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Abstract
With the aim to enhance prediction accuracy for nonlinear time series, this paper put forward an improved deep
Echo State Network based on reservoir states reconstruction driven by a Self-Normalizing Activation (SNA) function
as the replacement for the traditional Hyperbolic tangent activation function to reduce the model’s sensitivity to
hyper-parameters. The Strategy was implemented in a two-state reconstruction process by first inputting the time
series data to the model separately. Once, the time data passes through the reservoirs and is activated by the SNA
activation function, the new state for the reservoirs is created. The state is input to the next layer, and the
concatenate states module saves. Pairs of states are selected from the activated multi-layer reservoirs and input into
the state reconstruction module. Multiple input states are transformed through the state reconstruction module and
finally saved to the concatenate state module. Two evaluation metrics were used to benchmark against three other
ESNs with SNA activation functions to achieve better prediction accuracy.

Keywords: Echo state networks, Time series prediction, Reconstruction model, Self-normalizing activation function,
Reservoir computing

1 Introduction
A prediction is a statement about forecasting an event or
data in the future. Based on a general belief that what hap-
pened before will happen again, people often look at his-
tory to provide them with clues to plan for the future. How-
ever, reliable prediction on nonlinear time series is a com-
plex task [1, 2]. Given the capability of time series in re-
taining features of events or data in the sequence of time
as events unfold, it has become a source of information
to trace the footstep of history over time, to allow us to
study and identify key factors that drive the development.
As a result, many algorithms [3, 4] have been developed
over the years to study prediction using time series, as a
source of historical information to learn about the past,
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and seek to uncover key underlying features or patterns
hidden within the data set to make predictions for the fu-
ture. However, the time series data set is inherently nonlin-
ear, which makes it challenging to analyze. Tools like arti-
ficial neural networks have shown promising potential in
learning and predicting nonlinear data [5]. Among them,
recurrent neural network (RNN) has been widely reported
in conjunction with time series as the data sets [6, 7].

Nonetheless, limitations do exist in handling training
of bifurcation towards convergence, which when the time
span becomes larger or as the network deepens, the cal-
culation will grow exponentially to require the support of
massive computational power [8]. Furthermore, exploding
and vanishing gradients may also occur when using RNN
[9]. This has led many researchers to look for an alternative
to recurrent neural networks, known as reservoir comput-
ing (RC), the model offers a higher efficiency, and better
solution to overcome convergence of bifurcation and gra-
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dient limitations of the recurrent neural network (RNN)
[10, 11].

Reservoir computing is a framework of computation
derived from recurrent neural network theory that maps
input signals into higher dimensional computational spaces
through the dynamics of a fixed, but non-linear system
called a reservoir. After the input signal is fed into the
reservoir, which is treated as a “black box,” a simple read-
out mechanism is trained to read the state of the reservoir
and map it onto the desired output. The first key benefit
of this framework is that the training is performed only at
the readout stage when the reservoir dynamics are already
fixed. The other advantage is the requirement for compu-
tational power is not demanding, and could be supportable
with a normal PC or laptop.

The concept of reservoir computing stems from the use
of recursive connections within neural networks to create
a complex dynamical system. It is a generalization of ear-
lier versions of neural network architectures such as re-
current neural networks, Liquid State Machine (LSM), or
Echo State Networks (ESN). Reservoir computing has also
extended over to apply to physical systems that are not
neural networks in the classical sense, but rather contin-
uous systems in space and/or time: e.g., a literal “bucket
of water” can serve as a reservoir that performs compu-
tations on inputs given as perturbations of the surface.
The resultant complexity of such recurrent neural net-
works was found to be useful in solving a variety of prob-
lems including language processing and dynamic system
modeling. However, training of recurrent neural networks
is challenging and computationally extensive, and there-
fore, switching over to Reservoir computing reduces those
training-related challenges by fixing the dynamics of the
reservoir to only train on the linear output layer. A large va-
riety of nonlinear dynamical systems can serve as a reser-
voir that performs computations.

