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Abstract
With the increasing number of space satellites, the demand for satellite communication (including maneuvering,
command uploading and data downloading) has also grown significantly. However, the actual communication
resources of ground station are relatively limited, which leads to an oversubscribed problem. How to make use of
limited ground station resources to complete satellite communication requests more fully and efficiently in the strict
visible time is the focus of satellite range scheduling research. This paper reviews and looks forward to the research
on Satellite Range Scheduling Problem (SRSP). Firstly, SRSP is defined as the scheduling problem of establishing
communication between satellites and ground stations, and the classification and development of SRSP are
introduced. Then, this paper analyzes three common problem description models, and establishes a mathematical
model based on the analysis of optimization objectives and constraints. Thirdly, this paper classifies and summarizes
the common solving methods of SRSP, and analyzes their characteristics and application scenarios. Finally, combined
with the work in this paper, the future research direction of SRSP is envisioned.

Keywords: Satellite range scheduling, Communication resource scheduling, Scheduling algorithm, Research
overview

1 Introduction
Currently, there are more than 5000 satellites in orbit
around the world and the number is still increasing. They
play an important role in geodesy, navigation, military
reconnaissance, weather prediction and other areas, all
of which require communication with remote ground
stations. Different from the enormous number of satel-
lite communication demands, ground station resources
supporting satellite communication are relatively lim-
ited. Therefore, in order to ensure efficient communica-
tion between satellites and ground stations, satellite range
scheduling problem has been proposed and widely stud-
ied.

Regarding the understanding of satellite range schedul-
ing problem, most scholars hold that it refers to the com-
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munication scheduling between satellites and ground sta-
tions [1–4], while some believe that it includes satellite
communication scheduling, earth observation scheduling
and sensor scheduling [5]. This paper will adopt the for-
mer definition, that is, Satellite Range Scheduling Problem
(SRSP) is a scheduling problem that establishes commu-
nication between satellites and ground stations by match-
ing satellite communication tasks with available and viable
ground stations, and this problem has been proved to be
NP-complete [2]. Figure 1 shows the schematic diagram of
the visible windows between satellites and ground stations
in SRSP, where G1 and S1 can communicate under task
constraints but G1 and S3 are invisible and cannot com-
municate. According to the number of resources, SRSP can
be divided into Single Resource Range Scheduling Problem
(SiRRSP) and Multiple Resource Range Scheduling Prob-
lem (MuRRSP) [6]. SiRRSP refers to the problem with only
one ground station and several satellites, while MuRRSP
to those with both multiple satellites and ground stations.
Based on the scheduling mode, SRSP can be differenti-
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Figure 1 Schematic diagram of the visible windows between satellites and ground stations in SRSP

ated between static scheduling and dynamic scheduling
[7]. In terms of communication task type, SRSP can also be
classified into satellite data transmission scheduling prob-
lem, multi-satellite TT&C scheduling problem, satellite
downlink scheduling problem, satellite broadcast schedul-
ing problem, etc.

In the 1990s, Gooley [8] proposed SRSP in the U.S. Air
Force Satellite Control Network (AFSCN) and established
Mixed Integer Programming (MIP) model to generate 24-
hour scheduling scheme. Parish [9] adopted classical ge-
netic algorithm to solve SRSP. Since then, this problem
has been studied more extensively. Some deterministic
algorithms, such as dynamic programming [10] and La-
grangian relation [11, 12], have been used for finding the
optimal solution under simple constraints. As the prob-
lem scale, constraints and complexity increase, algorithms
such as local search [13, 14], evolutionary algorithm [4,
15, 16] and neural networks [17, 18] have been more fre-
quently applied to this problem. At present, the research
of SRSP mainly focuses on the algorithm improvement un-
der different scheduling scenarios and the simulation op-
timization of real cases.

This paper focuses on SRSP and is organized as fol-
lows. Section 1 introduces the definition, classification
and development of SRSP. Section 2 analyzes three com-
mon problem description models of SRSP and establishes
a mathematical model based on the summary of com-
mon objectives and constraints. Section 3 summarizes the
scheduling algorithms commonly used in SRSP and an-
alyzes the characteristics of those algorithms. Section 4
looks ahead to the future research in SRSP based on the
current status. Finally, a conclusion is shown in Sect. 5.

2 Description of SRSP
2.1 Modeling method in SRSP
Modeling of SRSP uses mathematical tools to describe
the resource and demand information, optimization ob-
jectives and complex constraints associated with the prob-
lem. Currently, there are three main types of SRSP mod-
eling, namely, mathematical programming model, con-
straint satisfaction model and graph theory model.

Mathematical programming model is to use linear pro-
gramming model or nonlinear programming model to
describe problem based on operational research knowl-
edge, most of which uses linear programming model. In
fact, early studies of SRSP were based on Mixed Integer
Programming (MIP) model [1, 8, 19]. Subsequently, MIP
model has been widely applied to various SRSP scenarios,
such as SiRRSP [20], MuRRSP [21], multi-satellite TT&C
scheduling [22], data transmission scheduling [23], satel-
lite broadcast scheduling [24] and hybrid scheduling of ob-
servation and communication [13, 25–28]. There were also
many studies [11, 16, 29] which directly used 0-1 program-
ming model to solve SRSP. Jin, et al. [30] simplified the non-
linear functional model and established a 0-1 program-
ming model for solving ground station resource schedul-
ing. Mathematical programming model is relatively ma-
ture and can clearly describe the objectives and constraints
of the problem, which is widely used in SRSP modeling.
And it can be solved by operations research methods or
intelligent algorithms. However, mathematical program-
ming models of some problems are relatively complex and
difficult to solve.

Constraint Satisfaction Problem (CSP) model consists of
decision variables with their domains and constraints that
define the relationship between variables. SRSP is a kind of
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complex CSP whose modeling focuses on the expression of
constraints, so SRSP can be also described as CSP model.
Liu, et al. [31] established a CSP model for multi-satellite
scheduling. CSP model has been more frequently applied
in modeling of multi-satellite TT&C scheduling problem
[32–37]. Jin [32] established a semiring CSP model with
changeable structure; Zhu, et al. [34] added three heuristic
principles to CSP model considering high frequency com-
plex constraints; and Du, et al. [36] built a unified satel-
lite task scheduling model through CSP model. CSP model
was also used in satellite data relay scheduling [37]. CSP
model has a clear structural level which helps to clearly
describe the specific scenario of SRSP, and it can realize
the separation of modeling and solving process [21]. How-
ever, establishment of CSP model usually requires a clear
overall understanding of constraints, and the model will be
difficult to solve when the problem scale becomes large.

Graph theory model is to describe or solve the problem
using graph theory. The common graph theory models in
SRSP include Petri net, graph coloring theory and con-
flict construction graph. Wang, et al. [38] designed Tim-
ing Constraint Colored Petri nets containing nine-tuples
to establish operation model of multi-satellite-ground sta-
tion system. Zufferey, et al. [39] likened MuRRSP to the
graph coloring problem and designed TS-MuRRSP algo-
rithm to solve the problem. Conflict construction graphs
[40, 41] based on visible arcs and conflicts were designed
and combined with ant colony optimization algorithm to
solve TT&C scheduling problem. In satellite data trans-
mission scheduling, Wang and Zhang [42] built a resource
layout to represent data flow in resources, while Chen and
Wu [43] constructed an arc model solution construction
graph and proposed an ant colony optimization algorithm
based on this graph. Graph theory model is more intuitive

and interpretable, but it is difficult to reasonably represent
various complex constraints in SRSP.

2.2 Mathematical description of SRSP
At present, the most widely used model of SRSP in acade-
mia and industry is mathematical programming model,
which will be further described below.

2.2.1 Problem assumptions and variable definitions
Currently, academia and industry usually consider as-
sumptions about satellite tasks, ground station resources
and visible information when dealing with SRSP. In order
to describe SRSP more clearly, general assumptions are
listed below.

1) Information related to the satellite tasks is known,
such as total number, task duration and task benefit.

2) Information about ground stations is known, includ-
ing their distribution and quantity, the types of tasks they
can support and their priorities.

3) The visible time periods between satellites and ground
stations are known.

4) Communication tasks once started will not be inter-
rupted or stopped unexpectedly.

Then, the relevant variables are defined, as shown in Ta-
ble 1.

Here, S = {1, 2, . . . , i, . . . , |S|} represents the satellites set
made up of |S| satellites, and G = {1, 2, . . . , j, . . . , |G|} is the
ground station set composed of |G| ground stations. R =
{1, 2, . . . , r, . . . , |R|} is the task set consisting of |R| satellite
task requests, where r = {sID, ts, te, dur, p} represents that
satellite sID needs to complete the task r with duration dur
in the time interval of [ts, te].

Table 1 Variable definitions of SRSP

Definition Description

S Set of satellites
i Satellite index, i ∈ S
Oi Set of orbits of satellite i
G Set of ground stations
j Ground station index, j ∈ G
Tj Sum of all distributable time windows of j
T Time period for the schedule
t Some moment of the scheduling time period
VTWijk Visible Time Windows between the orbit k of i and j, k ∈ Oi

sijk , eijk Start and end time of VTWijk

R Set of satellite task requests
r Satellite task index, r ∈ R
pr Priority of r
dr Minimum duration for r
sr , er Actual start and end time of r
�tj Transition time between two tasks for j
xtij State variable, indicating whether i and j are interacting at t, xtij = 1 represents yes, xtij = 0 represents no.
xrijk Decision variable, indicating whether i and j carry out r in VTWijk , xrijk = 1 represents yes, xrijk = 0 represents no.
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2.2.2 Optimization objectives
Different optimization objectives will be formulated for
different research scenarios, which commonly include
maximizing the sum of successful task priority, maximiz-
ing the task completion rate, maximizing the effective du-
ration, maximizing the utilization of ground stations, max-
imizing the resource utilization equilibrium of ground sta-
tion, minimizing the ground station fragmentation time
[44–48].

