
Autonomous Intelligent
Systems

Wang and Chen Autonomous Intelligent Systems (2021) 1:17
https://doi.org/10.1007/s43684-021-00017-9

ORIGINAL ARTICLE Open Access

Task scheduling for transport and pick
robots in logistics: a comparative study on
constructive heuristics
Hanfu Wang1,2,3 and Weidong Chen1,2,3*

Abstract

We study the Transport and Pick Robots Task Scheduling (TPS) problem, in which two teams of specialized robots,
transport robots and pick robots, collaborate to execute multi-station order fulfillment tasks in logistic environments.
The objective is to plan a collective time-extended task schedule with the minimization of makespan. However, for
this recently formulated problem, it is still unclear how to obtain satisfying results efficiently. In this research, we
design several constructive heuristics to solve this problem based on the introduced sequence models. Theoretically,
we give time complexity analysis or feasibility guarantees of these heuristics; empirically, we evaluate the makespan
performance criteria and computation time on designed dataset. Computational results demonstrate that coupled
append heuristic works better for the most cases within reasonable computation time. Coupled heuristics work better
than decoupled heuristics prominently on instances with relative few pick robot numbers and large work zones. The
law of diminishing marginal utility is also observed concerning the overall system performance and different
transport-pick robot numbers.

Keywords: Multi-robot task allocation, Multi-robot system, Complex-schedule constraints, Heterogeneous robotic
order fulfillment system

1 Introduction
In the Heterogeneous Robotic Order Fulfillment System
(HROFS), two types of robots with specialized and com-
plementary capabilities exist: 1) transport robots with
object transfer and transient storage capability, typically
automated guided vehicles (AGVs) or autonomous mobile
robots (AMRs), that autonomously receive order fulfill-
ment tasks, travel across the workspace and retrieve items
from different storage stations and 2) pick robots with
mobile manipulation capability, typically mobile manipu-
lators, mobile dual-arm robots, hybrid leg-wheel robots or
even human workers enhanced by mobile platforms (only

*Correspondence: wdchen@sjtu.edu.cn
1Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai
200240, China
2Department of Automation, Shanghai Jiao Tong University, Shanghai 200240,
China
Full list of author information is available at the end of the article

for tricky products that is still challenging for robots),
that fetch items from storage stations and place them into
transport robots’ containers. As is verified in our previous
research [1], by combining two types of robots, practition-
ers can achieve the same or better system performance
with relatively lower cost.
Targeting the task allocation and scheduling aspect of

the HROFS, we formulate the Transport and Pick Robots
Task Scheduling (TPS) problem, which seeks the collective
time-extended task schedule for multiple transport robots
and multiple pick robots collaboratively performing order
fulfillment tasks. In the TPS problem, as customer orders
are characterized by multiple lines of miscellaneous items,
both two robot types have to travel to different loca-
tions to collect items or perform pick&place operations.
Furthermore, as we split object transfer and pick&place
operations and assign them to two robot types, to achieve

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s43684-021-00017-9&domain=pdf
http://orcid.org/0000-0001-8757-0679
mailto: wdchen@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 2 of 13

better performance, it is paramount to enable them to act
tightly and synergistically.
According to the multi-robot task allocation (MRTA)

taxonomy iTax [2], the TPS problem falls in the complex-
schedule [CD] category, with single-task robots [ST],
multiple-robot tasks [MR], and the time-extended alloca-
tion [TA] problem (CD[ST-MR-TA]). iTax by Korsah, et
al. [2] is the first taxonomy for multi-robot task alloca-
tion that explicitly takes issues of inter-task constraints
and inter-robot utilities into consideration. Nunes, et al.
[3] further propose a novel taxonomy forMRTA problems
with temporal and ordering constraints (MRTA/TOC),
which belongs to the XD[MT-SR-TA] category in iTax.
Typical MRTA methods include centralized methods
(exact [4], approximate [5], heuristics [6] and metaheuris-
tics [7]), decentralized methods (game-theoretic [8], mar-
ket and negotiation-based [9]), swarm-based methods
[10] and hybrid methods [11, 12]. For research on MRTA
with complex-schedule constraints, materials are rela-
tively rare. Jones, et al. [13] solve the time-extended
multi-robot coordination with intra-path precedence con-
straints in the disaster response domain. The robot team
comprises of multiple unmanned fire trucks and multi-
ple debris cleaning bulldozers. They propose two meth-
ods, a hybrid method incorporating tiered auctions and
two heuristic techniques, clustering and opportunistic
path planning. The other method is genetic algorithm.
Strengths and weakness of bothmethods are analyzed and
verified by simulations.
The TPS problem is also an integrated routing and

scheduling problem, and several combinatorial problems
are related to it. Vehicle routing problem (VRP) [14] and
its variants capture the routing components of the TPS
problem. Open shop scheduling problem (OSP) [15] and
its variants capture the scheduling components of the
TPS problem. The open shop scheduling problem also has
many integrated routing and scheduling variants, such as
routing open shop scheduling [16], open shop schedul-
ing with sequence-dependent setup times [17] and open
shop scheduling with transportation/travel times [18].
These problems can be solved by exact methods [19],
approximate methods [16, 20, 21], heuristics [22] and
metaheuristics [17, 18, 23, 24].
In our previous work [25] and [1], we use decoupled

and coupled methods to plan collective time-extended
task schedule respectively. Specially in [1], we propose a
rank-minimal heuristic based on tripartite matching. We
use genetic algorithm as the solver in each iteration. In
practice, decision-making on task level should be made
on-the-fly, and obtaining satisfying results in a short time
is paramount. For such circumstances heuristic meth-
ods are natural choices. In fact, as a typical integrated
routing and scheduling problem, there exist many poten-
tial heuristics yet to be explored for the TPS problem.

However, there is a lack of a comprehensive heuristic
algorithm design principles and it is still unclear how to
choose among multiple methods. In view of this, in this
research we concentrate on designing constructive heuris-
tics, conduct a comparative study, and figure out the most
promising heuristic.
This paper is organized as follows. In Section 2, we

formulate the TPS problem and introduce the sequence
models. In Section 3, we design five constructive heuristics
together with complexity analysis. In Section 4, we con-
duct a comparative study on these heuristics and analyze
computational results. Finally, in Section 5, we provide the
conclusions and point out possible future work.