As the special computational framework of RNN, reser-
voir computing (RC) has a complete theoretical basis and
can effectively avoid the problems of high computational
complexity and gradient explosion or vanishment. There
are two main types of RC, namely Echo State Networks
(ESN) and Liquid State Machine (LSM). They could be
easy to train to deliver excellent predictions. Hence, they
are widely applied to areas such as system identification,
signal processing, and time series prediction. In this ar-
ticle, we will present the ESN, and its potential to con-
vert the input information into a high-dimensional signal
to be stored in its reservoirs, and for the delivery of bet-
ter prediction, based on training on nonlinear time series
data sets. Difference from other RNN methods, ESN only
needs to adjust the output weight matrix with a linear re-
gression algorithm, which makes it easy to implement and
could be supported with low computational requirements.
Although, ESN is widely applied in solving complex data-
based problems, such as classification[12], and time series

forecasting [13], it does suffer from sensitivity to hyperpa-
rameters [14]. To address this problem, some researchers
have opted for changing the model’s topology or adjust-
ing the sampling method of time series to extract the fea-
tures of time series in various ways with little improve-
ment to show. Here, we propose a two-state reconstruc-
tion method to train the system to redo the training on the
same set of data to learn and extract missing temporal fea-
tures from the existing data set, rather than mining new
ones. At the same time, we will also replace the tanh acti-
vation function in ESN with an SNA activation function to
ensure that the model runs in a stable state.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the current works on the time series
prediction on ESN. In Section 3, we will present the op-
eration mechanism of the original ESN. In In Sect. 5, we
will showcase the use of the SNA activation function to
enable the ESN to extract temporal features from the exist-
ing state in the reservoir in a stable environment. A bench-
marking will be presented in Section 5, with results show-
cased in Sect. 6.

2 Literature review
ESN has exhibited its robustness in nonlinear mapping to
predict accurately at a faster speed than others, making it
an ideal model for predicting nonlinear time series [13, 15].

ESN was first introduced to time series problems in 2004
when it was shown to be capable of working work with
nonlinear data in chaotic wireless communication systems
to predict accurately [16]. Thereafter, when a leakage rate
was added onto the standard ESN as a parameter to op-
timize learning different time features at the global level,
it has come up head-and-shoulder on top of many other
classic counterparts, especially when it is placed to work
with noisy time series, and time-warped dynamic patterns
data sets [17]. However, in the traditional single-layer ran-
dom connected reservoir, there is a limitation on how long
it could preserve the features of long-term time series.
Over time, the time features in the reservoir gradually dis-
appear, and this has limited ESN’s scope for expanding.
To overcome this limitation on maintaining the long-term
memory capacity of the reservoir, a variety of algorithms
such as Deep ESN, and some hybrid models that com-
bine ESN with other algorithms have been attempted, with
little results to show for [5]. There were also others who
proposed the use of the Principal Neuron Reinforcement
(PNR) algorithm [18] to strengthen the connections be-
tween the main neuron and other neurons, hoping that
this might improve the performance. The introduction of
Anti-Oja (AO) [19] was yet another attempt to learn to up-
date neuron weights in the reservoir, by reducing the cor-
relation between neurons, to improve the dynamic to di-
versify of internal state, with the hope that it would im-
prove the prediction performance. In an attempt to sim-
plify the internal structure of the reservoir, Simple Cycle
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Reservoir (SCR), Delay Line Reservoir (DLR), and Delay
Line Reservoir with feedback connections (DLRB) were
reported in 2010 [20], and seem to delivery better per-
formance as expected. Thereafter, adjacent-feedback Loop
Reservoir (ALR) [13] introduced the feedback mechanism
of adjacent neurons on SCR and achieved satisfactory re-
sults.

For Deep ESN, which consists of multiple stacked reser-
voirs, focuses were directed to create additional layers
inside the reservoirs to increase the richness in features
and improve the performance [11]. Researchers have also
found better accuracy by stacking multiple layers of reser-
voirs to improve the short-term memory capacity. Based
on this observation, a Deep ESN, [21] with a new hidden
layer was proposed by adding three gate states inside the
reservoirs, to improve the knowledge held in deep mem-
ory. Compared with Deep ESN, Deepr-ESN[22] continu-
ously works on developing the high-level state space in the
reservoirs by new rounds of training to learn additional
features from the low-level feature space, in the process,
remove the high-frequency components of the representa-
tions, and resulted in significant improvement over other
similar models.