Maximization of the sum of successful task priority is to
maximize the sum of priorities of all completed commu-
nication tasks within the specified scheduling period T , as
shown in Equation (1). When pr = 1, maximizing the sum
of successful task priority is equivalent to maximizing the
number of completed tasks.

max
∑

r∈R

pr · xr
ijk . (1)

Task completion rate maximization means to maximize
the ratio between the number of completed tasks and the
total number of communication tasks within the speci-
fied scheduling period T , as shown in Equation (2) below.
Some studies focus on minimizing the number of task con-
flicts, which is almost equivalent to maximizing the task
completion rate.

max

∑
r∈R xr

ijk

|R| . (2)

Effective duration maximization means to maximize the
sum of the effective working time of all communication
tasks within the specified scheduling period T , which is
shown in Equation (3). Where, ter – tsr represents the dif-
ference between the actual end time and the actual start
time of satellite task r, namely, the actual effective working
time of task r.

max
∑

r∈R

(er – sr). (3)

Maximization of the utilization rate of ground stations
is to maximize the ratio between the sum of the effec-
tive working time of all communication tasks and the sum
of the duration of the distributable time windows of all
ground stations within the specified scheduling period T ,
as shown in Equation (4). Where,

∑
j∈G Tj means the sum

of duration of the distributable time windows of all ground
stations.

max

∑
r∈R(er – sr)∑

j∈G Tj
. (4)

Maximizing the resource utilization equilibrium of
ground station means minimizing the variance of utiliza-
tion of all ground stations within the specified scheduling

period T , as shown in Equation (5) below. Where, uj is the
utilization rate of ground station j, which can be calculated
by uj =

∑
i∈S

∑
k∈Oi(er–sr)xr

ijk
Tj

; u calculated by u =
∑

j∈G uj
|G| is the

average ground station utilization rate.

min

∑
j∈G(uj – u)2

|G| . (5)

Minimization of the ground station fragmentation time
refers to minimizing the sum of the short non-working
time of all ground stations, which is shown in Equation
(6). The fragmentation time represents the short period
of downtime between the completion of two tasks in the
same ground station. In Equation (6), r and r′ are the two
tasks successively executed on ground station j, sr

ijk – er′
i′jk′ –

�tj represents the short time interval between the two
tasks that ground station j does not work. F(x) is the frag-
mentation time calculation function, and

F(x) =

{
x, 0 ≤ x ≤ Tf ,
0, else,

where Tf represents the upper limit of the duration inter-
val that can be defined as fragmentation time.

min
∑

j∈G

∑

r,r′∈R

F
[(

sr
ijk – er′

i′jk′ – �tj
) · xr

ijk · xr′
i′jk′

]
. (6)

The above optimization objectives are commonly con-
sidered in industry and academia, especially the maxi-
mization of the sum of successful task priority. The focus
and number of optimization objectives concerned by dif-
ferent studies may be different. For example, optimization
objectives of data download scheduling often include max-
imizing data downloading amount, dynamic rescheduling
will also pay attention to minimizing scheduling scheme
changes, and many multi-objective optimization problems
will consider the optimization objectives related to the
ground station load balancing.

2.2.3 Problem constraints
SRSP is a resource optimization problem with multi-
constraint. The constraints mainly come from the de-
mand of communication tasks and the resource limita-
tion of satellites and ground stations. Task demand con-
straints refer to the basic constraints inherent in commu-
nication tasks, including execution duration constraint,
execution period constraint, time interval constraint, pe-
riodic constraint, lap interval constraint and task priority
constraint. Resource constraints are mainly related to the
resource hardware constraints of satellites and ground sta-
tions, such as visibility constraint, elevation constraint, re-
source matching constraint, connection uniqueness con-
straint and transition constraint. Table 2 summarizes the
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Table 2 Common constraints of SRSP

Type Constraint Implication

Task demand constraints Execution duration constraint Task execution time must be greater than the minimum duration (Task minimum
effective arc segment constraint)

Execution period constraint Tasks must be completed within the specified execution period

Execution times number constraint Tasks are divided into a finite number of sub-tasks and the number is no greater than
the execution upper limit times. If the number is set to 1, the satellite tasks must be
completed continuously at one time

Time interval constraint Including the minimum time interval constraint and the maximum time interval
constraint. The time interval of two continuous tasks in the same satellite must be no
less than the minimum time interval and no greater than the maximum time interval

Periodic constraint Satellites must complete a fixed times number (or duration, or type) of tasks over a
periodic period

Lap interval constraint Including the minimum lap interval constraint and the maximum lap interval
constraint. The lap difference of two continuous tasks in the same satellite must be
no less than the minimum lap interval and no greater than the maximum lap interval

Task priority constraint Tasks with higher priorities are completed first

Resource constraints Visibility constraint Tasks must be carried out within the visible time windows between satellites and
ground stations

Elevation constraint The elevation angle of the task execution arc must be greater than the minimum
elevation angle

Resource matching constraint Tasks can only be completed by the ground station resources that can be matched
by the corresponding satellite, including but not limited to the matching of task
types and frequency bands

Connection uniqueness constraint Including the satellite connection uniqueness and the ground station connection
uniqueness. They respectively mean that the same satellite can only interact with
one ground station at a time, and the same ground station can only interact with
one satellite at a time

Transition constraint Transition time must be reserved between the interval of two continuous tasks in the
same ground station

Figure 2 Schematic diagram of the common constraints in SRSP

common constraints of this problem, and Fig. 2 shows the
schematic diagram of the common constraints in SRSP.

As shown in Fig. 2, task demand constraints are marked
in red and resource constraints are marked in blue. Aca-
demic and industrial researches on SRSP usually consider

execution period constraint, visibility constraint, con-
nection uniqueness constraint and transition constraint.
However, constraints may be more complex and personal-
ized in practical engineering applications. In addition to
the above common constraints, there may also be con-
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straints such as specified equipment constraint, entry-exit
task constraint and ascend-deascend orbit task constraint.

2.2.4 Problem description
Combined with the above discussion, the SRSP can be de-
scribed in general. It is assumed that a group of satellite
communication tasks need to be allocated to a group of
ground stations within a given scheduling time period. The
optimization objectives are to maximize the sum of suc-
cessful task priority and the utilization rate of ground sta-
tion, and all communication tasks can only be executed at
a once. The constraints include visibility constraint, con-
nection uniqueness constraint, execution duration con-
straint and transition constraint. Then the multi-objective
problem can be described by the following mathematical
model.

max w1 ·
∑

r∈R

pr · xr
ijk + w2 ·

∑
r∈R(er – sr)∑

j∈G Tj
(7)

s.t.
∑

j∈G

∑

i∈S

∑

k∈Oi

xr
ijk ≤ 1, ∀r ∈ R, (8)

∑

j∈G

xt
ij ≤ 1, ∀t ∈ T ,∀i ∈ S, (9)

∑

i∈S

xt
ij ≤ 1, ∀t ∈ T ,∀j ∈ G, (10)

xr
ijk(sr – sijk) ≥ 0, ∀r ∈ R,∀i ∈ S,∀k ∈ Oi,∀j ∈ G, (11)

xr
ijk(eijk – er) ≥ 0, ∀r ∈ R,∀i ∈ S,∀k ∈ Oi,∀j ∈ G, (12)

xr
ijk(er – sr – dr) ≥ 0, ∀r ∈ R,∀i ∈ S,∀k ∈ Oi,∀j ∈ G,

(13)

xr′
i′jk′ · er′ ≤ xr

ijk(sr – �tj),

xr′
i′jk′ = xr

ijk = 1, r, r′ ∈ R, i, i′ ∈ S, k ∈ Oi, k′ ∈ Oi′ ,
(14)

xr
ijk ∈ {0, 1}. (15)

In Equation (7), w1 and w2 represent the weights of two
objectives. Equation (8) is execution times number con-

straint, indicating that a task can be completed at most
once. Equations (9) and (10) are connection uniqueness
constraints. Equation (9) means that each satellite can only
interact with one ground station at a time, while Equation
(10) represents that each ground station can only interact
with one satellite at a time. Equations (11) and (12) are visi-
bility constraints, which indicate that the task’s actual start
(end) time should be greater (less) than the start (end) time
of the corresponding visible time window. Equation (13) is
execution duration constraint. Equation (14) is transition
constraint. Equation (15) represents the domain of the val-
ues of decision variable.

Due to the personalization of different satellite-ground
station systems and tasks, description of SRSP is also dif-
ferent. In practical application modeling, it is necessary
to combine application scenarios, design appropriate deci-
sion variables, and adjust relevant optimization objectives
and constraints.

3 Solving methods of SRSP
Since SRSP was proposed, many algorithms have been
studied and applied to solve this problem. These algo-
rithms can be divided into deterministic algorithm and
random search algorithm according to the search accu-
racy. Random search algorithm can also be divided into
heuristic algorithm, meta-heuristic algorithm, artificial in-
telligence algorithm, and so on. Figure 3 shows the classi-
fication of algorithms commonly used to solve SRSP, and
Table 3 summarizes their characteristics.

3.1 Deterministic algorithm
Deterministic algorithm searches the solution space glob-
ally, so it always produces the same output for a given par-
ticular input, such as branch and bound algorithm, dy-
namic programming.

Branch and Bound (B&B) algorithm was first proposed
by Lang and Doig [49] for solving linear programming
problem. It reduces the solution space to obtain the op-
timal solution by branching, pruning and delimiting, and
it can be adopted in solving SRSP with small scale. Rigo,

Figure 3 Common solving algorithms and classification of SRSP
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Table 3 Common solving algorithms of SRSP and their characteristics

Classification Algorithm Related Work Advantage Shortcoming

Deterministic
Algorithm

Branch and Bound [11, 12, 50, 51] Global search, stable and high
precision.

Limited ability to handle complex
constraints.Dynamic Programming [10, 52]

Heuritic Algorithm Greedy Search [53–55] Simple and intuitive, used as
benchmark or to help improve
other algorithms.

Easy to fall into local optimal,
unstable.Hill Climbing [56–59]

Local Search Algorithm Simulated Anealing [13, 48, 60–64] Simple and flexible, with global
optimization capability.

Sensitive to parameter settings.

Tabu Search [24, 39, 48, 64–68] With global optimization
capability.

Sensitive to initial solution.

Others [14, 69–71]

Evolutionary Algorithm Genetic Algorithm [16, 59, 72–88] Individual has randomness,
algorithm has strong search ability
and strong expansibility.

Convergence rate is slow and
sensitive to parameter settings
and initial solution.

Ant Colony Optimization [41, 89–95] With strong robustness and
certain optimization ability.

Convergence rate is slow and
optimization results are not so
good under complex constraints.

Particle Swarm Optimization [96–99] Easy to implement, with good
convergence and robustness.

Application in SRSP requires
discretization and sensitive to
parameter settings.

Others [100–105]

Artificial Intelligent
Algorithm

Artificial Neural Networks [106–109] With independent learning ability
and can be used in offline and
prediction scenarios.