2 Problem definition
2.1 Problem formulation

The TPS problem is defined by three sets, a heterogeneous
robot set R, a logistic network G and an order fulfillment
task set T . We explicitly consider the environment or the
logistic network because pick robots are associated with
their dedicated work zones.
Logistic Network: The logistic network is represented as

a simple, undirected and connected graph G = (V , E).
The vertex set V = VP ∪ VD is a union of the pickup
station subset VP and the delivery station subset VD, and
VP ∪ VD = ∅. A delivery station v ∈ VD is a vertex where
transport robots receive order fulfillment tasks, start from
and return to. A pickup station v ∈ VP is a vertex where
two types of robots meet so that pick robots perform
pick&place operations, and transport robots collect items.
The edge set E consists of connections between stations
and each edge e ∈ E is assigned to a travel cost w(e).
Robots: The heterogeneous robot set R consists of

m transport robots and n pick robots, i.e., R =
{
RT
i |i = 1, 2, · · · ,m} ∪

{
RP
j |j = 1, 2, · · · , n

}
. A transport

robot RT
i starts from a delivery station and undertakes an

order fulfillment task from the task set, travels across the
whole workspace as subtasks indicates, rendezvous with
pick robots to allow them pick&place items, and finally
returns to the delivery station after all items are collected.
A pick robot RP

j is dedicated to a work zone represented
as a set of pickup stations Zi,Zi ⊂ VP . It picks items from
storage (racks, shelves) at corresponding pickup stations,
meets with transport robots, and places items into trans-
port robots’ containers. We do not allow any two work
zones overlap, i.e., ∀1 ≤ p, q ≤ n, p �= q,Zp ∩ Zq = ∅.
Meanwhile, all work zones should cover the pickup station
subset, i.e., ∪n

j=1Zj = VP .
Tasks: Let T = {T1,T2, · · · ,Tm} denote the set of m

order fulfillment tasks. Currently for one-shot schedul-
ing we only consider tasks with the same transport robot
number m, and we also presume the transport robot RT

i
has been pre-assigned to the task Ti ∈ T . This is because

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 3 of 13

task allocation problems (assigning tasks to transport
robots) can be solved independently from task scheduling.
Each task Ti is a set of several pickup subtasks and one
delivery subtask, i.e., Ti = {ti00}∪{ti1k , k = 0, 1, · · · ,Ki1}∪
· · ·∪{

tijk , k = 0, 1, · · · ,Kij
}∪· · ·∪ {tink , k = 0, 1, · · · ,Kin},

where Kij ∈ N
+ ∪ {0} is the number of pickup subtasks in

the zone Zj. A pickup subtask tijk is defined by its pickup
station vijk and a positive pick&place operate time τijk , i.e.,
tijk :

(
vijk , τijk

)
, vijk ∈ VP, τijk ∈ R

+. Similarly the deliv-
ery subtask ti00 is defined by its delivery station vi00 and
a positive operate time τi00, i.e., ti00 : (vi00, τi00), vi00 ∈
VD, τi00 ∈ R

+. Pick&place operate time is simply called
operate time afterwards. This task definition caters to
real-life order-fulfillment tasks in which customer orders
may include multiple lines of items, and multiple orders
from different customers can also be combined by the
order batching process [26].
Outputs: We seek all robots’ collective time-extended

task schedule T S = {TSTi } ∪ {TSPj }, 1 ≤ i ≤ m, 1 ≤ j ≤
n, in which TSTi or TSPj =

{(
ST∗

ijk ,AT
∗
ijk ,PT

∗
ijk ,CT

∗
ijk

)}

(∗ = {T ,P}). For subtask tijk belonging to transport
robot RT

i ’s task, or in pick robot RP
j ’s work zones,

ST∗
ijk ,AT

∗
ijk ,PT

∗
ijk ,CT

∗
ijk are start time, arrive time, pick

time and completion time respectively.

Problem 1 Transport and Pick Robots Task Schedul-
ing (TPS) Problem Given a TPS problem instance
〈R,G,T 〉 as described previously, find a collective time-
extended task schedule T S , so that all robots collaborate
with each other and accomplish all allocated tasks with
the minimization of the makespan Cmax. If task Ti’s com-
pletion time is Ci, the makespan is Cmax = max{Ci}, i =
1, 2, · · · ,m.

A TPS problem instance with 3 transport robots and 4
pick robots is depicted in Fig. 1. In this scenario, 3 trans-
port robots RT

1 ,RT
2 ,RT

3 and 4 pick robots RP
1 ,RP

2 ,RP
3 ,RP

4
collaborate to execute 3 order fulfillment tasks T1,T2,T3.
The objective is to find collective task schedule composed
of all 7 robots’ schedules, with the makespan minimized.
Assumptions:This research is subject to several assump-

tions. We concentrate on one-shot deterministic task
scheduling with all necessary information available. Travel
time estimation is sufficient enough for robots to travel
between different subtask stations with collisions or dead-
locks avoided. Operate times are adequate for pick robots
to perform pick&place operations. Work zones for all pick
robots are equal.
According to taxonomy iTax [2], the TPS problem falls

in the CD[ST-MR-TA] category. This is because transport
robots’ and pick robots’ task execution orders all are not
predetermined; each robot can merely execute one task
at the same time; and each subtask requires two types

of robots work at the same time. Complex-schedule con-
straints exist between tasks and the utilities of all robots
are interrelated and interdependent. Each robot’s sched-
ule is coupled with others and cannot be independently
determined. The search space of task execution orders
is exponentially large. Two classes of coupledness exist
in the TPS problem: coupledness between two types of
robots, and coupledness between routing and scheduling
components.

2.2 Sequence models
To establish the partial relations between two subtasks
for all robots unanimously, we can use directed acyclic
graph (DAG). As is stated in our previous work [1], the
TPS problem and the open shop problem share the same
property: two types of orders (transport robot subtask
orders and pick robot subtask orders, or job orders and
machines orders) should be determined by the task sched-
uler. For open shop scheduling problems, the permutation
list [27] and the rank matrix (can be bijectively mapped
to a sequence graph) [20, 22, 23, 28–31] are commonly
used models. The permutation list is simple and easy to
build, however, it suffers from a notorious drawback that
is high redundancy: multiple permutation lists possibly
mean the same sequence. Oppositely, the rank matrix is
non-redundant, yet to guarantee feasibility and nonre-
dundancy, more pre-processing and post-processing algo-
rithms are needed.
For the TPS problem, as the combinatorial space is

much more complicated than open shop scheduling prob-
lems, non-redundancy property is more preferable. Using
the rank matrix models could provide more insightful
descriptions on the solution structure. Meanwhile, as they
can always provide feasible and non-redundant solutions
beforehand, efficient algorithms can be developed. For
the TPS problem, block sequence graph and block rank
matrix are extended from sequence graph and rankmatrix
models for open shop problems.
A block sequence graph is feasible if the correspond-

ing directed acyclic graph obtained by the union of all
transport robots’ subtask orders and pick robots’ subtask
orders is acyclic. block sequence graph differs from (pre-
emptive) sequence graph [20] in that direct precedence
constraints between two split operations need not be con-
sidered, as a result, the search space of block sequence
graph is larger.
For each block sequence graph, there exists a block rank

matrix capturing its structural properties algebraically. In
a block rank matrix, an entry, namely rank sijk means that
in the corresponding block sequence graph a path to sub-
task tijk with a maximal number of subtasks includes sijk
subtasks. A block rank matrix can always be transformed
into a permutation list by topological sorting or lineariza-
tion. The block sequence graph and its corresponding

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 4 of 13

Fig. 1 A TPS problem instance with 3 transport robots (red, green and blue discs with number 1,2,3), 4 pick robots (white discs with number 1,2,3,4)
and 3 tasks (red, green or blue crosses). Transport robots and their corresponding order fulfillment tasks are depicted by the same color (red, green
and blue). Pick robots are confined in their corresponding work zonesZ1,Z2,Z3,Z4, each of which is an aisle between two opposite racks (black
bars). Transport robots start from the delivery stations (gray squares in periphery of the workspace), and in contrast, pick robots start from the pickup
stations (gray squares near the racks). Each task contains several subtasks possibly in different work zones

block rank matrix are shown in Fig. 2 and Eqs. (1), (2).