Modular Deep ESN (Mod-Deep ESN) [23] proposed
several models with heterogeneous topology to capture
multi-scale dynamic features of time series. Mod-Deep
ESN used Criss-Cross topology and Wide Layered topol-
ogy were proposed to train on some time series to prepare
for prediction tasks. Multi-reservoir ESN with sequence
re-sampling (MRESN) [24] deployed three re-sampling
methods based on Deep ESN and Group ESN to improve
the prediction performance for nonlinear time series. In
[25], three ESN models integrated SNA have given birth
to the arrival of the Deep ESN with SNA, Group ESN with
SNA, and Grouped Deep ESN with SNA, to overcome the
ESN model’s sensitivity to hyper-parameters.

ESN not only be driven by deep learning but could also
incorporate other machine learning algorithms and neural
networks into the system, to enhance the linkage between
information sensed in from the environment (sensation)
with features held in the reservoirs (perception) to provide
a sense of continuity of experience. Such continuity may
even serve as the basis for personal identity. In [26], the
feed-forward neural network is used to replace the output
layer of ESN, and the back-propagation algorithm is used
to optimize the feed-forward neural network.

In 2019, Sun X, et al. put forward an enhanced echo-
state restricted Boltzmann machine (eERBM) [12] to ex-
tract temporal features through a restricted Boltzmann
machine and then input them into ESN. Through exper-
iments, eERBM yields a better nonlinear approximation
and delivers accurate prediction in traffic tasks. Others like
He K, et al. decided to opt for improvement on the Long-
term performance prediction for proton exchange mem-

Figure 1 Traditional ESN

brane fuel cell (PEMFC) in vehicles based on a least abso-
lute shrinkage and selection operator (LASSO-ESN) [27]
to eliminate the parameters with the minimum weight dur-
ing the prediction process to improves the accuracy of the
prediction.

In this review, we found that most ESN we have covered
so far, mainly focus on the increasing number of reservoir
states, instead of paying attention on extracting more time
features from the existing time series data set to develop
new states for the reservoir. Inspired by the works of Li
Z, et. al. on multi-reservoir echo state networks with se-
quence re-sampling for nonlinear time-series prediction
[24], we propose an improved ESN that will generate new
states through a state reconstruction process using fea-
tures extracted between different layers of the reservoir.
This hypothesis would be tested in the numerical simu-
lation in Section 5, when we brandmark it with the other
three deep models featured in [25].

3 Preliminaries of ESN
ESN is a particular recurrent neural network proposed by
Jaeger [28]. The architecture of a traditional ESN shown
in Fig. 1 which consists of an input layer, a reservoir with
sparse connections, and a readout layer. Win represents the
weight matrix of the input unit, W is the weight inside the
reservoir, and Wout is the weight of the output unit. Win
and W are generated from random values, and they are
fixed during training. The Wout is obtained by linear re-
gression, which can dramatically reduce the amount of cal-
culation compared to RNN.

The input units, reservoir units, and output units are de-
noted by:

u(t) =
(
u1(t), u2(t), . . . , uk(t)

)T, (1)

x(t) =
(
x1(t), x2(t), . . . , xk(t)

)T, (2)

y(t) =
(
y1(t), y2(t), . . . , yk(t)

)T. (3)

The updated formula of neurons in the reservoirs is as
follows:

x(t + 1) = f
(
Winu(t + 1) + Wx(t)

)
, (4)
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where f is the activation function, traditional ESN uses
tanh to activate neurons. The prediction output calcula-
tion formula is as follows:

y(t + 1) = fout
(
Wout

[
x(t + 1); u(t + 1)

])
, (5)

where fout is the readout function and Wout is the trained
output weight matrix. Symbol [·; ·] stands for a vertical
concatenation.

To ensure the dynamic stability of the network during
initialization, ESN needs to satisfy the asymptotic stability
property, which is called Echo State Property (ESP) [29]. To
guarantee ESP, the spectral radius of the reservoir’s weight
matrix (Equation (6)) needs to be less than 1.

W = α
W1

‖λmax‖ , (6)

where W1 is the randomly generated reservoir weight ma-
trix, λmax is the spectral radius of W1, and α is the scaling
parameter for tuning.