Calculation cost is high and
sensitive to parameter settings.

Reinforce Learning [110–113] With global optimization and
independent learning ability.

Modeling is complex,
convergence rate is slow and the
solution scale is small.

Others [114, 115]

et al. [50] proposed a branch and price algorithm based
on the idea of B&B to solve the MILP of SRSP. And Wang
and Reinelt [51] also adopted this algorithm to solve in-
tegrated scheduling problem of observations and down-
loads. Due to the complexity of SRSP constraints and the
large scale of the problem, Lagrange relaxation method has
been increasingly applied to solve the problem boundary.
Marinelli, et al. [11] described SRSP as a 0-1 integer pro-
gramming model and solved it using Lagrange relaxation.
Brown, et al. [12] used Lagrange relaxation method to de-
velop the boundary of multi-objective optimization prob-
lem.

Dynamic Programming (DP) algorithm is a common
method in operations research, which was proposed by
Bellman in the 1950s [116, 117]. Its core idea is to divide
a problem into multiple related sub-problems and grad-
ually obtain the optimal solution. Liu, et al. [52] adopted
DP to solve SiRRSP with task priority and transition time
constraint. For large-scale scheduling, Liu, et al. [10] de-
composed problem into a multi-stage decision process
based on the identification of critical resources, and de-

signed a route-reduction-based DP to alleviate the dimen-
sion disaster. Although the application of DP in SRSP is not
as much as that in earth observation satellite scheduling
problem [118–121], the division concept of DP still pro-
vides idea for problem solving [122].

Deterministic algorithm guarantees the optimal solution
by searching the solution space completely, and has the ad-
vantages of stability and high precision. However, it has
strict requirements on the form of the problem, and its
ability to deal with complex constraints is limited. More-
over, with the increase of problem scale, the solving space
and time will increase exponentially, so it is more suitable
for solving relatively small-scale problems. Therefore, the
application of deterministic algorithm in complex SRSP
has been less studied.

3.2 Heuristic algorithm
Heuristic algorithm refers to those algorithms constructed
based on intuition or experience, which give an approxi-
mate optimal solution to a problem within an acceptable
cost (i.e., computing time and space). The deviation de-
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gree between the approximate solution and the real op-
timal solution may not be predicted in advance. Heuris-
tic algorithm is an effective algorithm suitable for solv-
ing SRSP with high constraints and large-scale, including
greedy search algorithm and hill-climbing algorithm.

Greedy Search (GS) algorithm selects an optimal strat-
egy in each exploration based on the idea of construct-
ing an optimal solution step by step. GS algorithm can
realize local optimization and has relatively high execu-
tion efficiency, so it can be used to prioritize some specific
optimization. Burrowbridg [53] applied Greedy Activity-
Selector algorithm to the resource allocation problem of
LEO satellites network, and pointed out that SiRRSP can
be solved in polynomial time when only LEO satellites
are considered. Zhang [54] adopted greedy algorithm to
assign ground station resource combinations to satellite
tasks according to priority, and verified in small-scale sce-
nario simulation. An on-line scheduling algorithm based
on greedy strategy was designed in geosynchronous data
relay system for data download scheduling, which consid-
ered throughput, fairness, and service quality [123]. GS al-
gorithm is simple and fast, which saves many exhaustive
operations compared with deterministic algorithm, and
can effectively solve SiRRSP without priority [124]. How-
ever, GS is also prone to fall into local “trap”, and it is dif-
ficult to obtain high-quality optimal solution when deal-
ing with complex SRSP. Therefore, greedy thought is of-
ten used to help improve the ability of other algorithms
[55, 123, 125, 126].

Hill-Climbing Algorithm (HCA) is essentially a greedy
search algorithm. Its principle is to select the optimal so-
lution from the adjacent solution space at the current loca-
tion until local optimal is reached. HCA is simple, flexible
and easy to implement, but the quality of its optimal solu-
tion is closely related to the initial solution and the neigh-
borhood structure, so it is easy to fall into local optimal. In
SRSP, HCA is often used as the benchmark algorithm for
comparison experiments with other algorithms [56–58],
or to improve the performance of other algorithms [59].

Heuristic algorithm is simple and intuitive, and can find
a better solution in a relatively acceptable time, but the al-
gorithm is not stable enough, and it is easy to fall into local
optimal. The improvement of heuristic algorithm mostly
focuses on adding some random factors to specific scenar-
ios or combining with other algorithms to reduce the prob-
ability of falling into local “trap” and to improve the overall
solving efficiency of the algorithm.

3.3 Meta-heuristic algorithm
Meta-Heuristic algorithm is an improvement of heuristic
algorithm. It is a combination of stochastic strategy and lo-
cal search, which includes local search algorithm and evo-
lutionary algorithm. Meta-heuristic algorithm is the most
widely studied algorithm in solving SRSP.

3.3.1 Local search algorithm
The basic principle of Local Search (LS) algorithm is to it-
erate in the adjacent solution until it cannot be optimized.
Common LS algorithm includes simulated annealing algo-
rithm, tabu search algorithm and variable neighborhood
search algorithm.

Simulated Annealing (SA) algorithm is a local research
algorithm proposed by Metropolis, et al. in 1953 [127].
SA algorithm adds a random factor into search to jump
out of local optimal, that is, according to the probability
of temperature change to accept the poor solution. SA al-
gorithm maintains the simple and flexible characteristics
of LS algorithm and has good asymptotic convergence,
so SA algorithm is commonly employed to solve SRSP.
Xhafa, et al. [60] adopted SA algorithm to solve the ground
station resource scheduling scheme and verified by three
different sizes examples. In satellite downlink scheduling
problem, SA algorithm performed well in several search
algorithms [61], while Liu, et al. [48] proposed an SA al-
gorithm with tabu list and start time decision for better
selection efficiency and shorter waiting time. For the inte-
grated scheduling problem of imaging and data transmis-
sion, Zhu, et al. [13] established an MILP model with the
aid of directed acyclic graph tools, and designed a two-
stage algorithm by combining SA algorithm and genetic
algorithm. In practice, Planet designed a software based
on SA algorithm for large-scale constellation scheduling,
which has been used as a benchmark for academic re-
search [62]. SA algorithm is widely used in solving complex
combinatorial optimization problems [63], and it is often
combined with other algorithms to improve the overall al-
gorithm capability [13, 48, 64].

Tabu Search (TS) algorithm, first proposed by Glover
[128, 129] in 1986, is a search algorithm with memory
strategy. TS algorithm is an extension of local neighbor-
hood search. It introduces a flexible storage structure and
corresponding tabu criteria (tabu table) to avoid tempo-
rary circuitous search, and has global optimization abil-
ity. In ground station scheduling problem, Xhafa, et al.
[65] adopted TS algorithm to generate scheduling scheme
when considering several objective functions, and ver-
ified algorithm effectiveness in a set of instances with
varying sizes. Zufferey, et al. [39] improved the TS al-
gorithm inspired by tabu graph coloring algorithm for
solving MuRRSP. Luo, et al. [66] added tabu rules to the
rescheduling strategy for improving prescheduling quality,
which helped to quickly solve SRSP. In data transmission
scheduling, TS algorithm was combined with genetic algo-
rithm [67], which not only improved the solution quality,
but also enhanced the accuracy of convergence and op-
timization ability. Actually, the combination of multiple
algorithms is an important research direction for solving
SRSP in recent years, and the idea of TS is often adopted
to combine with other algorithms to improve the overall
optimization efficiency [24, 48, 64, 68].
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With the deepening of SRSP research, the improvement
of LS algorithm is also expanding. To solve satellite data
transmission scheduling problem, Zhao, et al. [69] studied
three pruning strategies and combined them with the LS
algorithm. Zufferey and Vasquez [14] proposed a gener-
alized Consistent Neighborhood Search (CNS) algorithm
based on LS for SRSP. Adaptive large neighborhood search
algorithm combined with heuristic rules also proved effec-
tive in solving large scale SRSP [70] and satellite data trans-
mission scheduling problem [71].

3.3.2 Evolutionary algorithm
Evolutionary algorithm belongs to meta-heuristic algo-
rithm which simulates the evolution mechanism and be-
havior of natural biological population and perform itera-
tive search. Evolutionary algorithm has strong robustness
and adaptability, and can deal with complex combinatorial
optimization problems. It is widely used in SRSP. Com-
mon evolutionary algorithm includes genetic algorithm,
ant colony optimization algorithm and particle swarm op-
timization algorithm.

Genetic Algorithm (GA) was first designed by Holland
[130] in 1975 according to the law of biological evolu-
tion. GA has strong search ability and strong expansibility,
and avoids falling into local optimal by introducing muta-
tion mechanism. Therefore, GA has great potential in solv-
ing satellite scheduling problems [72], and it is one of the
most widely studied algorithms at present. Soma, et al. [73]
used GA for weekly scheduling in multi-satellite TT&C
scheduling problem, and designed a GA-based schedul-
ing software IMPACT. Xhafa, et al. verified the effective-
ness of GA in solving SiRRSP [74], and designed Steady
State Genetic Algorithm through minority selection and
partial substitution [75]. In GA encoding, station ID cod-
ing method [16], two-hierarchical encoding method [72],
multi-dimensional encoding method [76] and two-stage
coding method [77] were proposed for different MuRRSP
application scenarios. In population iteration, quantum
rotation gates and quantum crossover [78] and learning
mechanism and non-dominated sorting mechanism [79]
were introduced into GA to improve population quality
when solving single objective and multi-objective SRSP.

In order to solve different SRSP, scholars have improved
the application of GA in different directions. On the one
hand, struggle GA [80], adaptive GA [81, 82] and co-
evolutionary algorithm [83] were proposed to prevent pre-
mature convergence of GA. On the other hand, GA-PE
[84] and GA with a rote learning operator [85] were de-
signed for improving optimization efficiency. Moreover,
due to its strong expansibility, GA was often combined
with other algorithms for higher efficiency. HCA was in-
troduced in GA to optimize the new generation of indi-
viduals in satellite-ground mission scheduling [59]. GATS
with Tabu search operators was designed based on a gen-
eral encoding method in TT&C scheduling problem [86].

Neighborhood search [87, 88] was also applied in GA to
improve local optimization ability in SRSP. Figure 4 shows
some of the improvement of GA in SRSP’s application by
category.

