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Abstract
Affected by parameter drift and coupling organization, nonlinear dynamical systems exhibit suppressed oscillations.
This phenomenon is called amplitude death. In various complex systems, amplitude death is a typical critical
phenomenon, which may lead to the functional collapse of the system. Therefore, an important issue is how to
effectively predict critical phenomena based on the data in the system oscillation state. This paper proposes an
enhanced Informer model to predict amplitude death. The model employs an attention mechanism to capture the
long-range associations of the system time series and tracks the effect of parameter drift on the system dynamics
through an accompanying parameter input channel. The experimental results based on the coupled Rössler and
Lorentz systems show that the enhanced informer has higher prediction accuracy and longer effective prediction
distance than the original algorithm and can predict the amplitude death of a system.
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1 Introduction
Complex dynamics define complex nonlinear systems as
systems with high-order, multi-loop and nonlinear infor-
mation feedback structures. Complex systems are often
composed of a large number of interacting units. The in-
formation interaction of these units causes the system to
spontaneously generate complex behaviors and present
collective functional characteristics that each unit does not
possess [1]. Nonlinear complex systems widely exist in na-
ture and socioeconomic fields. For example, in nature, typ-
ical nonlinear complex systems include ecosystems, bio-
logical systems, human brains, animal digestive systems,
and blood circulation systems. In socioeconomics, specific
nonlinear complex systems include population systems,
urban and rural systems, energy systems, transportation
systems, trade systems, and financial systems are typical
nonlinear complex systems [2].

Nonlinear complex systems usually have the proper-
ties of evolutionary emergence, self-organization, self-
propagation, power law and critical phase transition.
Among them, the critical phase transition is one of the
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properties most concerned by scholars. When a complex
system is in critical state it will be at optimal performance
or induce system-level risk [3–5]. On the hand, critical
states endow complex systems with advantages such as
self-adaptation, toughness, and pluripotency. For example,
the nervous system tends to show better computing power
if it is near the criticality [6]; the natural swarm system
(birds flock, ant colony, fish swarm, flora) in the critical
state can respond flexibly to change in the environment,
to prevent the weak interference from destroying the en-
tire cluster system [7].

On the other hand, a system in critical state is also prone
to collapse under external disturbances due to unstable
factors [8–10]. For example, the increasing number of ve-
hicles on an urban road network can lead to localized con-
gestion, which can lead to traffic jams when the critical
point is further crossed [11, 12]; the phase transition of in-
fectious disease incidence depends on the network topol-
ogy, and propagation parameters constitute the critical
value. When the transmission parameter exceeds the crit-
ical value, the epidemic scale will suddenly increase [13].

Among the critical phenomena, the amplitude death
phenomenon has received attention because it is usually
associated with the destructive behavior of the system. In
nonlinear dynamical systems, amplitude death is a phe-
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nomenon in which the oscillatory behavior of a state vari-
able ceases completely [14]. The main reason for amplitude
death is that the system parameters drift past the critical
point [15]. Since amplitude death profoundly affects the
evolution and operation of complex systems, how to ef-
fectively predict amplitude death is meaningful and essen-
tial. In the real world, complex systems are characterized
by high dimensionality, nonlinearity, feedback, and ran-
domness. The system equations are most likely unknown.
With the rise of machine learning methods, the research
on data-driven model-free prediction has attracted the in-
terest of many scholars [16–18].

Among the data-driven methods for predicting criti-
cal phenomena, the recurrent neural network algorithm
based on reservoir computing is the mainstream. This
method has high accuracy and has achieved relatively
good performance in critical state prediction of complex
systems such as population extinction caused by pop-
ulation food chains, power system collapse prediction
[19], and transient spatiotemporal chaos in the Kuramoto-
Sivashinsky system [20]. Jiang, et al. [21] found a “valley
interval” with the slightest prediction error for the neural
network’s spectral radius, which helps optimize the reser-
voir framework’s design and improve the prediction accu-
racy of critical states. Kong, et al. [15] proposed reservoir
computing using additional parameter input channels to
predict critical transition and critical chaos in nonlinear
systems, determining whether the system has transitioned
from a critical point to a transient state. Fahimeh, et al.
[22] tried to modify the four critical point indicators of the
autocorrelation function, variance, kurtosis and skewness
to predict different critical points. Fan, et al. [23] proposed
a scheme involving actual state updates for the short pre-
diction time of reservoir computing. It demonstrated that
occasional updates to a subset of state variables could sig-
nificantly extend the prediction time. Zhang, et al. [24]
demonstrated that reservoir computing can be used for
long-term prediction of the phase of chaotic oscillators
and showed that a properly designed reserve pool algo-
rithm could reliably sense the phase synchronization be-
tween a pair of coupled chaotic oscillators.