4 The framework of proposed ESN model
This paper will focus on the issue of sensitivity of the ESN’s
regarding hyperparameters that prevent them from work-
ing in a stable environment to work on generating more
states for the reservoir by training to learn additional tem-
poral features from the states in the reservoir. In other
words, the goal to enhance the prediction accuracy of Echo
State Networks (ESN), will now decompose into two ob-
jectives; Firstly, it is on the identification of a replacement
for the hyperbolic tangent activation function to ensure
the ESN is given to operate in a stable environment. Sec-
ondly, to improve the predictivity of ESN, additional train-
ing to enrich the reservoirs with additional temporal fea-
tures learned from pairs of states selected from the acti-
vated multi-layer reservoirs and input into the state recon-
struction module.

The proposed ESN is developed based on Deep ESN, and
its schematic diagram is shown in Figure 2 as the proposed
improved version of ESN. First, we replace the traditional
Hyperbolic tangent activation function with a SNA activa-
tion function to reduce the impact due to the sensitivity of
hyperparameters. Then, we design a state reconstruction
module based on Deep ESN. The proposed ESN model
aims to extract additional features from the existing states
stored between different layers in ESN.

The time series forecasting process of the proposed ESN
is as follows (see Fig. 3):

1. Input the time series data to the model separately.
2. After the time data passes through the reservoirs and

is activated by SNA activation function (Subsect. 4.1),
the state of the reservoirs is obtained. The state is
input to the next layer, and the concatenate states
module (Subsect. 4.3) saves.

3. Pairs of states are selected from the activated
multi-layer reservoirs and input into the state
reconstruction module (Subsect. 4.2). Multiple input
states are transformed through the state
reconstruction module, and finally saved to the
concatenate states module.

4. Predict future time data through ridge regression.

4.1 Self-normalizing activation function on hyper-sphere
Generally, the traditional ESN model uses tanh as the
reservoir activation function. This activation function is
simple and practical, whereas it is very sensitive to hyper-
parameters. Only proper hyperparameter configurations
can ensure that the ESN is at the edge of criticality and
maximize the ESN’s performance. Otherwise, the network
will be useless and result in chaotic behavior. Therefore,
we use the SNA activation function (Equation (7)) rather
than tanh in the ESN. Theoretical analysis of the SNA acti-
vation function shows that the maximum Lyapunov expo-
nent of the model is always zero. It means that no matter
how the hyperparameters of the network are configured,
the model always runs in a stable state, eliminating the
excessive dependence on hyperparameters [14]. Further-
more, SNA guarantees that ESN exhibits nonlinear behav-
ior and handles tasks that require rich dynamics. SNA also
provides memory behavior similar to linear networks, ef-
fectively balancing non-linearity and memory ability [14].

αk = Wrxk–1 + Winuk , (7)

xk = r
αk

‖αk‖ . (8)

In Equation (7), αk is the pre-activation vector obtained
from the state xk–1 of the input uk . In Equation (8), the pre-
activation vector αk is projected onto an N –1 dimensional
hypersphere with radius r, and the post-activation state xk
is obtained. The SNA activation function is not element-
wise, it depends on all the states, and it is a global activation
function. The activation function of each neuron depends
on the values of other neurons.

4.2 States reconstruction module
We design the state reconstruction module based on Deep
ESN, as shown in Fig. 4. The states reconstruction mod-
ule is used to cross-stitch the original states of the input
in the original order. Unlike general Deep ESN, we fur-
ther process the state of the reservoir that has been ob-
tained, expecting to obtain more temporal features. As
shown in Fig. 2(b), after inputting the data into the multi-
layer ESN model from the top, the states are inputted
to the state reconstruction module in pairs, extracting
more temporal features. We employ s(κ) ∈ R

Nr for r =
1, 2..., Nr to represent the inputs to the state reconstruction
module, where Nr is the size of the reservoirs. And then,
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Figure 2 Comparison of Deep ESN and our proposed ESN

Figure 3 Flowchart of the proposed ESN’s training process

a collection matrix of the inputs in pair can be defined
as S1 = [s1(1), s1(2), . . . s1(Nr)], S2 = [s2(1), s2(2), . . . s2(Nr)].
Based on the sampling and splicing of states, we put for-
ward two-state reconstruction methods: single adjacent el-
ements concatenation and double adjacent elements con-
catenation, respectively. They are designed to realize the
mutual mixing of the states of different layers and improve
the model’s ability to extract the features of time series.