Ant Colony Optimization (ACO) algorithm is a bionic
algorithm proposed by Colorni, et al. [131] and Dorigo
[132] in the early 1990s to simulate the behavior of ant
colony in finding the optimal path. ACO algorithm is a
common method to solve SRSP, and it has been studied
and applied in satellite broadcasting scheduling [89] and
satellite TT&C scheduling [41, 90–95]. SRSP can be trans-
formed into a minimization problem and mapped to a
graph, and then ACO can be applied to solve the path (so-
lution). For example, a simple ACO algorithm [41] with
constant parameters was applied in a conflict construc-
tion graph model for scheduling. Most of the improvement
of ACO algorithm focused on pheromone update [90],
such as two-stage update strategy [90, 91] and guidance-
solution based update strategy [92]. For TT&C schedul-
ing problem, Gong, et al. [93] introduced crossover op-
erators into ACO to avoid falling into local optimality in
view of the low optimization efficiency and premature con-
vergence; Li, et al. [94] combined GA and ACO algorithm
to improve the low optimization efficiency caused by the
lack of pheromones in the early stage; and Zhang, et al.
[95] designed concurrent ACO algorithm which could ob-
tain concurrent global search capability to avoid prema-
ture convergence.

Particle Swarm Optimization (PSO) algorithm is an evo-
lutionary algorithm proposed by Eberhart and Kennedy
[133] in 1995. PSO is easy to implement, and has good con-
vergence and robustness. In satellite broadcast scheduling
problem, Xia, et al. [96] introduced convergent factor, in-
ertia weight and constraint factor on the basis of PSO and
verified the solving efficiency of the algorithm in small-
scale cases. Chang and Wu [97] introduced velocity direc-
tion controllable regulation and velocity scale controllable
regulation to prevent premature convergence of PSO in
satellite data transmission scheduling. PSO algorithm was
also combined with heuristic methods to realize the inte-
grated scheduling of satellite data transmission and TT&C
tasks [98]. And a novel algorithm based on quantum dis-
crete particle swarm optimization was designed for solving
data transmission scheduling problem [99].

In addition to the above common evolutionary algo-
rithms, some new algorithms have also been applied to
solve SRSP in recent years. The learning-based artificial
bee colony algorithm was effective in solving SRSP [100].
Differential evolution algorithm was applied to solve satel-
lite broadcast scheduling problem [101, 102] and satel-
lite data transmission scheduling problem [103]. The im-
proved fireworks algorithm was also validated in satellite
TT&C scheduling [104] and satellite link scheduling [105].
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Figure 4 Some improvement of GA in SRSP

Meta-heuristic algorithm can jump out of the local opti-
mal solution and find the optimal solution with high qual-
ity within a reasonable time. Moreover, the algorithm is ap-
plicable to a variety of problem models and can solve large-
scale problems, so meta-heuristic algorithm is the most
commonly used algorithm in the study of SRSP. Meta-
heuristic optimization is mainly to improve some specific
operations of the algorithm based on the problem, or to
combine with other algorithms to increase the overall per-
formance.

3.4 Artificial intelligent algorithm
Artificial Intelligent (AI) algorithm refers to those algo-
rithms inspired by natural laws to solve problems accord-
ing to their principles. In view of the autonomous learning
ability and multi-scene adaptability of the algorithm, AI al-
gorithm such as neural network and reinforcement learn-
ing can be used to assist the study of SRSP.

Artificial Neural Networks (ANN), or neural networks
for short, is an algorithm model that simulates the behav-
ior characteristics of animal neural networks to process in-
formation step by step in parallel. Funabiki and Nishikawa
[106] used the binary Hopfield neural network approach
to develop satellite broadcast schedules. Meng, et al. [29]
designed deep neural networks to predict task schedul-
ing rates based on the accumulated historical data and
constructed a scheduling system for problem solving. In
solving satellite downlink replanning problem, Song, et al.

[107] first used BP neural network to complete the predic-
tion of a given task set, and then combined the improved
GA and LS algorithm to obtain high-quality rescheduling
schemes. In antenna scheduling problem, Sun, et al. [108]
adopted LSTM to extract the antenna using rules from his-
torical data and generated the initial scheduling scheme,
and then used heuristic methods to correct it for less con-
flicts and higher resource utilization. In TT&C schedul-
ing problem, Li, et al. [109] carried out characteristic anal-
ysis on the factor information and took the discretized
important attributes or constraints as eigenvalues, then
constructed deep neural networks based on the extracted
eigenvalues and scheduling characteristics.

Reinforcement Learning (RL) was first proposed by Min-
sky in 1961 [134], and it is an optimal algorithm that agents
learn optimal strategies by interacting with the environ-
ment to obtain rewards and punishments. In solving SRSP,
Ou, et al. [110] firstly used DRL to complete satellite task
assignment and then solved single-antenna scheduling by
heuristic scheduling method. For emergency scheduling,
Q-learning [111] was utilized as the learning model to
help design mono-layer strategy and multi-layer strategy
in dealing with the urgent requests from high-orbit satel-
lites. In the heterogeneous TT&C network resource joint
scheduling problem, Xue, et al. [112] established a DQN
solution framework based on the design of TT&C status,
action and instant reward to improve task satisfaction rate
and resource utilization efficiency. Although RL has been
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widely studied in other combinatorial optimization prob-
lems, there is little research on satellite scheduling prob-
lem. Even in the study of satellite observation planning
which is more widely studied than SRSP, the application
of DRL is still in its infancy [113]. Therefore, there is still a
large space for the application of RL in SRSP solving.

AI algorithm has strong prediction, self-learning and
computing capabilities, and can also be used to assist in
solving SRSP. In addition to the above common methods,
SVM [114] and K-means methods [115] have been also ap-
plied in SRSP. However, probably due to the complex con-
straints of SRSP, there are relatively few studies that rely
solely on AI algorithms to solve this problem. Therefore,
in the future, more in-depth research can be conducted on
how to make AI algorithm play an important role in solv-
ing relevant problems.

4 Prospects
On the basis of current research, combined with the de-
velopment of satellite communication, future research on
SRSP can be carried out from the perspectives of model
improvement, algorithm optimization and scenario ex-
pansion.

4.1 Problem model improvement
At present, most of the reaerch on SRSP focuses on some
specific scenarios with certain optimization objectives and
constraints, but there are usually more constraints and un-
certainties in practical. Therefore, the modeling of SRSP in
the future can pay more attention to the actual constraints
and uncertainties, so as to enhance the practical applica-
tion value of SRSP research.

Keeping the constraint update of the model is conducive
to improving the timeliness of theoretical research. In the
future, the task constraints, resource constraints and time-
liness constraints of the model can be continuously im-
proved to make the theoretical research more applicable
for practical application. Specifically, the above constraints
include but are not limited to task timing constraint, task
cooperation and split constraint, satellite data storage con-
straint, satellite heterogeneity constraint, satellite comput-
ing capacity constraint and ground station maintenance
constraint.

Considering uncertainties contributes to elevating sys-
tem robustness. Uncertainty factors can be considered
from both internal and external aspects. Internal uncer-
tainty factors include on-board energy and retention un-
certainties and the instability of satellite-ground commu-
nication. External uncertainty factors include task demand
uncertainty and weather uncertainty. There are three ways
to deal with uncertainty factors. One is to take uncertainty
factors as necessary constraints, the other is to minimize
the influence of uncertainty factors as optimization objec-
tives, and the third is to enhance the rescheduling mecha-
nism for uncertainty factors.

4.2 Solving algorithm optimization
The algorithm research on SRSP has obtained fruitful re-
search results, but with the update of satellite communi-
cation scenario and the expansion of communication de-
mand, the algorithm solution will face greater challenges.
Therefore, the solving algorithm of SRSP can be optimized
from the perspectives of improving efficiency and innovat-
ing methods in the future.

Improvement of algorithm computation efficiency is of
great significance for improving communication schedul-
ing efficiency. Currently, the number of satellites in space
is increasing rapidly, and some constellations even con-
tain more than 10,000 satellites. The demand of large-scale
calculation brings great challenge to the study of satellite
communication scheduling algorithm. Therefore, one di-
rection of SRSP algorithm research is to improve the al-
gorithm computation speed, robustness and timeliness.
In the future, algorithm efficiency can be elevated by im-
proving or innovating the algorithm mechanism combined
with the actual application scenario. For example, facing
the challenge of large-scale computing, it is necessary to
improve the algorithm for task coordination of heteroge-
neous satellites in the system. It can also be combined with
existing methods to design complementary algorithms.

Algorithm method innovation has broad research
prospects. Current research of SRSP mainly focuses on the
meta-heuristic algorithm, and the study of AI algorithm is
still in the preliminary stage. Therefore, the application
of AI algorithms in SRSP can be further explored in the
future, including the study of AI algorithm as the main
scheduling method and as auxiliary method.

4.3 Application scenario expansion
With the increase of satellite communication load capac-
ity and communication demand, the research scenarios
of satellite communication scheduling become more di-
versified and dynamic. Further research can be explored
from the aspects of multi-application scenario and dy-
namic scheduling.

Hybrid scheduling scenario research is an effective
means to enhance the practical efficiency, because satel-
lite communication is often a part of the satellite applica-
tion. Actually, the research of hybrid scheduling scenario
has become the current trend, such as integrated schedul-
ing of imaging and data transmission, satellite-terrestrial
integrated relay networks scheduling and satellite constel-
lation scheduling. Future research on hybrid application
scenario can be carried out from the perspective of model
generalization and algorithm robustness improvement or
overall network planning.

Dynamic scenario is an important research direction in
application. With the popularization of satellite applica-
tions, more and more dynamic scenarios are bound to ap-
pear, so the requirement for system dynamic response ca-
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pability is getting higher and higher. The research on dy-
namic scenario of satellite communication scheduling is
to improve the dynamic response ability of the whole sys-
tem. On the one hand, the system emergency scheduling
algorithm can be improved to raise the response efficiency;
on the other hand, it is possible to design the overall au-
tonomous mechanism (such as rolling planning mecha-
nism) to improve the overall robustness of the system.

In short, SRSP plays an important role in practical appli-
cation of satellite systems. Future research can constantly
modify the problem model, optimize the solving algorithm
and expand the application scenarios based on the ac-
tual problem characteristics and needs, so that satellite
scheduling technology can continue to develop in the di-
rection of intelligence and timeliness.