From the above-mentioned related literature, it can be
found that deep learning algorithms can be effectively ap-
plied to the study of critical phenomenon prediction, but
the related algorithms are mainly based on recurrent neu-
ral networks represented by reservoir computing. Critical
phenomenon prediction is usually a long-time series pre-
diction task. When performing a long time series predic-
tion task, reservoir computing is prone to gradient disap-
pearance. Since recurrent neural networks deal with time
series data in a tandem relationship, the output of the hid-
den layer further away from the current time has less in-
fluence on the output of the current hidden layer, making

it difficult for the model to analyze the long-term depen-
dencies in the long time series. Meanwhile, reservoir com-
puting extracts the features of all nodes in the time series
equally and is unable to distinguish the key information,
resulting in limited accuracy when predicting long time se-
ries.

In recent years, transformer models based on the self-
attention mechanism have also achieved better results in
image recognition, sound classification [25] and temporal
prediction [26–29] tasks. Zhou, et al. [30] proposed the in-
former model to address the problem of excessive com-
putational complexity of transformer when the sequence
length grows. The model is able to better capture the long-
term dependencies between inputs and outputs while re-
ducing the computational complexity and memory usage.
With Self-attention Distilling, the informer is able to dis-
tinguish important information and assign higher weights
to features that have a dominant role. Compared to re-
current neural networks, informer effectively improves the
accuracy of time series prediction and is suitable for long
time series prediction tasks [30].

In summary, this paper proposes to construct a crit-
ical phenomenon prediction model using the informer
model based on the self-attention mechanism. The self-
attention mechanism is used to learn the correlation and
long-term dependence of elements within a complex sys-
tem. However, in order to predict the amplitude death
caused by parameter drift, the deep learning model needs
to be parameter-aware so that it can track the changes of
bifurcation parameters. Therefore, the informer model is
difficult to directly apply to the amplitude death prediction
task. To address this technical difficulty, this paper pro-
poses an enhanced informer model by designing a bifur-
cation parameter input channel so that the model can tap
the correlation between parameter drift and system vari-
able evolution and effectively track the critical evolution
of the system caused by parameter drift. The experimental
results show that the enhanced informer model with bifur-
cated parameter channels improves the effective predic-
tion length by 30% compared with the traditional model.
Meanwhile, the enhanced informer algorithm can achieve
the prediction of amplitude death.

2 Problem description
As the first chaotic attractor discovered [31], the Lorenz
chaotic system is the first dissipative system that exhibits
chaotic motion in numerical experiments. The state equa-
tion of the Lorenz chaotic system is:

ẋ1 = a(x2 – x1),

ẋ2 = –x1x3 – x2 + bx1,

ẋ3 = x1x2 – cx3.

(1)
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Figure 1 Chaotic system

It presents a chaotic state at a = 10, b = 28, c = 8/3, and
when the initial state is set to (1, 1, 1), the system state is
shown in Fig. 1 (a).

The Rössler system is a simpler chaotic system model
than the Lorenz model [32], which can be expressed by or-
dinary differential equations as:

ẏ1 = –y2 – y3,

ẏ2 = y1 + dy2,

ẏ3 = e + y3(y1 – f ).

(2)

It presents a chaotic state at d = e = 0.1, f = 18, and when
the initial state is set to (1, 1, 1), the system generates a
single-scroll folded chaotic attractor, as shown in Fig. 1 (b).