Concatenation of single adjacent elements Regarding the
method of a single adjacent element, it inputs the states
between the two layers into the state reconstruction mod-
ule. It divides the elements into two states according to

Figure 4 An example of state reconstruction of two states in the
proposed ESN

whether the subscript is odd or even. It keeps the relative
position of reservoir states unchanged. The odd subscript
elements of the first state are combined with the even sub-
script elements of the second state. The even subscript el-
ements of the first state are combined with the odd sub-
script elements of the second state.

srec1 = s1[τ1] + s2[τ2], (9)

srec4 = s2[τ1] + s1[τ2], (10)

with
{

τ1 = t mod 2 == 0, t ∈ (0, Nr),
τ2 = t mod 2 == 1, t ∈ (0, Nr),

(11)
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where τ represents the index of the original state element,
and srec represents the new state after reconstruction. We
construct srec1 by interval sampling, and exchange index to
construct srec2.

Concatenation of double adjacent elements This method
treats two adjacent states as a group. They are concate-
nating odd-numbered combinations in the first state with
even-numbered combinations in the second state and vice
versa.

srec3 = s1[G1] + s2[G2], (12)

srec4 = s2[G1] + s1[G2], (13)

with
{

G1 ∈ ((1, 2), (5, 6), (9, 10), . . .),
G2 ∈ ((3, 4), (7, 8), (11, 12), . . .).

(14)

G represents the index formed by every two states as a
group.

Through these two reconstruction methods, we can add
several new states to the original states and ensure that the
relative positions of the elements in the original states re-
main unchanged in the new states.

4.3 States concatenation module
In the states concatenation module, all states correspond-
ing to time t are vertically connected. The vertically ar-
ranged states include the SNA-activated states and the new
state obtained by the state reconstruction module.

The definition of states concatenation is as follows.

X(t) = [1; x1; . . . ; xn; . . . ; xrec1; . . . ; xrecn]. (15)

5 Numerical experiments
In this section, we undertook a number of simulations
to study the outputs from the proposed ESN model, in
comparison with its peers; namely ESN model with SNA,
which is Deep ESN, Group ESN, and Grouped Deep ESN
[30]. in terms of their accuracy in predicting on a set of
multiple classical chaotic time series.

In here, Group ESN is a parallel shallow ESN model.
While Deep ESN is composed of multiple ESNs stacked
vertically, which are organized differently from the tradi-
tional deep neural networks, the output of Deep ESN is
composed of the intermediate state of each layer. On the
other hand, the Grouped Deep ESN is made up of Group
ESN and Deep ESN, combined into one system with the
aim of integrating the breadth and depth of both models.

During the simulations; a time series was fan-in into all
four ESNs at the same time with their output fan-out sepa-
rately at the final output stage. The improved ESN we pro-

posed is mainly based on Deep ESN with the tanh activa-
tion function replaced by SNA activation function, to im-
prove the stability of the ESN to oversee the state recon-
struction module for the state enrichment by extracting
more temporal features from the existing time series data
set, hopefully to improve the prediction performance.

5.1 Dataset description
We use two benchmark prediction tasks named Multiple
Superimposed Oscillators (MSO) and the Rossler system
to evaluate the proposed ESN. Further, Laser and Elec-
tromyograms (EMG), which are two real data sets, are also
applied to simulate time series prediction tasks (see Fig. 5).
These four data sets are classic data sets in time series fore-
casting tasks. Among them, the first two data sets can be
shown by mathematical expressions that their curves are
smoother and therefore tend to be better predicted. The
latter two data sets are extracted from real scenes, have a
certain degree of chaos, and are difficult to predict.

1. MSO
MSO [31] is formed by superpositioning multiple

sine signals of different frequencies.

y(t) =
m∑

k=1

sin(ωkt). (16)

Where m represents the number of different sine
functions, and ωk represents different frequencies. In
the experiments, we perform one-step ahead
predictions on superimposed sine signals of 12
different frequencies: ω1 = 0.2, ω2 = 0.331, ω3 = 0.42,
ω4 = 0.51, ω5 = 0.63, ω6 = 0.74, ω7 = 0.85, ω8 = 0.97,
ω9 = 1.08, ω10 = 1.19, ω11 = 1.27, ω12 = 1.32.