5 Conclusion
SRSP is an NP-hard problem based on visible time window
which studies communication task scheduling between
satellites and ground stations. This paper reviews the liter-
ature of SRSP in recent decades, and then summarizes the
development, problem description, solving algorithms and
prospects of SRSP. SRSP has been studied more and more
widely since it was first proposed in AFSCN in the 1990s.
At present, MIP model is the most commonly used model
to describe SRSP, and meta-heuristic algorithm (such as
GA) is the most widely studied algorithm. Considering the
current research status and practical diverse application
scenarios, the future research of SRSP can be optimized
from the aspects of model improvement, algorithm opti-
mization and application expansion.

Funding
This work is supported by National Natural Science Foundation of China under
Grant Nos. 72171172 and 62088101, Shanghai Municipal Science and
Technology, China Major Project under Grant No. 2021SHZDZX0100, Shanghai
Municipal Commission of Science and Technology, China Project under Grant
No. 19511132101.

Availability of data and materials
Not applicable.

Code availability
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author contributions
All authors contributed to the design and implementation of the research, to
the analysis of the results and to the writing of the manuscript. All authors read
and approved the final manuscript.

Author details
1College of Electronics and Information Engineering, Tongji University,
Shanghai, 201804, China. 2ORIGITECH GmbH, Langer Anger 7-9, Heidelberg,
69115, Germany.

Received: 14 May 2023 Revised: 25 July 2023
Accepted: 19 September 2023

References
1. S.M. Schalck, Automating satellite range scheduling thesis (1993)
2. L. Barbulescu, J.P. Watson, L.D. Whitley, A.E. Howe, Scheduling

space–ground communications for the air force satellite control network.
J. Sched. 7, 7–34 (2004).
https://doi.org/10.1023/b:josh.0000013053.32600.3c

3. Y. Du, L. Xing, J. Zhang, Y. Chen, Y. He, MOEA based memetic algorithms
for multi-objective satellite range scheduling problem. Swarm Evol.
Comput. 50, 100576 (2019). https://doi.org/10.1016/j.swevo.2019.100576

4. M. Xiong, X. Wei, L. Zheng, Evolutionary multiobjective satellite range
scheduling with learning-guided population generation. IEEE Access 10,
84664–84679 (2022). https://doi.org/10.1109/access.2022.3197637

5. A.J. Álvarez, S.E. Richard, An Introduction to Optimal Satellite Range
Scheduling, vol. 106 (Springer, Berlin, 2015)

6. M. Schmidt, K. Schilling, Ground station networks for distributed satellite
systems, in Distributed Space Missions for Earth SystemMonitoring
(Springer, New York, 2012), pp. 355–371.
https://doi.org/10.1007/978-1-4614-4541-8_11

7. A.J. Vazquez, R.S. Erwin, On the tractability of satellite range scheduling.
Optim. Lett. 9, 311–327 (2015).
https://doi.org/10.1007/s11590-014-0744-8

8. T.D. Gooley, Automating the satellite range scheduling process. Air Force
Inst of Tech Wright-Patterson Afb oh School of Engineering (1993)

9. D.A. Parish, A genetic algorithm approach to automating satellite range
scheduling. Air Force Inst of Tech Wright-Patterson Afb oh School of
Engineering (1994)

10. Z. Liu, Z. Feng, Z. Ren, Route-reduction-based dynamic programming for
large-scale satellite range scheduling problem. Eng. Optim. 51(11),
1944–1964 (2019). https://doi.org/10.1080/0305215X.2018.1558445

11. F. Marinelli, S. Nocella, F. Rossi, S. Smriglio, A Lagrangian heuristic for
satellite range scheduling with resource constraints. Comput. Oper. Res.
38(11), 1572–1583 (2011). https://doi.org/10.1016/j.cor.2011.01.016

12. N. Brown, B. Arguello, L. Nozick, N. Xu, A heuristic approach to satellite
range scheduling with bounds using Lagrangian relaxation. IEEE Syst. J.
12(4), 3828–3836 (2018). https://doi.org/10.1109/jsyst.2018.2821094

13. W. Zhu, X. Hu, W. Xia, P. Jin, A two-phase genetic annealing method for
integrated earth observation satellite scheduling problems. Soft Comput.
23, 181–196 (2019). https://doi.org/10.1007/s00500-017-2889-8

14. N. Zufferey, M. Vasquez, A generalized consistent neighborhood search
for satellite range scheduling problems. RAIRO. Rech. Opér. 49(1), 99–121
(2015). https://doi.org/10.1051/ro/2014027

15. L. Barbulescu, A.E. Howe, L.D. Whitley, M. Roberts, Understanding
algorithm performance on an oversubscribed scheduling application. J.
Artif. Intell. Res. 27, 577–615 (2006). https://doi.org/10.1613/jair.2038

16. Y. Li, R. Wang, Y. Liu, M. Xu, Satellite range scheduling with the priority
constraint: an improved genetic algorithm using a station ID encoding
method. Chin. J. Aeronaut. 28(3), 789–803 (2015).
https://doi.org/10.1016/j.cja.2015.04.012

17. R. Ramachandran, Optimizing satellite broadcast scheduling problem
using mean field annealing theory and Hopfield model neural network.
IETE Tech. Rev. 20(6), 553–559 (2003).
https://doi.org/10.1080/02564602.2003.11417115

18. Y. Shen, M. Wang, Optimizing satellite broadcast scheduling problem
using the competitive Hopfield neural network, in 2007 IEEEWireless
Telecommunications Symposium (WTS) (2007), pp. 1–6.
https://doi.org/10.1109/WTS.2007.4563323

19. T.D. Gooley, J.J. Borsi, J.T. Moore, Automating air force satellite control
network (AFSCN) scheduling. Math. Comput. Model. 24(2), 91–101
(1996). https://doi.org/10.1016/0895-7177(96)00093-3

20. S. Spangelo, J. Cutler, K. Gilson, A. Cohn, Optimization-based scheduling
for the single-satellite, multi-ground station communication problem.
Comput. Oper. Res. 57, 1–16 (2015).
https://doi.org/10.1016/j.cor.2014.11.004

https://doi.org/10.1023/b:josh.0000013053.32600.3c
https://doi.org/10.1016/j.swevo.2019.100576
https://doi.org/10.1109/access.2022.3197637
https://doi.org/10.1007/978-1-4614-4541-8_11
https://doi.org/10.1007/s11590-014-0744-8
https://doi.org/10.1080/0305215X.2018.1558445
https://doi.org/10.1016/j.cor.2011.01.016
https://doi.org/10.1109/jsyst.2018.2821094
https://doi.org/10.1007/s00500-017-2889-8
https://doi.org/10.1051/ro/2014027
https://doi.org/10.1613/jair.2038
https://doi.org/10.1016/j.cja.2015.04.012
https://doi.org/10.1080/02564602.2003.11417115
https://doi.org/10.1109/WTS.2007.4563323
https://doi.org/10.1016/0895-7177(96)00093-3
https://doi.org/10.1016/j.cor.2014.11.004


Li et al. Autonomous Intelligent Systems             (2023) 3:9 Page 13 of 15

21. T.K. Feng, Combining decomposition and hybrid algorithms for the
satellite range scheduling problem. University of Toronto (Canada) (2012)

22. T.J. Zhang, J.S. Li, J. Li, Space-ground integrated scheduling based on the
hybrid ant colony optimization. J. Syst. Eng. Electron. 38(7), 1555–1562
(2016). https://doi.org/10.2514/6.2016-2446

23. E. Jeong, K. Heungseob, A mathematical model for optimal
communication scheduling between multiple satellites and multiple
ground stations. J. Soc. Korea Ind. Syst. Eng. 41(1), 39–49 (2018).
https://doi.org/10.11627/jkise.2018.41.1.039

24. B. Peng, Y. Zhang, T.C.E. Cheng, Z. Lü, A.P. Punnen, A two-individual based
path-relinking algorithm for the satellite broadcast scheduling problem.
Knowl.-Based Syst. 196, 105774 (2020).
https://doi.org/10.1016/j.knosys.2020.105774

25. J. Zhang, L. Xing, An improved genetic algorithm for the integrated
satellite imaging and data transmission scheduling problem. Comput.
Oper. Res. 139, 105626 (2022). https://doi.org/10.1016/j.cor.2021.105626

26. X. Hu, W. Zhu, B. An, P. Jin, W. Xia, A branch and price algorithm for EOS
constellation imaging and downloading integrated scheduling problem.
Comput. Oper. Res. 104, 74–89 (2019).
https://doi.org/10.1016/j.cor.2018.12.007

27. Y. Xiao, S. Zhang, P. Yang, M. You, J. Huang, A two-stage flow-shop
scheme for the multi-satellite observation and data-downlink scheduling
problem considering weather uncertainties. Reliab. Eng. Syst. Saf. 188,
263–275 (2019). https://doi.org/10.1016/j.ress.2019.03.016

28. Q. Qu, K. Liu, X. Li, Y. Zhou, J. Lü, Satellite observation and
data-transmission scheduling using imitation learning based on mixed
integer linear programming, IEEE Trans. Aerosp. Electron. Syst. 59(2),
1989–2001 (2023). https://doi.org/10.1109/taes.2022.3210073

29. H. Meng, C. Li, W. Lu, Y. Dong, Z. Zhao, B. Wu, Multi-satellite resource
scheduling based on deep neural network, in 2019 IEEE International Joint
Conference on Neural Networks (IJCNN) (2019), pp. 1–7.
https://doi.org/10.1109/ijcnn.2019.8852044

30. G. Jin, X. Wu, W. Gao, Ground station resource scheduling optimization
model and its heuristic algorithm. J. Syst. Eng. Electron. 26(12),
1839–1841 (2004). https://doi.org/10.3321/j.issn:1001-506X.2004.12.026

31. Y. Liu, R. He, Y. Tan, Modeling the scheduling problem of multi-satellites
based on the constraint satisfaction. J. Syst. Eng. Electron. 26(8),
1076–1079 (2004)

32. G. Jin, CSP model for satellite and ground station TT&C resource
scheduling problem. J. Syst. Eng. Electron. 29(7), 1117–1120 (2007)

33. X.D. Ling, X.Y. Wu, B. Liu, G.H. Xue, J.M. Wu, Study on the CSP model of
satellite TT&C resource scheduling. J. Syst. Eng. Electron. 34(11),
2275–2279 (2012)

34. Z. Zhu, Y. Gao, B. Wang, Research on CSP model for complex TT&C task
scheduling, in System Simulation and Scientific Computing: International
Conference, ICSC 2012, Shanghai, China, October 27-30, 2012. Proceedings,
Part II (2012), pp. 318–327.
https://doi.org/10.1007/978-3-642-34396-4_39