TO =
⎡

⎣
{1} {5, 2} {4} {3}
{1} {3} · {2}
· {3, 5} {4, 1} {2}

⎤

⎦ ,

PO =
⎡

⎣
{1} {5, 1} {3} {2}
{2} {4} · {3}
· {2, 3} {2, 1} {1}

⎤

⎦ , (1)

S =
⎡

⎣
{1} {7, 2} {5} {3}
{2} {6} · {4}
· {3, 5} {4, 1} {2}

⎤

⎦ =
⎡

⎣
1
2
0

7 2
6 0
3 5

5 0
0 0
4 1

3
4
2

⎤

⎦ .

(2)

3 Constructive heuristics
In this section, we design efficient constructive heuristics
for the TPS problem utilizing previous sequence mod-
els. Based on whether two types of robots are scheduled
at the same time, constructive heuristics can be divided
into coupled and decoupled heuristics. Typical discrete
operations include matching, append and insertion. Some
of these operations have been designed for open shop
scheduling problems in [22]. For integrated routing and
scheduling problems or variants of open shop scheduling
[16, 21, 32], although progresses have been made to find
approximate methods with bounded suboptimality and
polynomial computation time, these performance bounds
are too broad, and far from the need of practical robotic
deployment. Meantime, to obtain approximate results,
some unrealistic assumptions or limitations have to be
made. As a result, we conduct a comparative study on

constructive heuristics, and find out the most promising
heuristic that can produce good solutions in reasonable
time.
In different heuristics, coupledness are dealt differently.

In decoupled heuristics, two types of robots are sepa-
rately scheduled. In coupled append or insertion, tasks are
scheduled iteratively one by one. As of matching, mul-
tiple tasks are scheduled iteratively. Except the coupled
insertion heuristic, other heuristics do not change the

Fig. 2 Block sequence graph for a feasible task sequence in Example
1. Transport robot subtask orders are represented as horizontal red
arcs, and pick robot subtask orders are represented as vertical green
arcs. Gray rectangles are blocks. The union of arcs should be acyclic

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 5 of 13

Table 1 A summary of constructive heuristics for the TPS problem

Heuristics Wether two robot types are
scheduled simultaneously

Discrete operations Subtasks scheduled in each
iteration

Whether previous estab-
lished partial task sched-
ule is changed

Decoupled, Greedy no append one no

Decoupled, Bipartite
Matching

no matching multiple no

Coupled, Tripartite
Matching

yes matching multiple no

Coupled, Append yes append one no

Coupled, Insertion yes insertion one yes

established partial task schedule. A brief summary of the
proposed constructive heuristics are listed in Table 1.

3.1 Decoupled, greedy heuristic
For the multi-robot system involving two types of robots,
decoupled or hierarchical planning are commonly used in
most previous robotics literature [13, 33, 34]. Decoupled
methods mean that firstly making decisions for one robot
team, and then for the other robot team, with already
decided variables acting as constraints. Using this idea,
decoupled, greedy heuristic is designed as follows. 1) For
each transport robot, find its subtask execution order sep-
arately by solving a traveling salesman problem, with the
minimization of its routing component. This could be
done by using existing traveling salesman problem solvers,
either heuristics or metaheuristics. 2) Given all trans-
port robots’ subtask orders, pick robots’ task scheduling
problem can be regarded as a precedence-constrained task
scheduling problem [35] belonging to the cross-schedule
category in iTax. Pick robots’ subtask orders are con-
structed iteratively by three rules, without violation of
previously established transport robots’ subtask orders.
(a) Free subtask first rule. Only subtasks that have no
precedent subtasks in transport robot orders (i.e., "free"
subtasks in [35]) are released. (b) Busy rule. Pick robots
are not allowed to be idle if they have unfinished free sub-
tasks. (c) Shortest rendezvous time first rule. When more
than one free subtasks are in the work zone, the pick
robot always chooses the subtask that requires minimal
rendezvous time for the transport-pick robot pair. Free
subtasks that have been appended to the pick robot sub-
task orders are removed form unscheduled subtask set.
The free-select-remove process continues until all subtasks
are scheduled.
Formal Analysis:We use an ordinary matrix in Eq. (2) to

analyze the time complexity of all algorithms. The dimen-
sion of an ordinary matrix transformed from a block rank
matrix of Problem 1 is m × nKmax, in which Kmax =
max1≤j≤n

(
max1≤i≤m Kij

)
is the maximum block width.

Then in the worst case each transport robot has at most

nKmax subtasks, and each pick robot has at most mKmax
subtasks.

Proposition 1 The decoupled greedy heuristic termi-
nates in polynomial time.

Proof In step (a), suppose the traveling salesman prob-
lem is solved by the famous Christofides heuristic, which
is an O

(
(nKmax)

3) and 1.5-optimal algorithm. Totally the
time complexity in step 1 is O

(
mn3K3

max
)
. To generate a

complete schedule, the free-select-remove process is run
for |T | ≤ m × nKmax iterations. Note that here |T |
denotes the number of subtasks, rather than the number
of tasks. In each iteration, at mostm subtasks are released
for n pick robots. The total time complexity for step (b)(c)
is simply at most O(mnKmax · mn). Finally, the worst-
case time complexity of the decoupled greedy heuristic
is O

(
mn3K3

max + m2n2Kmax
)
. Then this proposition is

proved.

3.2 Coupled, tripartite matching heuristic

The matching heuristic could generate rank-minimal task
schedules. These rank-minimal schedules are of great
interest because they could generate good task schedule
in which the number of robots in the longest robot-
subtask chain is minimized. The coupled tripartite match-
ing heuristic works as follows. LetG∗ = (RT∪RP∪T ,E∗)
be the complete tripartite graph with the set of trans-
port robots, pick robots and subtasks as three partitioned
vertices. Each edge e ∈ E∗ is assigned with a weight
that equals to the operate time of the subtask, plus the
travel time between the robot’s current vertex and the sub-
task vertex. In the tripartite matching, we consecutively
determine a maximal number of subtasks (i.e., transport-
pick robot pair and mutual subtask) having the same rank
(increasingly from 1 to rmax). In each iteration, at most
max{m, n} subtasks are determined. This is done by solv-
ing the weighted tripartite maximum cardinality match-
ing problem. Using this rule, the rank-minimal schedule

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 6 of 13

is generated, i.e., the greatest value of the rank of the
sequence is minimal.
In each iteration, based on how to determine the tripar-

tite matching, different objectives may be used and thus
many variants exist.We use the dynamic partial makespan
as objective function, as Eq. (3) shows. The main idea of
MINDYMAX is to choose robots and subtasks with mini-
mal partial makespan in each iteration with all scheduled
and chosen subtasks considered.

MINDYMAX : min max
i,j,k∈M

(
haijk + τijk

)
,

i = 1, 2, · · · ,m, j = 1, 2, · · · n, k = 1, 2, · · ·Kmax
(3)

Formal Analysis: It is well-known that solving a tri-
partite matching problem is generally NP-hard, so this
heuristic may run infinitely based on the problem struc-
ture. However, as we do not need to solve the tripartite
matching on complete tripartite graphs, the matching can
be solved optimally in reasonable time. Meanwhile, as
more and more subtasks are scheduled, the size of the
tripartite matching problem decreases. As is shown in
the latter empirical study, the coupled tripartite matching
could generate task schedules in half minute.