When isolated, the Rössler or the Lorenz chaotic sys-
tem is in an oscillatory state. However, when they are cou-
pled, amplitude death occurs. The six-dimensional system
of coupled Rössler and Lorenz systems is described as fol-
lows:

ẋ1 = a(x2 – x1),

ẋ2 = –x1x3 – x2 + bx1 + ε(y2 – x2),

ẋ3 = x1x2 – cx3,

ẏ1 = –y2 – y3,

ẏ2 = y1 + dy2 + ε(x2 – y2),

ẏ3 = e + y3(y1 – f ).

(3)

Where, ε is the bifurcation parameter. When the initial
value of the system is (1, 0, 0, 0, 0, 0), as the bifurcation
parameters change, the bifurcation diagram of the six-
dimensional system is shown in Fig. 2.

As seen from the above figure, when the bifurcation pa-
rameter of the system exceeds the critical value εc = 0.40,

the system in the state of chaotic oscillation will appear
the phenomenon of amplitude death. When the bifurca-
tion parameter value is 0.3, which is lower than the criti-
cal value, the corresponding time series of each variable in
the system will continue to oscillate chaotically. When the
value of the bifurcation parameter is 0.5, which is higher
than the critical value, the time series corresponding to
each variable in the system will eventually transform into
an amplitude death state after a period of chaotic oscilla-
tion. Therefore, the problem of predicting the amplitude
death phenomenon of complex systems can be studied
based on the coupled Rössler and Lorenz system. The am-
plitude death prediction problem consists of two main as-
pects. On the one hand, it is necessary to achieve effective
prediction of the evolution of the coupled system variables
for a certain length, and on the other hand, it is necessary
to achieve the prediction of the system amplitude death
phenomenon when the drift of the bifurcation parameter
crosses the critical value.

3 Prediction model
3.1 Informer
Informer, as a self-attentive mechanism model, derives its
main architecture from transformer. Transformer is the
first model that entirely relies on the attention mechanism
to learn the global dependencies between input and output
and does not adopt the structure of CNN or RNN [25]. The
model architecture of transformer is shown in Fig. 3, in-
cluding an embedding layer, an encoder-decoder module
and a regression layer. The primary function of the embed-
ding layer is to expand the vector by another dimension.
The method is to map the node value to a vector of length
dmodel. Transformer, in order to learn the location informa-
tion in a sequence, needs to combine the location informa-
tion encoding with the time series to form a new feature



Ji et al. Autonomous Intelligent Systems            (2022) 2:26 Page 4 of 11

Figure 2 Bifurcation diagrams of coupled Rössler and Lorenz systems

Figure 3 Transformer architecture
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representation input. The calculation formula of the posi-
tion information encoding in the vector is as follows:

PE(pos,2i) = sin
(
pos/10,0002i/dmodel

)
,

PE(pos,2i+1) = cos
(
pos/10,0002i/dmodel

)
.

(4)

Where pos is the position and i is the dimension, that is,
each dimension of the positional encoding corresponds to
a sinusoid. The wavelengths form a geometric progression
from 2π to 10,000 · 2π .

In the encoder-decoder module, the encoder and the de-
coder are stacked to build N layers. Each layer structure is
connected by a self-attention layer and a feedforward net-
work layer in sequence. The decoder uses a masked self-
attention layer to obtain the current node’s attention infor-
mation. The self-attention mechanism is the key to trans-
former. For the input vector X, the self-attention mecha-
nism first calculates three vector matrices through the Em-
bedding vector and the random matrix WQ, WK and WV ,
which are the Query (Q), Key (K ) and Value (V ) weight
matrices. After that, the vector Q and K are first multi-
plied by the dot. Softmax gets stuck in minimal gradients
for larger dimensions of V since the dot product size also
gets more significant. In order to ensure the stability of the
calculation, the result of the dot product needs to be di-
vided by a constant. The obtained result is then calculated
by the Softmax layer to obtain the weight vector A. Finally,
the weight vector A and the V matrix are multiplied to get
the attention score vector B:

A = Softmax
(

KT Q√
dk

)
, (5)

B = VA. (6)

Where, Q, K , and V are matrices of input vectors, dk is the
dimension of the input vectors.