35. N. Zhang, Z. Feng, Y. Feng, An optimization model for multisatellite
resources scheduling, in 2006 6thWorld Congress on Intelligent Control and
Automation, vol. 2 (IEEE, 2006), pp. 7400–7404.
https://doi.org/10.1109/wcica.2006.1714524

36. Y. Du, L. Xing, Y. Chen, S. Xiang, Unified modeling and multi-strategy
collaborative optimization for satellite task scheduling. Control Decis.
34(9), 1847–1856 (2019)

37. B. Deng, C. Jiang, L. Kuang, S. Guo, J. Lu, S. Zhao, Two-phase task
scheduling in data relay satellite systems. IEEE Trans. Veh. Technol. 67(2),
1782–1793 (2017). https://doi.org/10.1109/TVT.2017.2763150

38. Y. Wang, J. Zhao, C. Nie, Study on Petri net model for
multi-satellites-ground station system. J. Air Force Eng. Univ. 4(2), 7–11
(2003)

39. N. Zufferey, A. Patrick, G. Philippe, Graph colouring approaches for a
satellite range scheduling problem. J. Sched. 11, 263–277 (2008).
https://doi.org/10.1007/s10951-008-0066-8

40. N. Zhang, L. Ke, Z. Feng, A new model for satellite TT&C resource
scheduling and its solution algorithm. J. Astronaut. 5, 2140–2145 (2009).
https://doi.org/10.3873/j.issn.1000-1328.2009.05.066

41. Z. Zhang, F. Hu, N. Zhang, Ant colony algorithm for satellite control
resource scheduling problem. Appl. Intell. 48, 3295–3305 (2018).
https://doi.org/10.1007/s10489-018-1144-z

42. L. Wang, W. Zhang, Satellite data receive mission scheduling based on
resolvent of constraint satisfaction problem. Sci. Technol. Eng. 8(19),
5370–5375 (2008)

43. X. Chen, X. Wu, ACO algorithm of satellite data transmission scheduling
based on solution construction graph. J. Syst. Eng. Electron. 3, 592–597
(2010)

44. K. Yang, L. Xing, The learnable ant colony optimization to satellite ground
station system scheduling problems. Prz. Elektrotech. 88, 62–65 (2012).
https://doi.org/10.3969/j.issn.1001-506X.2012.11.14

45. Y. Wang, J. Zhao, C. Nie, Study on optimal scheduling for
multi-satellites-ground station system. Comput. Simul. 20(7), 17–19
(2003)

46. Y. Feng, L. Xing, Learnable ant colony optimization algorithm for solving
satellite ground station scheduling problems. J. Syst. Eng. Electron.
34(11), 2270–2274 (2012)

47. F. Xhafa, X. Herrero, A. Barolli, M. Takizawa, Using STK toolkit for evaluating
a ga base algorithm for ground station scheduling, in 2013 Seventh
International Conference on Complex, Intelligent, and Software Intensive
Systems (2013), pp. 265–273. https://doi.org/10.1109/cisis.2013.50

48. Y. Liu, S. Zhang, H. Hu, A simulated annealing algorithm with tabu list for
the multi-satellite downlink schedule problem considering waiting time.
Aerospace 9(5), 235 (2022). https://doi.org/10.3390/aerospace9050235

49. A.H. Land, A.G. Doig, An Automatic Method for Solving Discrete
Programming Problems (Springer, Berlin, 1960).
https://doi.org/10.2307/1910129

50. C.A. Rigo, L.O. Seman, E. Camponogara, E. Morsch Filho, E.A. Bezerra,
P. Munari, A branch-and-price algorithm for nanosatellite task scheduling
to improve mission quality-of-service. Eur. J. Oper. Res. 303(1), 168–183
(2022). https://doi.org/10.1016/j.ejor.2022.02.040

51. P. Wang, G. Reinelt, Solving the Earth observing satellite constellation
scheduling problem by branch-and-price. Oper. Res. Proc. (2010).
https://doi.org/10.1007/978-3-642-20009-0_78

52. Y. Liu, Y. Chen, J. Tan, The method of mission planning of the ground
station of satellite based on dynamic programming. Chin. Space Sci.
Technol. 25(1), 44–47 (2005)

53. S.E. Burrowbridge, Optimal allocation of satellite network resources. Diss.
Virginia Tech (1999)

54. H. Zhang, Resource scheduling method of satellite ground station based
on greedy algorithm. Radio Engineering. 12 (2010)

55. L. Barbulescu, L.D. Whitley, A.E. Howe, Leap before you look: an effective
strategy in an oversubscribed scheduling problem, in AAAI, vol. 4 (2004),
pp. 143–148

56. L. Barbulescu, A.E. Howe, L.D. Whitley, M. Roberts, Trading places: how to
schedule more in a multi-resource oversubscribed scheduling problem,
in ICAPS (2004), pp. 227–234

57. V. Kolici, X. Herrero, F. Xhafa, L. Barolli, Local search and genetic algorithms
for satellite scheduling problems, in 2013 IEEE Eighth International
Conference on Broadband andWireless Computing, Communication and
Applications (2013), pp. 328–335. https://doi.org/10.1109/bwcca.2013.58

58. L. Barbulescu, A. Howe, D. Whitley, AFSCN scheduling: how the problem
and solution have evolved. Math. Comput. Model. 43(9–10), 1023–1037
(2006). https://doi.org/10.1016/j.mcm.2005.12.004

59. D. Ma, W. Wang, Research on scheduling of satellite-ground cooperating
missions based on improved genetic algorithm. Comput. Eng. Appl. 6,
246–249 (2014)

60. F. Xhafa, X. Herrero, A. Barolli, M. Takizawa, A simulated annealing
algorithm for ground station scheduling problem, in 2013 IEEE 16th
International Conference on Network-Based Information Systems (2013), pp.
24–30. https://doi.org/10.1109/nbis.2013.37

61. D. Karapetyan, S.M. Minic, K.T. Malladi, A.P. Punnen, Satellite downlink
scheduling problem: a case study. Omega 53, 115–123 (2015).
https://doi.org/10.1016/j.omega.2015.01.001

62. P. Monmousseau, Scheduling of a constellation of satellites: creating a
mixed-integer linear model. J. Optim. Theory Appl. 191(2–3), 846–873
(2021). https://doi.org/10.1007/s10957-021-01875-2

63. A. Lala, V. Kolici, F. Xhafa, X. Herrero, A. Barolli, On local vs.
population-based heuristics for ground station scheduling, in 2015 IEEE
Ninth International Conference on Complex, Intelligent, and Software
Intensive Systems (2015), pp. 267–275.
https://doi.org/10.1109/cisis.2015.40

64. Y. Du, L. Xing, Y. Chen, L. Wang, T. Ren, Integrated agile observation
satellite scheduling problem considering different memory
environments: a case study. J. Braz. Soc. Mech. Sci. Eng. 42, 1–21 (2020).
https://doi.org/10.1007/s40430-019-2121-0

https://doi.org/10.2514/6.2016-2446
https://doi.org/10.11627/jkise.2018.41.1.039
https://doi.org/10.1016/j.knosys.2020.105774
https://doi.org/10.1016/j.cor.2021.105626
https://doi.org/10.1016/j.cor.2018.12.007
https://doi.org/10.1016/j.ress.2019.03.016
https://doi.org/10.1109/taes.2022.3210073
https://doi.org/10.1109/ijcnn.2019.8852044
https://doi.org/10.3321/j.issn:1001-506X.2004.12.026
https://doi.org/10.1007/978-3-642-34396-4_39
https://doi.org/10.1109/wcica.2006.1714524
https://doi.org/10.1109/TVT.2017.2763150
https://doi.org/10.1007/s10951-008-0066-8
https://doi.org/10.3873/j.issn.1000-1328.2009.05.066
https://doi.org/10.1007/s10489-018-1144-z
https://doi.org/10.3969/j.issn.1001-506X.2012.11.14
https://doi.org/10.1109/cisis.2013.50
https://doi.org/10.3390/aerospace9050235
https://doi.org/10.2307/1910129
https://doi.org/10.1016/j.ejor.2022.02.040
https://doi.org/10.1007/978-3-642-20009-0_78
https://doi.org/10.1109/bwcca.2013.58
https://doi.org/10.1016/j.mcm.2005.12.004
https://doi.org/10.1109/nbis.2013.37
https://doi.org/10.1016/j.omega.2015.01.001
https://doi.org/10.1007/s10957-021-01875-2
https://doi.org/10.1109/cisis.2015.40
https://doi.org/10.1007/s40430-019-2121-0


Li et al. Autonomous Intelligent Systems             (2023) 3:9 Page 14 of 15

65. F. Xhafa, X. Herrero, A. Barolli, M. Takizawa, A tabu search algorithm for
ground station scheduling problem, in 2014 IEEE 28th International
Conference on Advanced Information Networking and Applications (2014),
pp. 1033–1040. https://doi.org/10.1109/aina.2014.151

66. K. Luo, H. Wang, Y. Li, Q. Li, High-performance technique for satellite
range scheduling. Comput. Oper. Res. 85, 12–21 (2017).
https://doi.org/10.1016/j.cor.2017.03.012

67. L. Li, W. Ma, X. Liu, Research on TSGA algorithm satellite data transmission
scheduling, in 2014 IEEE International Conference onManagement Science
& Engineering 21th Annual Conference Proceedings (2014), pp. 56–61.
https://doi.org/10.1109/icmse.2014.6930208

68. L. He, M. de Weerdt, N. Yorke-Smith, Tabu-based large neighbourhood
search for time/sequence-dependent scheduling problems with time
windows, in Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 29 (2019), pp. 186–194.
https://doi.org/10.1609/icaps.v29i1.3475

69. M. Zhao, Q. He, S. Li, M. Ren, An improved local search algorithm with
pruning for satellite data transmission scheduling problem, in 2021 IEEE
21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C) (2021), pp. 561–568.
https://doi.org/10.1109/qrs-c55045.2021.00086

70. Y. Chen, M. Chen, J. Wen, Y. Chen, W. Xiang, An adaptive large
neighborhood search algorithm for the satellite data transmission
scheduling problem. Int. J. Aerosp. Eng. 2020, Article ID 5243749 (2020).
https://doi.org/10.1155/2020/5243749