3.3 Decoupled, bipartite matching heuristic
The decoupled, bipartite matching heuristic combines
the main idea of two previous heuristics: making deci-
sions for two types of robots separately; and obtaining a
rank-minimal task schedule by matching. The first step
is the same as step (a) in the decoupled, greedy heuris-
tic. Because transport robots’ subtask execution orders
are pre-determined and do not change during scheduling,
in each iteration we solve a bipartite maximum cardinal-
ity matching problem and at most max{m, n} subtasks are
determined.
Formal Analysis: The algorithmic properties of the

decoupled bipartite matching heuristic is summarized as
follows.

Proposition 2 Thedecoupled, bipartite matching heuris-
tic terminates in polynomial time.

Proof In the first step, the time complexity is
O((nKmax)3) as is shown in the proof of Proposition
1. The decoupled, bipartite matching heuristic ter-
minates in at most 2d − 1 iterations [36], in which
d = max{mKmax, n}. The matching process is exe-
cuted at most 2d − 1 times. The bipartite matching
can be determined by the famous Hungarian algorithm,
and its time complexity is O((max{m, n} · Kmax)3).
Then the overall worst-case time complexity is
O(n3K3

max + 2max{mKmax, n} · (max{m, n} · Kmax)3). The
proof is completed.

3.4 Coupled, append heuristic
In the coupled append heuristic, new subtasks are
selected, scheduled and appended to the partial task
schedule iteratively. Starting from an empty schedule,
subtasks with the minimal start time of all unsched-
uled subtasks are appended. When multiple subtasks are
available, the following three priority dispatching rules
can be used as tie-breakers: STD (shortest time differ-
ence between transport-pick robot pair), SPT (short-
est operate/processing time), and LPT (longest oper-
ate/processing time). Among these rules, SPT and LPT
are commonly seen in shop scheduling, and STD is
designed specifically for the TPS problem. As the append
heuristic is easy to realize, all these rules can be used
simultaneously and the best schedule is chosen. For the
partial schedule, the makespan objective is computed
exactly by the maximum of completion times of all sched-
uled subtasks.
Formal Analysis:The following proposition summarizes

the time complexity of the coupled, append heuristic.

Proposition 3 The coupled append heuristic terminates
in polynomial time.

Proof To generate a complete schedule, the append
operation is run for |T | ≤ m × nKmax iterations. In
the p-th iteration, one subtask should be chosen from
|T − p| by a particular sorting algorithm. Generally time
complexity of the sorting algorithm for |T − p| elements
can be estimated as O((|T | − p)log(|T | − p)). To sum
up, the total worst-case time complexity for the coupled,
append heuristic is O(m2n2K2

maxlog(mnKmax)). Then this
proposition is proved.

3.5 Coupled, insertion heuristic

In the coupled insertion heuristic, for the p-th iteration,
subtasks are successively inserted into a partial sequence
Sp according to a certain order, with all previous prece-
dence relations preserved. To determine which subtask
to be inserted, an insertion order can be determined
by priority dispatching rules, or simply using previous
heuristics. The makespan objective of a partial schedule
is estimated by the maximum of the completion times of
scheduled subtasks. For subtask tijk , let vi and uj be the
numbers of scheduled subtasks of the transport robot RT

i
and the pick robot RP

j respectively. To insert the subtask
tijk into Sp, (vi+1)(uj+1) possibilities exist. However, not
every insertion leads to a feasible block sequence graph,
because the sequence property has to be satisfied. The fol-
lowing three cases with inserting operations can lead to
feasible solutions:

C1 Let sijk = 1, i.e., choose tijk as the first subtask for
both transport robot RT

i and pick robot RP
j .

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 7 of 13

C2 Let sijk = b + 1, where entry b occurs in the i -th row
block or in the j -th column block of block rank
matrix Sp, i.e., subtask tijk is a direct successor of one
of scheduled subtasks of transport robot RT

i or pick
robot RP

j .
C3 If there exist a pair of subtasks tipq and trjs such that

there does not exist any path between them in the
current partial block sequence graph:

- If ripq ≤ rrjs, set sijk = rrjs + 1 and
ripq = rrjs + 2, i.e., subtask tijk is chosen as the
direct successor of subtask trjs and as the
direct predecessor of tipq.

- If ripq ≥ rrjs, set sijk = ripq + 1 and
rrjs = ripq + 2, i.e., subtask tijk is chosen as the
direct successor of subtask tipq and as the
direct predecessor of trjs.

- If ripq = rrjs, both two previous rules should be
used.

In all three cases, the ranks of all successors of the inserted
subtask should be updated.
Formal Analysis: Cases C1-C3 are the only cases that

can lead to feasible sequence graph when inserting oper-
ations. The correctness and completeness of the coupled
insertion heuristic are stated as the following two propo-
sitions.

Proposition 4 Cases C1-C3 generate all feasible
sequences with the new subtask added to the current
partial sequence.

Proof The proof is similar to the proof of insertion oper-
ation for open shop problems in [22, 37]. Let SR(i) and
SC(j) be the set of subtasks in row block i and column
block j respectively, i.e., SR(i) = {sijk |sijk ∈ S}, SC(j) =
{sijk |sijk ∈ S}. If we have a sequence on partial subtask set
S, then we can surly construct a sequence on set S ∪ {sijk}.
Altogether we have (1 + |SR(i)|)(1 + |SC(j)|) possibili-
ties to include sijk in the new sequence. Now we have to
eliminate all cyclic cases. The number of these cases is
|SR(i)||SC(j)|−|A1∪A2|, which means the number of new
feasible sequences is:

(1 + |SR(i)|)(1 + |SC(j)|) − |SR(i)||SC(j)| + |A1 ∪ A2|
= 1 + |SR(i)| + |SC(j)| + |A1| + |A2| − |A1 ∩ A2|. (4)

For all three cases, the number of new constructed
sequences is:

1 + |R ∪ C| + |A1| + |A2|
= (1 + |R|)(1 + |C|) − |R ∩ C| + |A1| + |A2|
= 1 + |SR(i)| + |SC(j)| + |A1| + |A2| − |A1 ∩ A2|. (5)

With Eqs. (4) and (5) this proposition is proved.

Proposition 5 The coupled, insertion heuristic enumer-
ates all feasible sequences completely.

Proof This proposition is obvious. From an empty
task sequence, in each iteration, all feasible partial task
sequences are preserved. When all subtasks are inserted,
all feasible sequences are recorded.

The following proposition shows the time complexity of
the coupled, insertion heuristic.

Proposition 6 The coupled, insertion heuristic termi-
nates in polynomial time.