2. Rossler system
The Rossler system [32] consists of three nonlinear

ordinary differential equations that define a
continuous-time dynamical system.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx
dy

= –y – z,
dy
dz

= x + ay,
dz
dt

= b + z(x – c)

(17)

The system shows chaotic behavior for
a = 0.15, b = 0.2, c = 10.

The time series of the Rossler system is generated
with initial values (–1, 0, 3) and step of 0.01. In our
experiments, we make a one-step ahead prediction
for Rossler – x(t).

3. Laser
Santa Fe Laser Dataset is a benchmark dataset in

time series forecasting tasks [33]. It is a real-world
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Figure 5 Partial display of MSO12,Rossler,Laser, and EMG datasets

Table 1 Data partition for time series datasets

Total length Training Validation Testing Transient

4000 3000 500 500 30

dataset measured in the laboratory with periodic
laser output power datasets, and it contains a length
of 10092. It will be used in one step ahead prediction
of our simulation.

4. EMG
Electromyography is mainly used in clinical

experiments to assess functions such as muscles and
nerves. We use the EMG time series of a 44-year-old
healthy male with no history of muscle disease
collected in work [34] and use it for one-step-ahead
prediction.

We employ the same length of the training set, valida-
tion set, test set, and initial transient set on the above four
experimental datasets. The specific parameters are shown
in Table 1.

Each dataset is 4000 in length, of which the first 3000
data are used for training, 500 data are used for validation,
and the last 500 data points are used for testing. The tran-
sient data set is 30. For a fair comparison, the same dataset
partitioning is used in our improved ESN model and the
three contrasting models.

5.2 Evaluation metrics
Two metrics are used to evaluate our model, root-mean-
square error (RMSE) in Equation (18) and normalized root
mean square error (NRMSE) in Equation(19). They have a
strong theoretical correlation in statistical modeling and
are the most commonly used measurement methods in

time series prediction tasks [35].

RMSE =

√√
√√ 1

NT

NT∑

t=1

(
y(t) – ˆy(t)

)2, (18)

NRMSE =
RMSE

√
1

NT

∑NT
t=1(y(t) – ¯y(t))2

. (19)

y(t) refers to the actual data observed at time t under the
length of NT , ˆy(t) refers to the predicted value at time t,
and ¯y(t) represents the average value of real data.

5.3 Experiments settings
The parameter settings of the simulated ESNs are shown
in Table 2. The input scaling θ , the spectral radius ρ , the
density of internal weight η, the leaking rate α, and the reg-
ularizing factor β . The reservoir size NR is varied in the
range of [100, 1000] with the interval of 100. The activa-
tion radius r is in range [10, 50, 100, . . . , 800].

After using the SNA activation function, the sensi-
tivity of the input scaling θ and spectral radius ρ de-
creases. We can fix these two values to improve the
search efficiency [25]. However, SNA function also in-
troduces another hyperparameter, the activation radius
r. Thus, for each dataset, we test the reservoir size NR
∈ [100,200,. . . ,1000] and the SNA activation radius r ∈
[10, 50, 100, 200, . . . , 800].

The improved ESN is compared with three models
with SNA activation functions proposed in the work [30],
Deep ESN with SNA, Grouped Deep ESN with SNA, and
Grouped ESN with SNA. We use a grid search strategy to
test each model under the same conditions and compare
their optimal values.
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Figure 6 The prediction performance and grid search result on MSO12

Table 2 The parameters settings of experiments

Parameters Symbol Value

Input scaling θ 0.9
Spectral radius ρ 1
Density of internal weight η 0.1
Leaking rate α 0.9
Regularizing factor β 1e-6
Weight distribution uniform

Reservoir size NR [100, 200, 300, . . . , 1000]
Activation radius r [10, 50, 100, . . . , 800]

5.4 Results analysis
In this section, we present and analyze the performance of
our improved ESN and compare ESN models on the afore-
mentioned four datasets. The optimal parameters of our
proposed model in each dataset are shown in Table 3, Ta-
ble 4, Table 5, and Table 6.