71. Y. Chen, Y. Song, Y. Du, M. Wang, R. Zong, C. Gong, A knowledge-based
scheduling method for multi-satellite range system, in Knowledge Science,
Engineering andManagement: 13th International Conference, KSEM 2020,
Hangzhou, China, August 28–30, 2020, Proceedings, Part I (Springer, Cham,
2020), pp. 388–396. https://doi.org/10.1007/978-3-030-55130-8_34

72. Y. Tang, Y. Wang, J. Chen, H. Chen, Uplink scheduling of navigation
constellation based on genetic algorithm, in 2016 IEEE 13th International
Conference on Signal Processing (ICSP) (2016), pp. 1124–1129.
https://doi.org/10.1109/ICSP.2016.7878003

73. P. Soma, S. Venkateswarlu, S. Santhalakshmi, T. Bagchi, S. Kumar,
Multi-satellite scheduling using genetic algorithms, in Space OPS 2004
Conference (2004), p. 515. https://doi.org/10.2514/6.2004-743-515

74. F. Xhafa, J. Sun, A. Barolli, M. Takizawa, K. Uchida, Evaluation of genetic
algorithms for single ground station scheduling problem, in 2012 IEEE
26th International Conference on Advanced Information Networking and
Applications (2012), pp. 299–306. https://doi.org/10.1109/aina.2012.59

75. F. Xhafa, A. Barolli, M. Takizawa, Steady state genetic algorithm for ground
station scheduling problem, in 2013 IEEE 27th International Conference on
Advanced Information Networking and Applications (AINA) (2013), pp.
153–160. https://doi.org/10.1109/aina.2013.147

76. J. Bai, H. Gao, X. Gu, H. Yang, A multi-dimensional genetic algorithm for
spacecraft TT&C resources unified scheduling, in Proceedings of the 28th
Conference of Spacecraft TT&C Technology in China: Openness, Integration
and Intelligent Interconnection 28 (Springer, Singapore, 2018), pp.
153–163. https://doi.org/10.1007/978-981-10-4837-1_13

77. J. Wu, J. Zhang, J. Yang, L. Xing, Research on task priority model and
algorithm for satellite scheduling problem. IEEE Access 7,
103031–103046 (2019). https://doi.org/10.1109/access.2019.2928992

78. C. Gong, B. Zhang, Y. Li, Resources scheduling of TT&C network based on
quantum genetic algorithm, in 2009 5th International Conference on
Wireless Communications, Networking andMobile Computing (2009), pp.
1–4. https://doi.org/10.1109/wicom.2009.5302019

79. Y.J. Song, X. Ma, X.J. Li, L.N. Xing, P. Wang, Learning-guided nondominated
sorting genetic algorithm II for multi-objective satellite range scheduling
problem. Swarm Evol. Comput. 49, 194–205 (2019).
https://doi.org/10.1016/j.swevo.2019.06.008

80. F. Xhafa, X. Herrero, A. Barolli, L. Barolli, M. Takizawa, Evaluation of struggle
strategy in genetic algorithms for ground stations scheduling problem. J.
Comput. Syst. Sci. 79(7), 1086–1100 (2013).
https://doi.org/10.1016/j.jcss.2013.01.023

81. T. Zhang, Z. Li, J. Li, An adaptive genetic algorithm for solving
ground-space TT&C resources integrated scheduling problem of Beidou
constellation, in Proceedings of 2014 IEEE Chinese Guidance, Navigation and
Control Conference (2014), pp. 1785–1792.
https://doi.org/10.1109/cgncc.2014.7007453

82. J. Li, T. Zhang, G. Ye, Satellite-ground TT&C united scheduling methods of
GNSS constellation based on nodes constraint, in China Satellite

Navigation Conference (CSNC) 2015 Proceedings: Volume I (Springer, Berlin,
2015), pp. 55–66. https://doi.org/10.1007/978-3-662-46638-4_6

83. M. Xiong, W. Xiong, Z. Liu, A co-evolutionary algorithm with elite archive
strategy for generating diverse high-quality satellite range schedules.
Complex Intell. Syst. 9, 5157–5172 (2023).
https://doi.org/10.1007/s40747-023-01008-4

84. M. Chen, J. Wen, Y.J. Song, L. Xing, Y. Chen, A population perturbation and
elimination strategy based genetic algorithm for multi-satellite TT&C
scheduling problem. Swarm Evol. Comput. 65, 100912 (2021).
https://doi.org/10.1016/j.swevo.2021.100912

85. H. Chen, Y. Zhou, C. Du, J. Li, A satellite cluster data transmission
scheduling method based on genetic algorithm with rote learning
operator, in 2016 IEEE Congress on Evolutionary Computation (CEC) (IEEE,
2016), pp. 5076–5083. https://doi.org/10.1109/cec.2016.7748333

86. X. Ling, X. Wu, Q. Liu, Study of GATS algorithm for multi-satellite TT&C
scheduling problem. J. Astronaut. 5, 2133–2139 (2009)

87. B. Song, F. Yao, Y. Chen, Y. Chen, Y. Chen, A hybrid genetic algorithm for
satellite image downlink scheduling problem. Discrete Dyn. Nat. Soc.
2018, Article ID 1531452 (2018). https://doi.org/10.1155/2018/1531452

88. Y.J. Song, Z.S. Zhang, B.Y. Song, Y.W. Chen, Improved genetic algorithm
with local search for satellite range scheduling system and its application
in environmental monitoring. Sustain. Comput. Inf. Syst. 21, 19–27 (2019).
https://doi.org/10.1016/j.suscom.2018.11.009

89. S. Kilic, O. Omer, Ant colony optimization approach for satellite broadcast
scheduling problem, in 2017 8th International Conference on Recent
Advances in Space Technologies (RAST) (2017), pp. 273–277.
https://doi.org/10.1109/rast.2017.8002936

90. Z. Zhang, Z. Feng, Two-stage updating pheromone for invariant ant
colony optimization algorithm. Expert Syst. Appl. 39(1), 706–712 (2012).
https://doi.org/10.1016/j.eswa.2011.07.062

91. Z. Zhang, N. Zhang, Z. Feng, Multi-satellite control resource scheduling
based on ant colony optimization. Expert Syst. Appl. 41(6), 2816–2823
(2014). https://doi.org/10.1016/j.eswa.2013.10.014

92. N. Zhang, Z. Feng, L. Ke, Guidance-solution based ant colony
optimization for satellite control resource scheduling problem. Appl.
Intell. 35, 436–444 (2011). https://doi.org/10.1007/s10489-010-0234-3

93. C. Gong, P. Huang, B. Zhang, Tasks allocation in TT&C network based on
improved ACA, in 2009 4th IEEE Conference on Industrial Electronics and
Applications (2009), pp. 1549–1552.
https://doi.org/10.1109/iciea.2009.5138454

94. Z. Li, J. Li, W. Mu, Space-ground TT&C resources integrated scheduling
based on the hybrid ant colony optimization, in Proceedings of the 28th
Conference of Spacecraft TT&C Technology in China: Openness, Integration
and Intelligent Interconnection 28 (Springer, Singapore, 2018), pp.
179–196. https://doi.org/10.1007/978-981-10-4837-1_15

95. T. Zhang, J. Li, Z. Li, M. Xiang, An algorithm research of ground-space
integrated scheduling TT&C resources of orbit determination of GNSS
constellation, in 2013 Fourth International Conference on Intelligent Systems
Design and Engineering Applications (IEEE, 2013), pp. 69–73.
https://doi.org/10.1109/isdea.2013.422

96. K. Xia, F. Zheng, Y. Chi, R. Wu, Study on satellite broadcasting scheduling
based on particle swarm optimization algorithm, in 2009 IEEE
International Conference on Communications Technology and Applications
(IEEE, 2009), pp. 962–966. https://doi.org/10.1109/iccomta.2009.5349067

97. F. Chang, X. Wu, Satellite data transmission scheduling problem based on
velocity controllable particle swarm optimization. J. Astronaut. 8,
2015–2022 (2010)

98. H. Fan, W. Zhang, M. Tian, G. Ma, B. Cheng, A resource scheduling method
for satellite mission ground station based on particle swarm optimization
algorithm. J. Univ. Chin. Acad. Sci. 39(6), 801 (2022)

99. H. Chen, L. Li, Z. Zhong, J. Li, Approach for Earth observation satellite
real-time and playback data transmission scheduling. J. Syst. Eng.
Electron. 26(5), 982–992 (2015). https://doi.org/10.1109/JSEE.2015.00107

100. Y. Song, L. Wei, L. Xing, Y. Fang, Z. Zhang, Y. Chen, Solving satellite range
scheduling problem with learning-based artificial bee colony algorithm,
in Bio-Inspired Computing: Theories and Applications: 16th International
Conference, BIC-TA 2021, Taiyuan, China, December 17–19, 2021, Revised
Selected Papers, Part I (Springer, Singapore, 2022), pp. 43–57.
https://doi.org/10.1007/978-981-19-1256-6_4

101. A.A. Salman, I. Ahmad, M.G.H. Omran, A metaheuristic algorithm to solve
satellite broadcast scheduling problem. Inf. Sci. 322, 72–91 (2015).
https://doi.org/10.1016/j.ins.2015.06.016

https://doi.org/10.1109/aina.2014.151
https://doi.org/10.1016/j.cor.2017.03.012
https://doi.org/10.1109/icmse.2014.6930208
https://doi.org/10.1609/icaps.v29i1.3475
https://doi.org/10.1109/qrs-c55045.2021.00086
https://doi.org/10.1155/2020/5243749
https://doi.org/10.1007/978-3-030-55130-8_34
https://doi.org/10.1109/ICSP.2016.7878003
https://doi.org/10.2514/6.2004-743-515
https://doi.org/10.1109/aina.2012.59
https://doi.org/10.1109/aina.2013.147
https://doi.org/10.1007/978-981-10-4837-1_13
https://doi.org/10.1109/access.2019.2928992
https://doi.org/10.1109/wicom.2009.5302019
https://doi.org/10.1016/j.swevo.2019.06.008
https://doi.org/10.1016/j.jcss.2013.01.023
https://doi.org/10.1109/cgncc.2014.7007453
https://doi.org/10.1007/978-3-662-46638-4_6
https://doi.org/10.1007/s40747-023-01008-4
https://doi.org/10.1016/j.swevo.2021.100912
https://doi.org/10.1109/cec.2016.7748333
https://doi.org/10.1155/2018/1531452
https://doi.org/10.1016/j.suscom.2018.11.009
https://doi.org/10.1109/rast.2017.8002936
https://doi.org/10.1016/j.eswa.2011.07.062
https://doi.org/10.1016/j.eswa.2013.10.014
https://doi.org/10.1007/s10489-010-0234-3
https://doi.org/10.1109/iciea.2009.5138454
https://doi.org/10.1007/978-981-10-4837-1_15
https://doi.org/10.1109/isdea.2013.422
https://doi.org/10.1109/iccomta.2009.5349067
https://doi.org/10.1109/JSEE.2015.00107
https://doi.org/10.1007/978-981-19-1256-6_4
https://doi.org/10.1016/j.ins.2015.06.016