Proof The insertion operation is executed for |T | ≤
mnKmax times. Nowwe analyze the time complexity when
inserting subtask tijk into a partial block rank matrix Sp in
the p-th iteration. To update all successors of a changed
subtask’s rank in Sp+1 with maximal rank rmax

p+1 , breadth-
first search should be used to analyze all its successors,
and its time complexity is O(Vp + Ep), in which Vp and
Ep are the vertex set and the edge set of the partial block
sequence graph Sp. To obtain feasible block rank matrices
with subtask tijk included in the partial block rank matrix,
C1 and C2 generate (1 + vi + uj) new block rank matri-
ces, and the time complexity is O((1+ vi + uj)(Vp + Ep)).
In C3, to obtain a list of disconnected subtasks, for each
of (vi + uj) subtasks, breadth-first search should be used
to analyze both its successors and predecessors, and the
total time complexity is O(2(vi + uj)(Vp + Ep)). At most
(vi + uj)2 disconnected subtask pair can be obtained. for
each of them, to update all successors of changed sub-
task’s rank in Sp+1 with maximal rank rmax

p+1 , the time
complexity is O((vi + uj)3(Vp + Ep)). Totally for C1 to
C3, the worst-case time complexity is approximated as
O((vi + uj)3(Vp + Ep)). For at most (vi + 1)(uj + 1) new
feasible sequences, to evaluate their partial makespan, the
time complexity isO((vi+1)(uj+1)mnKmax). Finally in the
p-th iteration, the worst-case time complexity is approxi-
mated asO((vi +uj)3(Vp +Ep)+ (vi +1)(uj +1)mnKmax).
As the insertion operation proceeds, vi → mKmax,uj →
nKmax,Vp → mnKmax,Ep → m2n2K2

max. Then the
previous time complexity can be rewritten as O((m +
n)3m2n2K5

max) with lower order polynomials neglected.
Totally, in the worst case, the whole coupled insertion
heuristic will costO

(
(m + n)3m3n3K5

max
)
time. The proof

is completed.

The following conclusions can be drawn from previous
theoretical analysis. For the coupled insertion heuristic,
its computation time is highly dependent on the number
of scheduled subtasks in the partial task schedule. In
order to guarantee non-redundancy and feasibility of new

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 8 of 13

partial sequences, complex pre-processing subroutines
are required. Generation of new feasible sequences are the
most time-consuming subroutine. As more andmore sub-
tasks are scheduled, the computation time for inserting
new subtasks grows notably.

4 Performance evaluation
To evaluate the performance of these heuristics, we
present computational results obtained from our
MATLAB-based simulation platform. Algorithms are run
on a 2.9 GHz AMD Ryzen 7-4800H PC with 16 GB RAM.
The attached also video shows the simulation platform
and how the heterogeneous robotic order fulfillment
system works.

4.1 Dataset design
For TPS problems, a comprehensive, discriminative and
balanced evaluation is extremely challenging: a complete
enumeration of all problem constituents, including envi-
ronment maps, robot kinematics, numbers of two robot
types, start locations, subtask distributions, number of
subtasks in one task, number of subtasks in each zone,
operate times, routing-scheduling ratio, and zoning strat-
egy is unrealistic. Pragmatically, we concentrate on the
most concerned constituents, i.e., robot heterogeneity,
multi-station order fulfillment tasks, and simplify other
less concerned constituents. Table 2 shows instance types
in our dataset. Generally, an instance can be described as
m-n-p-α, i.e., transport robot number, pick robot number,
subtask number, and temporal-spatial ratio. For each type,
we randomly generate 50 instances, and 1800 instances in
total. Generation of instances are explained as follows.

4.1.1 Environment
All instances are generated on the same warehouse envi-
ronment as Fig. 3 shows. In this warehouse (dimension
52m × 39m), 36 racks (dimension 10m × 1m) are
arranged into a 9 × 4 array, thus generating 8 × 4 = 32
array of aisles for pick robots. These aisles can be divided
equally into n work zones and allocated to pick robots.
The aisle width is set to 3m, a minimal number to allow
robots go through when two robots occupying opposite
stations, yet not causing waste of space. The width of
cross-aisles and hall area all are 2m, a minimal number
to allow robots to move in two directions. Pickup loca-
tions are adjacent to racks. Delivery locations are placed

in the periphery. This map is adequate for us to gen-
erate miscellaneous instance types with different zoning
strategies.

4.1.2 Robots
We assume a holonomic disc robot model with unit speed
1 m/s. As is shown in Fig. 4, to avoid collisions when one
robot goes to a vertex where the other robot departs from,
the diameter of the robot should be less than ≤

√
2
2 m. All

robot share the same kinematics, and they are discrimi-
nated only by their task roles. In each discrete time step, a
robot performs an action in the action set {↑,↓,←,→,�},
i.e., move up, down, left, right, and stay still. Transport
robots randomly start from delivery stations, and all pick
robots start from fixed initial stations. Transport robot
numbers are among 5,10,15,20,25,30. Pick robot num-
bers are among 8,16,32, with zoning strategies of 2×2
aisles,1×2 aisles,1×1 aisle respectively.

4.1.3 Tasks
In one task, we fix the number of subtasks as 10, a mod-
erate task size. Comparatively in open shop scheduling
problems, number of operations in each job is themachine
number. However, we cannot use this rule because real-
istic order fulfillment tasks are surely not related to pick
robots. We also notice that random numbers (e.g., uni-
form distributionU(5, 15)) are better, however, this would
make it difficult to control instances, because we have
allowed subtasks to be located randomly in any work
zones. In other words, we stress randomnessmore on sub-
task spatial distributions rather than number of subtasks
in one task.We have tomake these compromises although
the introduced heuristics can handle any circumstances.
In one task, pickup subtasks are randomly located in
pickup stations. Delivery subtasks are randomly located
in delivery stations. For small (α = S) and large (α = L)
temporal-spatial ratios, the operate time is generated sub-
jecting to uniform distributions U(10, 20) and U(10, 50)
respectively. Each task contains a pre-optimized sub-
task execution order with minimized routing components
obtained by an optimal traveling salesman problem solver.
Note that for instances with different pick robot num-
bers, we generate the same tasks, so that we can explore
relations between the overall system performance and
different transport-pick robot number combinations. In
other words, totally 600 tasks are generated.

Table 2 Instance Types

Transport Robot Numberm 5,10,15,20,15,30

Pick Robot Number n 8(2×2),16(1×2),32(1×1)

Subtask Number p 50,100,150,200,250,300

Temporal-spatial Ratio α S,L

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 9 of 13

Fig. 3 The warehouse environment in our instance design and instance 30-32-300-S/L. Black bars are racks, gray squares are pickup and delivery
stations. In this instance, 30 transport robots (colored disk robots located in peripheral delivery locations) and 32 pick robots (white disk robots
located in aisles) collaborate to execute 30 tasks composed of 300 subtasks (colored crosses in pickup stations)

4.2 Methods
The proposed constructive heuristics are abbreviated as
follows:

• DG: Decoupled heuristic.
• CM: Coupled, tripartite matching heuristic.
• DM: Decoupled, bipartite matching heuristic.
• CA: Coupled, append heuristic.
• CI : Coupled, insertion heuristic, with insertion order

generated by append heuristic.

In practice, actual travel time between two different
subtask stations can be estimated by naive multiplicative
robustification, i.e., multiply the ideal travel time by a fac-
tor larger than 1. Here we simply use the ideal travel time,
obtained by the ideal geodesic distance between them
with obstacles considered, divided by unit speed. This is
feasible, because the ideal task schedule can always be
scaled by the same factor and transformed to the task

schedule when multiplicative robustifucation is used. For
each heuristic on each instance, we record its normalized
performance ratio and computation time. The normal-
ized performance ratio obtained by a certain heuristic * is
computed by Cmax(∗)/LB.