• MSO
Table 3 lists the optimal performance of our

improved model and the three comparative models
under the optimal configuration within the given
range. In this dataset, the average NRMSE (18) and
RMSE (19) obtained by grouped ESN are the best, and
the improved ESN is better than the other two
models. Figure 6(b) shows the result of our improved
model by grid search. Among them, Nr = 600, r = 80.
The predicted time series is shown in Fig. 6(a).

• Rossler system
Table 4 shows that the proposed model outperforms

other compared models on the Rossler system. The
best prediction results of our proposed method are
obtained under the parameter conditions: NR = 10,
r = 300. The grid search results and prediction are
shown in Fig. 7.

• Laser
The results of the Laser dataset are shown in

Table 5. The improved ESN is still better than the
three comparison models in RMSE and NRMSE,
where the model parameters NR =600, r = 100. The
prediction and grid search results are shown in Fig. 8.

• Electromyograms
The experimental results of RMSE the EMG dataset

are shown in Table 6. The result of RMSE standard
deviation (18) obtained through multiple experiments
on Deep ESN is slightly smaller than the ESN we
proposed. The improved ESN is better than the
comparison model on the rest of the metrics. The
optimal parameter configuration is NR = 100, r = 800.
The predicted effect is shown in Fig. 9.

As we can see from the graphs generated by the simula-
tion, the real curves of the MSO and Rossler systems are
smoother, indicating that the four models predicted on
these two data sets are more accurate, and the lines are al-
most completely fitted. As for Laser and Electromyograms,
due to the many changes and poor regularity, the perfor-
mance on these two data sets was somewhat lower with
the larger. error.

Compared with the other three ESNs with SNA activa-
tion function, our improved ESN model has shown to per-
form rather well in the case of multiple indicators on the
four data sets. Especially in comparison with the Deep ESN
model, our model is better than Deep ESN in almost all in-
dicators. The possible reason is that after state reconstruc-
tion, it seems to be able to capture rather more features.

On all four data sets we have selected, the minimum
RMSE (18) and NRMSE (19) obtained by our model are
the best among all. The improvement could be credited to
the use of the state reconstruction module we proposed
to capture additional relevant features from the time se-
ries by re-training on the states from the multi-layer reser-
voirs and re-splicing it in sequence during reconstruction.
Compared with the original model, the state reconstruc-
tion module increases the richness of the original states.
Although on the MSO data set, the average values of our
NRMSE and RMSE are slightly lower than some of the
peers, the performance of our model has been improved
from a global view.

6 Conclusions
With the aim to improve the prediction accuracy for Echo
State Networks (ESN) on nonlinear time series, we identi-
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Table 3 Hyperparameter setting in MSO task

Min NRMSE NRMSE ± (STD) Min RMSE RMSE± (STD) Parameter settings

Deep ESN with SNA 4.097e-6 3.955e-5 ±(4.337e-5) 1.179e-5 1.133e-4± (1.242e-4) r = 800,NR = 600,layers=3,groups=1
Grouped Deep ESN with SNA 2.757e-6 1.122e-5±(9.442e-6) 7.934e-6 3.229e-5±(2.717e-5) r = 800,NR = 500,layers=3,groups=3
Grouped ESN with SNA 3.312436e-6 1.056e-5±(9.105e-6) 9.532e-6 3.040e-5 ±(2.621e-5) r = 800,NR = 600,layers=1,groups=3
Proposed 2.686e-6 1.101e-5±(8.191e-6) 7.732e-6 3.169e-5±(2.357e-5) r = 800,NR = 600,layers=2,groups=1

Table 4 Hyperparameter setting in Rossler task

Min NRMSE NRMSE ± (STD) Min RMSE RMSE± (STD) Parameter settings

Deep ESN with SNA 0.001267 0.002091 ±(0.000565) 0.010426 0.017209± (0.004653) r = 50,NR = 1000,layers=3,groups=1
Grouped Deep ESN with SNA 0.000771 0.001488±(0.000823) 0.006351 0.012250±(0.006772) r = 50,NR = 700,layers=3,groups=3
Grouped ESN with SNA 0.000935 0.001419±(0.000363) 0.007701 0.011680±( 0.002986) r = 50,NR = 1000,layers=1,groups=3
Proposed 0.000738 0.001037±(0.000208) 0.006073 0.008536±(0.0017156) r = 10,NR = 300,layers=2,groups=1

