it. As shown in Table 3, the mloU of our
DBAM with contrastive learning loss increases by 0.47 and
0.62 under the 1-shot and 5-shot settings, respectively.

In Table 4, we summarise the ablation experiments of
the two modules. The table shows that the contribution of
the self-attention module and contrastive learning to im-
proving segmentation performance in these two settings is
close. The most significant improvement is when the two
modules are used together, which is about 0.53 and 0.87 in
the 1-shot and 5-shot settings respectively.

5 Conclusion
In this project, we aims to address the potential prob-
lems of BAM [11]. We propose a new model based on the
base-and-meta structure to more accurately exclude the

distracting objects of base classes from the images. Par-
ticularly, the self-attention mechanism is introduced into
the ensemble module for getting a more precise adjust-
ment factor, so as to refine the coarse prediction from the
meta learner. In addition, contrastive learning is leveraged
to distinguish target objects from distracting objects of
base classes by introducing base-learner knowledge into
the meta learner. Extensive experiments and ablation stud-
ies validate the effectiveness of our method and demon-
strate the superior performance of our method compared
with other state-of-the-art approaches.

Appendix: Symbol list

Dbase base dataset (A1)

Dnovel novel dataset (A2)

Cbase base classes (A3)

Cnovel novel classes (A4)

Fconv convolutional block (A5)

F Frobenius norm (A6)

F1×1 1 × 1convolutional block (A7)
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Table 4 Overall ablation study on two modules, where “Sa” denotes the self-attention module and “CL” represents contrastive learning
loss (Top performance in bold mIoU)

Backbone Methods 1-shot 5-shot

Sa CL Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean

ResNet50 68.39 73.47 67.46 60.58 67.48 70.09 74.93 70.69 66.65 70.59
� 69.10 73.71 67.66 61.10 67.89 71.48 75.62 71.07 66.89 71.27

� 69.22 73.69 67.65 61.25 67.95 71.37 75.27 70.93 67.26 71.21
� � 69.34 73.71 67.66 61.36 68.01 71.71 75.42 71.19 67.50 71.46

R reshape operation (A8)

Fpool average pooling operation (A9)

� Hadamard product operation (A10)

P dimensional expansion operation (A11)

C concatenating operation (A12)

f q
b feature map of query image (A13)

Db decoder network (A14)

pb prediction of base learner (A15)

Nb number of base classes (A16)

mq
b ground-truth of base learner (A17)

vs class-related prototype from

meta learner (A18)

f s
m intermediate feature maps for

support image (A19)

f q
m intermediate feature maps for

query image (A20)

Gs Gram metrics of the support image (A21)

Gq Gram metrics of the query image (A22)

f s
low low-level feature from the

support image (A23)

f s′
low re-weighted low-level feature

from the support image (A24)

f q
low low-level feature from

the query image (A25)

f q′
low re-weighted low-level feature

from the query image (A26)

ψ adjustment factor (A27)

Mψ adjustment map (A28)

p1
m foreground obtain from the

meta learner (A29)

p0
m background obtain from the

meta learner (A30)

Lbase loss from base learner (A31)

Lmeta loss from meta learner (A32)

LCL contrastive learning loss (A33)

Ltotal total loss (A34)

yq
novel the predicted mask of query image

in novel classes (A35)

ŷs
novel the ground-truth mask of support image

in novel classes (A36)

yq
base the predicted mask of query image

in base classes (A37)

ys
base the predicted mask of support image

in base classes (A38)
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