4.3 Results and analysis
First of all, for append heuristic and different priority dis-
patching rules, we count how many times a rule generate
best value, as Table 3 shows. For instances with n = 8,
STD works best; in contrast for n = 16, 32, LPT works
best. This is because for smaller pick robot numbers, both
pick robots’ and transport robots’ routing components
are dominant, and STD rule could reduce the time dif-
ference that is required for the transport-pick robot pair
rendezvous. For larger pick robot numbers, pick robots’
work zones are getting smaller, and their routing compo-
nent are less influential. In latter result analysis, we only

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 10 of 13

Fig. 4 The disc robot model

choose append heuristic whose priority dispatching rule
generate the best value as a representative. For n = 8, we
choose STD, and for n = 16, 32, we choose LPT.

4.3.1 Optimality
Figure 5 shows the normalized performance ratio on dif-
ferent instance types. First, DG and DM generate similar
results with largest performance ratio, largely because
of their restrictions on problem search space. CM per-
forms better than DG and DM, except for instances with
n = 32, p = 50, 100, 150 in m-32-p-S instance types and
n = 32, p = 50, 100 in m-32-p-L instance types. This
is because with few subtasks, few transport robots and
more pick robots, transport robots’ routing components
dominate the overall optimization process. In DG and
DM these components are firstly minimized. For all other
cases, routing and scheduling components of both robot
types contribute equally to the overall optimization. The
normalized performance ratio forCA andCI closely inter-
twine and outperform all the other heuristics regardless of
problem types.

Specifically, the performance gap between coupled CM,
CA, CI and decoupled DG, DM are more obvious on
instances with relatively few pick robots (n = 8, 16), as
pick robots’ work zones are larger, and its routing sub-
problems are more influential. As more pick robots are
used, work zones become smaller, and their routing com-
ponents have a less influence on the whole problem.
Extremely speaking, there is a tendency for pick robots to
be stationary rather than mobile.

4.3.2 Computation time

We only report computation times for instances with
α = S (results for instances with α = L are simi-
lar), as Table 4 shows. Computation times for DG, DM,
and CA increase polynomially with lower-degree. For CI,
computation times increase tremendously. It is observed
that in the insertion process, as more subtasks are sched-
uled, more computation time is also required. For DG,
DM,CM, and CA, with large pick robot numbers, more
computation time is required. Oppositely for CI, with
small pick robot numbers, more computation time is
required. This is because in these instances, pick robots’
work zones are larger and they have to fulfill more sub-
tasks. The number of scheduled subtasks of pick robots
grows more rapidly than the other instances. Although
both append and insertion heuristics generate similar
results, append is more desirable because it is simple to
use and fast to compute.

4.3.3 Overall system performance and robot numbers

As we generate the same tasks for different pick robot
numbers, we can analysis the relationship between the
overall system performance and robot numbers. Take
optimality results obtained by append heuristic for exam-
ple. Adding more pick robots (from n = 8 to n = 16
and from n = 16 to n = 32) will definitely improve
the system performance, however, the averaged improve-
ment per pick robot will become less obvious as pick robot
number increases. This is subject to the law of dimin-
ishing marginal utility [38] in economics. Practitioners
can use this phenomenon to balance balance total cost

Table 3 Best Value Frequencies for Priority Dispatching Rules

Instance Types STDa SPTb LPTc

m-8-p-S 114 113 97

m-8-p-L 113 110 105

m-16-p-S 109 105 116

m-16-p-L 105 106 119

m-32-p-S 105 115 122

m-32-p-L 107 118 139
aSTD shortest time difference
bSPT shortest processing time
cLPT longest processing time

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 11 of 13

Fig. 5 Average makespans represented by normalized performance ratio (NPR) for different instance types with different subtask numbers

(i.e., numbers of two types of robots) and throughput
requirement.

Remark We notice that the computational results and
performance analysis in this section are surely not

comprehensive enough, because many other problem
constituents are neglected. This is a compromise that we
have to make, because it is impossible to cover all combi-
nations.Meanwhile, currently there is also a lack of bench-
marks. Nevertheless, the coupled append heuristic can

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 12 of 13

Table 4 Average computation times for different instance types (Seconds)

n m p DG a CMb DMc CAd CIe

32 5 50 0.00±0.01 0.38±0.05 0.15±0.02 0.92±0.11 14.40±1.67

10 100 0.01±0.01 0.84±0.15 0.26±0.02 3.62±0.15 90.47±5.29

15 150 0.03±0.01 1.83±0.59 0.34±0.03 7.99±0.25 274.90±10.65

20 200 0.04±0.01 4.02±1.56 0.46±0.03 14.25±0.38 616.39±17.60

25 250 0.06±0.01 9.20±4.14 0.56±0.03 22.45±0.61 1177.70±32.67

30 300 0.09±0.01 30.37±12.21 0.70±0.06 32.05±1.09 1969.67±56.71

16 5 50 0.00±0.01 0.42±0.23 0.17±0.03 0.93±0.05 21.38±2.23

10 100 0.02±0.01 0.86±0.10 0.28±0.03 3.47±0.10 140.93±8.92

15 150 0.04±0.01 2.23±0.66 0.39±0.02 7.68±0.17 452.75±15.48

20 200 0.07±0.01 6.96±2.29 0.55±0.03 14.14±0.49 1051.54±32.64

25 250 0.11±0.01 13.12±5.04 0.71±0.04 21.83±0.62 1981.15±60.23

30 300 0.17±0.03 18.29±4.95 1.02±0.13 33.24±2.13 3182.64±185.48

8 5 50 0.01±0.01 0.37±0.03 0.18±0.02 0.85±0.02 30.01±2.53

10 100 0.04±0.01 0.99±0.10 0.33±0.02 3.41±0.07 230.49±8.99

15 150 0.07±0.01 2.30±0.26 0.51±0.03 7.55±0.15 715.21±28.22

20 200 0.12±0.01 4.72±0.87 0.76±0.03 13.35±0.25 1658.60±96.34

25 250 0.18±0.01 8.24±1.67 0.98±0.04 20.87±0.41 3243.24±431.47

30 300 0.25±0.01 13.69±3.27 1.29±0.05 29.15±0.84 6086.59±1854.28

aDG decoupled, greedy
bCM coupled, matching
cDM decoupled, matching
dCA coupled, append
eCI coupled, insertion

always be recommended for all circumstances, because of
its superior optimality, and lower time complexity order.
It is simple to realize, and previous partial task schedules
are unchanged.

5 Conclusions and future work
In this work, we conduct a comparative study on con-
structive heuristics using different principles for the TPS
problem. Theoretically we provide formal analysis of these
heuristics. Empirically, we draw the following conclu-
sions from computational results. 1) Append heuristic is
highly recommended for the TPS problem, with better
performance inmost cases, and within reasonable compu-
tation time. 2) Specifically, coupled heuristics work better
on instances with relatively few pick robots and large
work zones. 3) On the overall system performance and
robot numbers, the law of diminishing marginal utility is
observed.
There are many possibilities for future work. On

task scheduling, we merely present several fundamental
heuristics, in fact, more combined heuristics and meta-
heuristics methods could also be used. Our research
methodology is essentially empirical, and there is urgent
requirements on developing polynomial approximate
methods with bounded suboptimality. More realistic con-
straints could also be considered, such as task release
times and due times, robots’ energy constraints, robot fail-
ure. Meanwhile, online scheduling with unknown operate

times and uncertain travel times is also paramount. On
task execution, to enable effective and robust execution of
planned task schedules, developing simultaneous task and
path planning algorithms is necessary. On heterogeneous
robotic order fulfillment systems, future workmay include
decision-making in strategic level, tactic level and oper-
ational level, including general principles on system and
layout design, numbers of two types of robots, long-term
system performance with time-changing workload.