Table 5 Hyperparameter setting in Laser task

Min NRMSE NRMSE ± (STD) Min RMSE RMSE± (STD) Parameter settings

Deep ESN with SNA 0.093144 0.110232 ±(0.011432) 5.383621 6.398643± (0.665684) r = 10,NR = 600,layers=3,groups=1
Grouped Deep ESN with SNA 0.059829 0.069994 ±(0.006536) 3.485344 4.092990±(0.384625) r = 10,NR = 500,layers=3,groups=3
Grouped ESN with SNA 0.127739 0.146922±(0.012445) 7.388213 8.596877±(0.737867) r = 10,NR = 700,layers=1,groups=3
Proposed 0.055357 0.063229±(0.006150) 3.221996 3.672337±(0.3526657) r = 10,NR = 600,layers=2,groups=1

Table 6 Hyperparameter setting in EMG task

Min NRMSE NRMSE ± (STD) Min RMSE RMSE± (STD) Parameter settings

Deep ESN with SNA 0.578725 0.642781 ±(0.038119) 0.026279 0.030097± (0.001924) r = 10,NR = 200,layers=3,groups=1
Grouped Deep ESN with SNA 0.614064 0.763451 ±(0.074423) 0.029121 0.038067±(0.004220) r = 10,NR = 300,layers=3,groups=3
Grouped ESN with SNA 0.624619 0.709621±(0.049864) 0.029718 0.034114±(0.003215) r = 100,NR = 400,layers=1,groups=3
Proposed 0.568991 0.604330±(0.034761) 0.025948 0.028265±(0.002098) r = 800,NR = 100,layers=2,groups=1

Figure 7 The prediction performance and grid search result on Rossler

fied the instability due to the hyperbolic tangent activation
function and the lack of temporal features existing within
the states in reservoirs as two potential areas that in need
of investigation.

Theoretical analysis of the SNA activation function
shows that the maximum Lyapunov exponent of the model
is always zero. It means that no matter how the hyper-
parameters of the network were configured, the model
will always run in a stable state, as a result, eliminate the
excessive dependency on hyper-parameters, and hence,

the replacement of hyperbolic tangent activation function
should provide us with the stability needed for our ESNs
on work on the second problem.

Strategically, the issue of missing temporal features
could be made up by re-training the existing states sitting
inside the reservoirs to extract these features to create new
states in a two-state reconstruction method as follows.

• Input the time series data to the model separately.
• After the time data passes through the reservoirs and

is activated by SNA activation function, the state of
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Figure 8 The prediction performance and grid search result on Laser

Figure 9 The prediction performance and grid search result on EMG

the reservoirs is obtained. The state is input to the
next layer, and the concatenate states module saves.

• Pairs of states are selected from the activated
multi-layer reservoirs and input into the state
reconstruction module. Multiple input states are
transformed through the state reconstruction module
and finally saved to the concatenate states module.

The design of the state reconstruction module is based
on Deep ESN that is used here to cross-stitch the origi-
nal states of the input in the original order. After inputting
the data into the multi-layer ESN model from the top, the
states are inputted to the state reconstruction module in
pairs, extracting more temporal features to concatenate
them in a two-state reconstruction method: single adja-
cent elements concatenation and double adjacent elements
concatenation, respectively. They are designed to realize
the mutual mixing of the states from different layers to
improve the model’s ability to extract these additional fea-
tures from the time series concerned.

During the state concatenation module, all states corre-
sponding to the time t are vertically connected. The verti-
cally arranged stated include the SNA-activated stares and
the next state objected by the state reconstruction module.

The proposed model was benchmarked with four pop-
ular improved ESN models; namely Deep ESN with SNA,
Group Deep ESN with SNA, and Grouped ESN with SNA,
on four time series data sets; namely Multiple Superim-

posed Oscillators [MSO], Rossler system, Santa Fe Laser
Dataset, and EMG time series, to obtain a set of very in-
teresting results in prediction performance among all its
peers.

However, limitations do exist in this study that each
layer’s state is reconstructed monolithically when layers of
the reservoir might contains different hidden features in
the time series, but were treated by us uniformly of the
same type, which opened the way for future investigation
to study the benefit from different architectural orienta-
tions that we might have missed in this study.
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