Transformer uses Multi-headed Attention. Transformer
initializes h groups of Q, K , and V matrices for the in-
put vector and performs an attention function for each
group of Q, K , and V in parallel. In order to meet the in-
put requirements of the feedforward layer, W O is defined
and multiplied by h groups of weight matrices to train the
model jointly. Finally, the matrix fused with all the atten-
tion header information is sent to the feedforward layer for
the following calculation. The multi-head attention calcu-
lation formula is as follows:

headi = Attention
(
QW Q

i , KW K
i , VW V

i
)
, (7)

MultiHead(Q, K , V )

= Concat(head1, . . . , headh)W O. (8)

Where, W Q
i , W K

i , W V
i are the parameter matrices of the

Q, K , and V matrices, and W O are the additional matrices.

The output of the multi-head attention layer is mapped
into a higher dimensional space through a feedforward
neural network. In a feedforward neural network, neurons
between layers are fully connected to the input and receive
signals. The core of the feedforward neural network is a 2-
layer linear transformation. The first layer maps a vector
of dimension dmodel to a vector of dimension dff , and the
second layer maps back to a vector of dimension dmodel.
The ReLu activation function is used in the network. The
network can be expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2. (9)

Where, x is the input, W is the weight of the input feature
vector, and b is the coefficient.

In addition, there will be residual connections and nor-
malization operations between each layer. After lineariz-
ing the matrix containing the global information output by
the decoder, it is returned to the vector space through Soft-
max, and the prediction result is obtained through map-
ping.

Although transformer is able to learn the long-range re-
lationships between data, it is not suitable for predicting
long time series. The main reasons are: 1) The computa-
tional complexity of the self-attention mechanism opera-
tion is high; 2) The stacking of multi-layer networks leads
to a bottleneck in memory usage; 3) The use of step-by-
step decoding prediction results in low computational ef-
ficiency in long-term sequence prediction tasks. To ad-
dress these issues, Informer proposes the following im-
provements:

1) ProSparse Self-attention: For the long-tailed distribu-
tion effect of the self-attention score, the relatively lazy
Query matrix is eliminated by introducing the KL diver-
gence operation to reduce the computational complexity.
The formula is as follows:

A = Softmax
(

QKT
√

dk

)
. (10)

The matrix Q comprises top-u relatively active queries,
and the sparsity of the i-th query is evaluated mainly
through KL divergence. The evaluation formula is as fol-
lows:

M(qi, K) = ln
LK∑

j=1

e
qikT

j√
d –

1
LK

LK∑

j=1

qiKT
j√

d
. (11)

Where, the first term of the above formula is the Log-sum-
Exp of qi for all keys, and the second term is the arithmetic
mean.

2) Self-attention Distilling: Assign higher weights to
dominant features with a dominant role, which reduces
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Figure 4 Enhanced informer architecture

the number of parameters in the model network. The dis-
tillation operation from j to j + 1 layers is as follows:

Xt
j+1 = Max Pool

(
ELU

(
Convld

([
Xt

j
]

AB

)))
. (12)

Where, [•]AB includes the critical operations in ProSparse
Self-attention. Convld(•) represents a one-dimensional
convolution operation on time series. The activation func-
tion is ELU. MaxPool(•) represents max pooling opera-
tion.

3) Generative Style Decoder: Use a generative structure
to generate all prediction sequences simultaneously, sig-
nificantly reducing prediction decoding time. The vector
provided to the decoder is as follows:

Xfeed_de = {Xtoken, X0}. (13)

Where, X0 is a placeholder for the target sequence.

3.2 Enhanced informer
Although the informer model can assign higher weights
to important features in the time series based on the at-
tention mechanism, the model also needs to focus on the

evolution of system variables caused by parameter drift
when predicting critical phenomena. In order to make the
model effectively exploit the correlation between param-
eter drift and system variable evolution, this paper en-
hances the informer model by designing bifurcation pa-
rameter channels. The enhanced informer model is shown
in Fig. 4.