Li et al. Autonomous Intelligent Systems             (2023) 3:9 Page 15 of 15

102. M. Azizi, H. Sajedi, Satellite broadcast scheduling based on a boosted
binary differential evolution. New Gener. Comput. 35, 225–251 (2017).
https://doi.org/10.1007/s00354-017-0017-z

103. Q. Liang, Y. Fan, X. Yan, Y. Yan, An algorithm based on differential
evolution for satellite data transmission scheduling. Int. J. Comput. Sci.
Eng. 18(3), 279–285 (2019). https://doi.org/10.1504/IJCSE.2019.098538

104. Z. Liu, Z. Feng, L. Ke, Fireworks algorithm for the multi-satellite control
resource scheduling problem, in 2015 IEEE Congress on Evolutionary
Computation (CEC) (IEEE, 2015), pp. 1280–1286.
https://doi.org/10.1109/cec.2015.7257036

105. T. Zhang, L. Ke, J. Li, J. Li, Z. Li, J. Huang, Fireworks algorithm for the
satellite link scheduling problem in the navigation constellation, in 2016
IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2016), pp.
4029–4037. https://doi.org/10.1109/cec.2016.7744301

106. N. Funabiki, S. Nishikawa, A binary Hopfield neural-network approach for
satellite broadcast scheduling problems. IEEE Trans. Neural Netw. 8(2),
441–445 (1997). https://doi.org/10.1109/72.557699

107. Y.J. Song, B.Y. Song, Z.S. Zhang, Y.W. Chen, The satellite downlink
replanning problem: a BP neural network and hybrid algorithm approach
for IoT internet connection. IEEE Access 6, 39797–39806 (2018).
https://doi.org/10.1109/ACCESS.2018.2855800

108. W. Sun, G. Ma, M. Tian, Y. Lin, P. Huang, Remote sensing satellite ground
station antenna intelligent scheduling with LSTM and heuristic search. J.
Univ. Chin. Acad. Sci. 39(4), 532 (2022)

109. C. Li, W. Xu, L. Xu, Y. Wang, Multi-satellite TT&C scheduling method based
on DNN. Chin. Space Sci. Technol. 42(1), 65 (2022)

110. J. Ou, L. Xing, F. Yao, M. Li, J. Lv, Y. He, Y. Song, J. Wu, G. Zhang, Deep
reinforcement learning method for satellite range scheduling problem.
Swarm Evol. Comput. 77, 101233 (2023).
https://doi.org/10.1016/j.swevo.2023.101233

111. B. Ren, Z. Zhu, F. Yang, T. Wu, H. Yuan, High-altitude satellites range
scheduling for urgent request utilizing reinforcement learning. Open
Astron. J. 31(1), 268–275 (2022). https://doi.org/10.1515/astro-2022-0033

112. N. Xue, D. Ding, Y. Fan, Z. Wang, Research on joint scheduling method of
heterogeneous TT&C network resources based on improved DQN
algorithm, in 2021 IEEE 2nd International Conference on Information
Technology, Big Data and Artificial Intelligence (ICIBA), vol. 2 (IEEE, 2021), pp.
1009–1014. https://doi.org/10.1109/iciba52610.2021.9688327

113. X. Wang, J. Wu, Z. Shi, F. Zhao, Z. Jin, Deep reinforcement learning-based
autonomous mission planning method for high and low orbit multiple
agile Earth observing satellites. Adv. Space Res. 70(11), 3478–3493 (2022).
https://doi.org/10.1016/j.asr.2022.08.016

114. Y. Song, J. Ou, J. Wu, L. Xing, Y. Chen, A cluster-based genetic optimization
method for satellite range scheduling system. Swarm Evol. Comput. 79,
101316 (2023)

115. J. Zhang, L. Xing, G. Peng, F. Yao, C. Chen, A large-scale multiobjective
satellite data transmission scheduling algorithm based on SVM+ NSGA-II.
Swarm Evol. Comput. 50, 100560 (2019).
https://doi.org/10.1016/j.swevo.2019.100560

116. R. Bellman, On some dynamic linear programming problems (1951)
117. R. Bellman, Dynamic Programming (Princeton University Press, Princeton,

1957)
118. J. Wang, E. Demeulemeester, X. Hu, G. Wu, Expectation and SAA models

and algorithms for scheduling of multiple Earth observation satellites
under the impact of clouds. IEEE Syst. J. 14(4), 5451–5462 (2020).
https://doi.org/10.1109/JSYST.2019.2961236

119. X. Liu, B. Bai, Y. Chen, Y. Feng, Multi satellites scheduling algorithm based
on task merging mechanism. Appl. Math. Comput. 230, 687–700 (2014).
https://doi.org/10.1016/j.amc.2013.12.109

120. G. Peng, R. Dewil, C. Verbeeck, A. Gunawan, L. Xing, P. Vansteenwegen,
Agile Earth observation satellite scheduling: an orienteering problem
with time-dependent profits and travel times. Comput. Oper. Res. 111,
84–98 (2019). https://doi.org/10.1016/j.cor.2019.05.030

121. G. Peng, G. Song, L. Xing, A. Gunawan, P. Vansteenwegen, An exact
algorithm for agile Earth observation satellite scheduling with
time-dependent profits. Comput. Oper. Res. 120, 104946 (2020).
https://doi.org/10.1016/j.cor.2020.104946

122. D. Zhou, M. Sheng, J. Luo, R. Liu, J. Li, Z. Han, Collaborative data
scheduling with joint forward and backward induction in small satellite
networks. IEEE Trans. Commun. 67(5), 3443–3456 (2019).
https://doi.org/10.1109/TCOMM.2019.2900316

123. Z. Liang, L. Liu, J.W. Jiang, J. Guo, Y. Zhang, H. Yan, Data relay system data
download scheduling algorithm for Earth observation satellites, in 2017
IEEE International Conference on Communication, Networks and Satellite
(Comnetsat) (2017), pp. 14–20.
https://doi.org/10.1109/comnetsat.2017.8263566

124. A.J. Vazquez, S.E. Richard, Optimal fixed interval satellite range
scheduling, in ICORES (2014), pp. 401–408.
https://doi.org/10.5220/0004760604010408

125. R.J. Abbott, M.L. Campbell, W.C. Krenz, A sustainable genetic algorithm
for satellite resource allocation. Telemat. Inform. 12(3–4), 141–159 (1995).
https://doi.org/10.1016/0736-5853(95)00015-1

126. L. Barbulescu, A.E. Howe, J.P. Watson, L.D. Whitley, Satellite range
scheduling: a comparison of genetic, heuristic and local search, in Parallel
Problem Solving fromNature—PPSN VII: 7th International Conference
Granada, Spain, September 7–11, 2002 Proceedings 7 (2002), pp. 611–620.
https://doi.org/10.1007/3-540-45712-7_59

127. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,
Equation of state calculations by fast computing machines. J. Chem.
Phys. 21(6), 1087–1092 (1953). https://doi.org/10.2172/4390578

128. F. Glover, Future paths for integer programming and links to artificial
intelligence. Comput. Oper. Res. 13(5), 533–549 (1986).
https://doi.org/10.1016/0305-0548(86)90048-1

129. F. Glover, Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989).
https://doi.org/10.1287/ijoc.1.3.190

130. J. Holland, Adaption in natural and artificial systems: an introductory
analysis with applications to biology, control and artificial systems. Ann
Arbor (1975)

131. A. Colorni, D. Marco, M. Vittorio, Distributed optimization by ant colonies,
in Proceedings of the First European Conference on Artificial Life, vol. 142
(1991), pp. 134–142

132. M. Dorigo, Optimization, learning and natural algorithms. Ph. D. Thesis,
Politecnico di Milano (1992)

133. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in
MHS’95. Proceedings of the Sixth International Symposium onMicroMachine
and Human Science (IEEE, 1995).
https://doi.org/10.1109/mhs.1995.494215

134. M. Minsky, Steps toward artificial intelligence. Proc. IRE 49(1), 8–30 (1961).
https://doi.org/10.1109/JRPROC.1961.287775

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/s00354-017-0017-z
https://doi.org/10.1504/IJCSE.2019.098538
https://doi.org/10.1109/cec.2015.7257036
https://doi.org/10.1109/cec.2016.7744301
https://doi.org/10.1109/72.557699
https://doi.org/10.1109/ACCESS.2018.2855800
https://doi.org/10.1016/j.swevo.2023.101233
https://doi.org/10.1515/astro-2022-0033
https://doi.org/10.1109/iciba52610.2021.9688327
https://doi.org/10.1016/j.asr.2022.08.016
https://doi.org/10.1016/j.swevo.2019.100560
https://doi.org/10.1109/JSYST.2019.2961236
https://doi.org/10.1016/j.amc.2013.12.109
https://doi.org/10.1016/j.cor.2019.05.030
https://doi.org/10.1016/j.cor.2020.104946
https://doi.org/10.1109/TCOMM.2019.2900316
https://doi.org/10.1109/comnetsat.2017.8263566
https://doi.org/10.5220/0004760604010408
https://doi.org/10.1016/0736-5853(95)00015-1
https://doi.org/10.1007/3-540-45712-7_59
https://doi.org/10.2172/4390578
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1109/mhs.1995.494215
https://doi.org/10.1109/JRPROC.1961.287775

	Reviews and prospects in satellite range scheduling problem
	Abstract
	Keywords

	Introduction
	Description of SRSP
	Modeling method in SRSP
	Mathematical description of SRSP
	Problem assumptions and variable deﬁnitions
	Optimization objectives
	Problem constraints
	Problem description


	Solving methods of SRSP
	Deterministic algorithm
	Heuristic algorithm
	Meta-heuristic algorithm
	Local search algorithm
	Evolutionary algorithm

	Artiﬁcial intelligent algorithm

	Prospects
	Problem model improvement
	Solving algorithm optimization
	Application scenario expansion

	Conclusion
	Funding
	Availability of data and materials
	Code availability
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