Authors’ contributions
All authors contributed to the study conception and design. Material
preparation, coding, data collection and analysis were performed by Hanfu
Wang. The first draft of the manuscript was written by Hanfu Wang and all
authors commented on previous versions of the manuscript. Both authors
read and approved the final manuscript.

Funding
This work is supported by the National Natural Science Foundation of China
(Grant U1813206), the National Key R&D Program of China (Grant
2020YFC2007500) and the Science and Technology Commission of Shanghai
Municipality (Grant 20DZ2220400).

Availability of data andmaterials
Not applicable.

Code availability
Not applicable.

Declarations

Competing interests
The authors declared that they have no competing interests.

Wang and Chen Autonomous Intelligent Systems (2021) 1:17 Page 13 of 13

Author details
1Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai
200240, China. 2Department of Automation, Shanghai Jiao Tong University,
Shanghai 200240, China. 3Key Laboratory of System Control and Information
Processing, Ministry of Education, Department of Automation, Shanghai Jiao
Tong University, Shanghai 200240, China.

Received: 12 August 2021 Accepted: 24 November 2021

References
1. H. Wang, W. Chen, J. Wang, Coupled task scheduling for heterogeneous

multi-robot system of two robot types performing complex-schedule
order fulfillment tasks. Robot. Auton. Syst. 131(2), 103560 (2020). https://
doi.org/10.1016/j.robot.2020.103560

2. G. A. Korsah, A. Stentz, M. B. Dias, A comprehensive taxonomy for
multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013).
https://doi.org/10.1177/0278364913496484

3. E. Nunes, M. Manner, H. Mitiche, M. Gini, A taxonomy for task allocation
problems with temporal and ordering constraints. Robot. Auton. Syst. 90,
55–70 (2017). https://doi.org/10.1016/j.robot.2016.10.008

4. B. P. Gerkey, M. J. Matarić, A formal analysis and taxonomy of task
allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004).
https://doi.org/10.1177/0278364904045564

5. Y. Zhang, L. E. Parker, in Proceedings - IEEE International Conference on
Robotics and Automation. Multi-robot task scheduling (IEEE, 2013),
pp. 2992–2998. https://doi.org/10.1109/ICRA.2013.6630992

6. M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, A. J. Kleywegt, in
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Simple auctions with performance guarantees for multi-robot task
allocation, vol. 1, (2004), pp. 698–705. https://doi.org/10.1109/iros.2004.
1389434

7. Z. Liu, H. Wang, W. Chen, J. Yu, J. Chen, An incidental delivery based
method for resolving multirobot pairwised transportation problems. IEEE
Trans. Intell. Transp. Syst. 17(7), 1852–1866 (2016). https://doi.org/10.
1109/TITS.2015.2508783

8. O. Thakoor, J. Garg, R. Nagi, Multiagent UAV routing: a game theory
analysis with tight price of anarchy bounds. IEEE Trans. Autom. Sci. Eng.
17(1), 100–116 (2020). https://doi.org/10.1109/TASE.2019.2902360

9. M. Bernardine Dias, R. Zlot, N. Kalra, A. Stentz, Market-based multirobot
coordination: A survey and analysis. Proc. IEEE. 94(7), 1257–1270 (2006).
https://doi.org/10.1109/JPROC.2006.876939

10. H. Wang, M. Rubenstein, Shape Formation in Homogeneous Swarms
Using Local Task Swapping. IEEE Trans. Robot. (2020). https://doi.org/10.
1109/TRO.2020.2967656

11. M. C. Gombolay, R. J. Wilcox, J. A. Shah, Fast scheduling of robot teams
performing tasks with temporospatial constraints. IEEE Trans. Reliab.
34(1), 220–239 (2018). https://doi.org/10.1109/TRO.2018.2795034

12. L. Garattoni, M. Birattari, Autonomous task sequencing in a robot swarm.
Sci. Robot. 3(20), 0430 (2018). https://doi.org/10.1126/scirobotics.aat0430

13. E. G. Jones, M. B. Dias, A. Stentz, Time-extended multi-robot coordination
for domains with intra-path constraints. Auton. Robot. 30(1), 41–56
(2011). https://doi.org/10.1007/s10514-010-9202-3

14. E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, A. Subramanian, New
benchmark instances for the capacitated vehicle routing problem. Eur. J.
Oper. Res. 257(3), 845–858 (2017). https://doi.org/10.1016/j.ejor.2016.08.
012

15. M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Fifth Edition.
(Springer, 2016), pp. 1–670. https://doi.org/10.1007/978-3-319-26580-3

16. I. Chernykh, A. Kononov, S. Sevastyanov, Efficient approximation
algorithms for the routing open shop problem. Comput. Oper. Res. 40(3),
841–847 (2013). https://doi.org/10.1016/j.cor.2012.01.006

17. L. R. Abreu, J. O. Cunha, B. A. Prata, J. M. Framinan, A genetic algorithm for
scheduling open shops with sequence-dependent setup times. Comput.
Oper. Res. 113 (2020). https://doi.org/10.1016/j.cor.2019.104793

18. G. Mejía, F. Yuraszeck, A self-tuning variable neighborhood search
algorithm and an effective decoding scheme for open shop scheduling
problems with travel/setup times. Eur. J. Oper. Res. 285(2), 484–496
(2020). https://doi.org/10.1016/j.ejor.2020.02.010

19. E. Anand, R. Panneerselvam, Literature review of open shop scheduling
problems. Intell. Inf. Manag. 7(1), 33–52 (2015). https://doi.org/10.4236/
iim.2015.71004

20. H. Bräsel, H. Hennes, On the open-shop problem with preemption and
minimizing the average completion time. Eur. J. Oper. Res. 157(3),
607–619 (2004). https://doi.org/10.1016/S0377-2217(03)00249-2

21. I. Averbakh, O. Berman, I. Chernykh, The routing open-shop problem on a
network: Complexity and approximation. Eur. J. Oper. Res. 173(2),
531–539 (2006). https://doi.org/10.1016/j.ejor.2005.01.034

22. H. Bräsel, A. Herms, M. Mörig, T. Tautenhahn, J. Tusch, F. Werner, Heuristic
constructive algorithms for open shop scheduling to minimize mean
flow time. Eur. J. Oper. Res. 189(3), 856–870 (2008). https://doi.org/10.
1016/j.ejor.2007.02.057

23. M. Andresen, H. Bräsel, M. Mörig, J. Tusch, F. Werner, P. Willenius,
Simulated annealing and genetic algorithms for minimizing mean flow
time in an open shop. Math. Comput. Model. 48(7-8), 1279–1293 (2008).
https://doi.org/10.1016/j.mcm.2008.01.002