As shown in Fig. 5, the enhanced informer model can
be divided into three parts: 1) Input layer: the input chan-
nels of the model include parameter channels and variable
channels. The input of the parameter channel is the bifur-
cation parameter ε of the system, and the input of the vari-
able channel is the time series data of the system variables.
The parameter channels that feed bifurcation parameters
to the model can be connected to each node in the model,
thus allowing the model to track changes in bifurcation pa-
rameters in the time series data. Before the data is trans-
mitted to the Encoder-Decoder layer, the data dimension
in the channel needs to be transformed to dmodel. Due to
the importance of the data order problem in the time series
prediction problem, positional coding is used in the model
to mark the local and global backward and forward tempo-
ral relationships of the variables, thus capturing the long-
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Figure 5 Operating states of the system under different bifurcation parameter values

term dependence of the system’s six sets of variables and
bifurcation parameters in time during the training process.
The selection of bifurcation parameters in the parameter
channel is based on empirical criteria. It is mainly selected
from the bifurcation parameters when the system is oscil-
lating, and these bifurcation parameters need to be close to
the critical point of the system. The reason is that when the
bifurcation parameters are near the critical point, the time
series corresponding to the dynamic variables can provide
more effective critical signals. In contrast, when the bifur-
cation parameters of the system are far from the critical
point, the critical signals in the corresponding time se-
ries will be significantly lower. When selecting multi-group
bifurcation parameters, the distance between bifurcation
parameters needs to be reasonably spaced. The following
vectors are transmitted to the Encoder and Decoder in the
input layer:

Xfeed_en =
[
Xp; X2t

token1; . . . ; X2t
token6

]
, (14)

Xfeed_de =
[
Xp; Contact

(
Xt

token1, Xt
0
)
; . . . ;

Contact
(
Xt

token6, Xt
0
)]

,

Contact
(
Xt

token, Xt
0
) ∈ R(Ltoken+Ly)×dmodel . (15)

The input vector X consists of the values of the bifurcation
parameters and the correlation measurement time series
from each variable of the target system. The input of the
bifurcation parameter value allows the model to focus on
the effect of parameter drift on the data characteristics and
fully exploit the correlation between the bifurcation pa-
rameter and the system variables. The input to the encoder
is a long sequence of historical data and bifurcation param-
eter features, while the input of decoder consists of a short
sequence and zero values, and the length of the zero value
sequence is equal to the prediction length. The short se-
quence is the implied intermediate feature data about the
system variables and bifurcation parameters output by the
encoder, and the zero values in the decoder input are used
as placeholders for the evolutionary values of the predictor
variables.

2) Encoder-Decoder layer: it consists of encoder and de-
coder. The encoder and decoder are stacked by Multi-head
ProbSparse Self-attention module and Distilling mecha-
nism module. The encoder can obtain the dependencies
between the time series of system variables and the bifur-
cation parameters. Based on the multi-headed probabilis-
tic sparse self-attentiveness mechanism, the encoder can
assign greater weights to the important features that reflect



Ji et al. Autonomous Intelligent Systems            (2022) 2:26 Page 8 of 11

the changes in the bifurcation parameters. After multi-
ple multi-head sparse self-attention score calculations and
distilling processing, the encoder outputs an intermedi-
ate feature to the decoder containing information about
the drift of the bifurcation parameters and the temporal
evolution of the variables. The data input to the Decoder
needs to go through a masked multi-headed probabilis-
tic sparse self-attentive operation before it can perform
a multi-headed attention operation with the intermediate
features output by the encoder. This process mainly pre-
vents each location from paying attention to the system
evolution information after parameter drift occurs, so as
to fully exploit the association between the current bifur-
cation parameters and the timing information. After com-
pleting the calculation, the decoder outputs the operation
result to the fully connected layer.

3) Output layer: The output layer adjusts the dimen-
sion of the data output through a fully connected neural
network. After completing the loss function calculation of
the predicted result, the model is continuously optimized
through reverse gradient propagation.

During the training process, the enhanced informer
needs to be independently trained based on multiple bifur-
cation parameter values. The specific process is that when
the data training of a set of bifurcation parameter values
is completed, the time and initial state of the system need
to be reset to zero. Then, the model is repeatedly trained
by inputting the data corresponding to another set of bi-
furcation parameter values through the parameter chan-
nel and the variable channel. After completing the model
training based on all selected bifurcation parameters, mul-
tiple records of model training results can be obtained. In
the training process of multi-group bifurcation parame-
ters, the minimum MSE and MAE are used as the crite-
rion to determine the model parameter matrix. Therefore,
an essential requirement is that the enhanced informer is
well-trained in each selected bifurcation parameter and
thus can predict the system behavior at other parameter
values that the model has not yet been exposed to. Since
the training data consists of time series corresponding to
the selected parameter values, the short-term prediction
performance of these parameter values requires essential
attention.

4 Numerical experiment and result analysis
4.1 Experiment description
In the experiment of this paper, the informer and the en-
hanced informer are built based on python and the deep
learning framework PyTorch. In terms of experimental
hardware, three Nvidia GeForce RTX 4000 GPUs are used
to train and validate deep learning models. The settings of
the model hyperparameters are mainly adjusted according
to the model training and experimental results. The final
model hyperparameter values are shown in Table 1. In or-
der to verify the optimization effect of the enhanced in-
former in terms of prediction performance, the hyperpa-
rameter settings of the two models are the same.

In a single prediction task, the input data length in the
Encoder and Decoder is 14.40s, and the prediction length
is 7.20s. The output results of the prediction process are
analyzed by inverse normalization to obtain the final pre-
diction value of the evolution of system dynamic variables.

4.2 Data selection
When training a prediction model, it needs to be done
in a state where the system does not experience ampli-
tude death. Therefore, when generating the time series
for training the model, the bifurcation parameter value of
the system is required to be less than the critical value.
Based on empirical criteria, when the bifurcation param-
eter value of the system is closer to the critical value, the
corresponding time series input model can obtain a rela-
tively better training effect. Therefore, the bifurcation pa-
rameters selected in this paper are 0.36, 0.34 and 0.32, all of
which correspond to the system under oscillation. Taking
y1 as an example, the operating states of the system under
the above bifurcation parameter values are shown in Fig. 5
(a)(b)(c), respectively, and the corresponding initial values
are all randomly generated.

4.3 Data preprocessing
Data preprocessing includes data normalization and data-
set partitioning. There are six variables in the coupled
Rössler and Lorenz system: x1, x2, x3, y1, y2, y3. These six
variables and bifurcation parameters are used to construct
the input of the prediction model. The total length of each
set of data is 10,000s, and the sampling frequency is 0.01s.
Due to the dimensional gap between variables and bifur-
cation parameters, it is necessary to normalize the data to

Table 1 Hyperparameters of models. Models: Informer and Enhanced Informer

Model Dropout Epochs Stack encoder layers Learning_rate

256 0.05 20 3, 2, 1 0.0001

Btach_size Heads Optimizer Loss function Activation function

32 8 Adam MSE Gelu
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improve the model’s prediction accuracy. The formula is
as follows:

x∗ =
x – x
σ

. (16)

Where, σ is the standard deviation of the sample data, and
x is the mean of the sample data. The standardized data is
divided into a training set, validation set and test set ac-
cording to the ratio of 3/1/1.

4.4 Analysis of experimental results
The analysis of the experimental results is mainly based
on comparing the effective prediction length of the two
prediction models and whether they can predict the phe-
nomenon of amplitude death.

4.4.1 Effective prediction length
First, compare the evaluation metrics MAE and MSE be-
tween the two models. The comparison results are shown
in Table 2. The results in the table are the sums of MAE
and MSE for the six variables of the system, averaged over
the results of fifteen operations of the model.

Analyzing the results in the above table, it can be found
that when predicting the evolution of the system variables
of the coupled Rössler and Lorenz systems in the next 7.2s,
the MAE and MSE of the enhanced informer are reduced
by 12% and 17%, respectively, compared with the original

Table 2 Evaluation of models

Prediction models Informer Enhanced informer

MAE 1.88 1.65
MSE 16.54 13.72

model. According to the comparison of evaluation indica-
tors, enhanced informer has a minor error in predicting
the evolution trend of the chaotic system than the original
model and can achieve better prediction accuracy.