24. C. Low, Y. Yeh, Genetic algorithm-based heuristics for an open shop
scheduling problem with setup, processing, and removal times
separated. Robotics and Computer-Integrated Manufacturing. 25(2),
314–322 (2009). https://doi.org/10.1016/j.rcim.2007.07.017

25. H. Wang, W. Chen, J. Wang, Heterogeneous multi-agent routing strategy
for robot-and-picker-to-good order fulfillment system. Adv. Intell. Syst.
Comput. 867, 237–249 (2019). https://doi.org/10.1007/978-3-030-01370-
7_19

26. A. Scholz, D. Schubert, G. Wäscher, Order picking with multiple pickers
and due dates – Simultaneous solution of Order Batching, Batch
Assignment and Sequencing, and Picker Routing Problems. Eur. J. Oper.
Res. 263(2), 461–478 (2017). https://doi.org/10.1016/j.ejor.2017.04.038

27. B. Naderi, S. M. T. Fatemi Ghomi, M. Aminnayeri, M. Zandieh, A
contribution and new heuristics for open shop scheduling. Comput.
Oper. Res. 37(1), 213–221 (2010). https://doi.org/10.1016/j.cor.2009.04.010

28. H. Bräsel, T. Tautenhahn, F. Werner, Constructive heuristic algorithms for
the open shop problem. Computing. 51(2), 95–110 (1993). https://doi.
org/10.1007/BF02243845

29. H. Bräsel, M. Harborth, T. Tautenhahn, P. Willenius, On the set of solutions
of the open shop problem. Ann. Oper. Res. 92, 241–263 (1999). https://
doi.org/10.1023/A:1018938915709

30. H. Bräsel, in Perspectives on Operations Research. Matrices in Shop
Scheduling Problems (DUV, 2007), pp. 17–41. https://doi.org/10.1007/
978-3-8350-9064-4_2

31. H. Bräsel, M. Kleinau, in SystemModelling and Optimization. On number
problems for the open shop problem (Springer, 2007), pp. 145–154.
https://doi.org/10.1007/bfb0113281

32. W. Yu, Z. Liu, L. Wang, T. Fan, Routing open shop and flow shop
scheduling problems. Eur. J. Oper. Res. 213(1), 24–36 (2011). https://doi.
org/10.1016/j.ejor.2011.02.028

33. N. Mathew, S. L. Smith, S. L. Waslander, Planning paths for package
delivery in heterogeneous multirobot teams. IEEE Trans. Autom. Sci. Eng.
12(4), 1298–1308 (2015). https://doi.org/10.1109/TASE.2015.2461213

34. N. Kamra, T. K. S. Kumar, N. Ayanian, Combinatorial problems in
multirobot battery exchange systems. IEEE Trans. Autom. Sci. Eng. 15(2),
852–862 (2018). https://doi.org/10.1109/TASE.2017.2767379

35. M. McIntire, E. Nunes, M. Gini, in Proceedings of the International Joint
Conference on Autonomous Agents andMultiagent Systems, AAMAS (AAMAS
’16). Iterated multi-robot auctions for precedence-constrained task
scheduling (International Foundation for Autonomous Agents and
Multiagent Systems, Richland, 2016), pp. 1078–1086. http://dl.acm.org/
citation.cfm?id=2936924.2937082

36. C. Guéret, C. Prins, Classical and new heuristics for the open-shop
problem: A computational evaluation. Eur. J. Oper. Res. 107(2), 306–314
(1998). https://doi.org/10.1016/S0377-2217(97)00332-9

37. H. Bräsel, M. Kleinau, On the number of feasible schedules of the open-
shop-problem—an application of special latin rectangles. Optimization.
23(3), 251–260 (1992). https://doi.org/10.1080/02331939208843762

38. P. Samuelson, W. Nordhaus, Economics, McGraw-Hill Education; 19th
edition (April 8, 2009), (2010)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1016/j.robot.2020.103560
https://doi.org/10.1016/j.robot.2020.103560
https://doi.org/10.1177/0278364913496484
https://doi.org/10.1016/j.robot.2016.10.008
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1109/ICRA.2013.6630992
https://doi.org/10.1109/iros.2004.1389434
https://doi.org/10.1109/iros.2004.1389434
https://doi.org/10.1109/TITS.2015.2508783
https://doi.org/10.1109/TITS.2015.2508783
https://doi.org/10.1109/TASE.2019.2902360
https://doi.org/10.1109/JPROC.2006.876939
https://doi.org/10.1109/TRO.2020.2967656
https://doi.org/10.1109/TRO.2020.2967656
https://doi.org/10.1109/TRO.2018.2795034
https://doi.org/10.1126/scirobotics.aat0430
https://doi.org/10.1007/s10514-010-9202-3
https://doi.org/10.1016/j.ejor.2016.08.012
https://doi.org/10.1016/j.ejor.2016.08.012
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1016/j.cor.2012.01.006
https://doi.org/10.1016/j.cor.2019.104793
https://doi.org/10.1016/j.ejor.2020.02.010
https://doi.org/10.4236/iim.2015.71004
https://doi.org/10.4236/iim.2015.71004
https://doi.org/10.1016/S0377-2217(03)00249-2
https://doi.org/10.1016/j.ejor.2005.01.034
https://doi.org/10.1016/j.ejor.2007.02.057
https://doi.org/10.1016/j.ejor.2007.02.057
https://doi.org/10.1016/j.mcm.2008.01.002
https://doi.org/10.1016/j.rcim.2007.07.017
https://doi.org/10.1007/978-3-030-01370-7_19
https://doi.org/10.1007/978-3-030-01370-7_19
https://doi.org/10.1016/j.ejor.2017.04.038
https://doi.org/10.1016/j.cor.2009.04.010
https://doi.org/10.1007/BF02243845
https://doi.org/10.1007/BF02243845
https://doi.org/10.1023/A:1018938915709
https://doi.org/10.1023/A:1018938915709
https://doi.org/10.1007/978-3-8350-9064-4_2
https://doi.org/10.1007/978-3-8350-9064-4_2
https://doi.org/10.1007/bfb0113281
https://doi.org/10.1016/j.ejor.2011.02.028
https://doi.org/10.1016/j.ejor.2011.02.028
https://doi.org/10.1109/TASE.2015.2461213
https://doi.org/10.1109/TASE.2017.2767379
http://dl.acm.org/citation.cfm?id=2936924.2937082
http://dl.acm.org/citation.cfm?id=2936924.2937082
https://doi.org/10.1016/S0377-2217(97)00332-9
https://doi.org/10.1080/02331939208843762

	Abstract
	Keywords

	Introduction
	Problem definition
	Problem formulation
	Sequence models

	Constructive heuristics
	Decoupled, greedy heuristic
	Coupled, tripartite matching heuristic
	Decoupled, bipartite matching heuristic
	Coupled, append heuristic
	Coupled, insertion heuristic

	Performance evaluation
	Dataset design
	Environment
	Robots
	Tasks

	Methods
	Results and analysis
	Optimality
	Computation time
	Overall system performance and robot numbers

	Conclusions and future work
	Authors' contributions
	Funding
	Availability of data and materials
	Code availability
	Competing interests
	Author details
	References
	Publisher's Note