Further, it is necessary to compare the effective length of
time when the two models predict the evolution of system
variables. Taking the evolution prediction of the x3 as an
example, when the prediction target length is 7.2s, the ef-
fective prediction lengths of the informer and enhanced
informer are shown in Fig. 6 (a),(b), respectively. In the
comparison of results, the corresponding bifurcation pa-
rameter of the selected time series is 0.34, and the initial
value is random. The result graph takes the best of the fif-
teen prediction results of each of the two models.

According to the above figure’s results, the original
model’s effective prediction length is about 4.2s, and the ef-
fective prediction length of the enhanced informer is about
5.5s. Compared with the original model, the effective pre-
diction length of the enhanced informer is increased by
about 30%. It can be seen that the prediction effective-
ness of both models decreases in the later stage of pre-
diction, and the enhanced informer is still able to achieve
relatively high prediction accuracy. Comparatively speak-
ing, the predicted value of enhanced informer has a better
fit to the actual value. The results show that the enhanced
informer can better obtain the long-term dependencies of
the time series of chaotic systems, and is more effective in
the long-term forecasting process.

4.4.2 Amplitude death prediction
The amplitude death prediction experiment trains the
model based on the time series when the target system bi-
furcation parameter value is ε0. Then the evolution trend
of the system variables is predicted when the bifurcation

Figure 6 Effective prediction length of models
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Figure 7 Prediction of amplitude death of models

parameter value is ε1 = ε0 + �ε. Where �ε > 0 is the pa-
rameter drift, ε0 < εc, ε1 > εc. The experimental results of
the amplitude death prediction of the two models are re-
spectively shown in Fig. 7 (a),(b). In the comparison of re-
sults, the corresponding bifurcation parameter of the se-
lected time series is 0.5, and the initial value is random.
The resulting graph includes a segment of the inputs to
the predictive model. Among the fifteen prediction results
of both models, there are differences as shown in Fig. 7.

According to the experimental results, the enhanced in-
former model can predict the transient chaotic behavior
of the system and the subsequent amplitude death phe-
nomenon more accurately. According to the experimental
results, the enhanced informer model can more accurately
predict the transient chaotic behavior of the system and
the subsequent amplitude death phenomenon. It shows
that the enhanced model can be used to predict the char-
acteristic changes caused by parameter drift in the behav-
ior of chaotic systems. The experimental results prove that
the ability of the enhanced informer to capture the rela-
tionship between the evolution of system variables and the
drift of bifurcation parameters is optimized with the addi-
tion of parameter channels.

The above experimental results show that the enhanced
informer, while introducing the self-attention mechanism,
provides information on parameter drift for variable evo-
lution by using bifurcation parameters as features of the in-
put network model and fully explores the deep features of
variable evolution in chaotic systems, thus achieving bet-
ter prediction results.

5 Conclusion
Critical phenomena are research focus in all kinds of com-
plex systems. As a classic critical phenomenon, the oc-
currence of amplitude death may lead to the collapse of

the whole system, so the prediction method of ampli-
tude death has attracted the attention of scholars. The
rise of machine learning provides new ideas for solving
this problem. However, current machine methods for pre-
dicting amplitude mortality prediction phenomena are
mainly based on reservoir computing. Therefore, this pa-
per adopts a novel deep learning method to solve the prob-
lem of amplitude death prediction. An enhanced informer
model architecture is proposed based on the idea that the
additional bifurcation parameter channel can improve the
model’s amplitude death prediction ability. By construct-
ing the bifurcation parameter channel of the prediction
model, the model has the ability of parameter perception
so that the dynamic state of the system can be more ac-
curately predicted. This paper chooses to conduct experi-
ments on the coupled Rössler and Lorenz systems to ver-
ify the performance of the enhanced model. The experi-
mental results show that the enhanced informer proposed
in this paper can effectively improve the adequate predic-
tion time of the original model for predicting the evolution
of chaotic system variables. When the system parameters
drift to the region of amplitude death, the enhanced in-
former can predict whether the system will have the phe-
nomenon of amplitude death.

Since the prediction model proposed in this paper is
data-driven, future work can be expected to address the
problem of complex system behavior prediction in indus-
trial and military scenarios and provide support for critical
regulation research of complex systems.
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