
Autonomous Intelligent
Systems

Christensen et al. Autonomous Intelligent Systems (2021) 1:11
https://doi.org/10.1007/s43684-021-00010-2

ORIGINAL ARTICLE Open Access

Autonomous vehicles for micro-mobility
Henrik Christensen, David Paz* , Hengyuan Zhang, Dominique Meyer, Hao Xiang, Yunhai Han,
Yuhan Liu, Andrew Liang, Zheng Zhong and Shiqi Tang

Abstract

Autonomous vehicles have been envisioned for more than 100 years. One of the first suggestions was a front cover of
Scientific America back in 1916. Today, it is possible to get cars that drive autonomously for extended distances. We
are also starting to see micro-mobility solutions, such as the Nuro vehicles for pizza delivery. Building autonomous cars
that can operate in urban environments with a diverse set of road-users is far from trivial. Early 2018 the Contextual
Robotics Institute at UC San Diego launched an effort to build a full stack autonomous vehicle for micro-mobility. The
motivations were diverse: i) development of a system for operation in an environment with many pedestrians, ii)
design of a system that does not rely on dense maps (or HD-maps as they are sometimes named), iii) design strategies
to build truly robust systems, and iv) a framework to educate next-generation engineers. In this paper, we present the
research effort of design, prototyping, and evaluation of such a vehicle. From the evaluation, several research directions
are explored to account for shortcomings. Lessons and issues for future work are additionally drawn from this work.

Keywords: Autonomous vehicles, Intelligent systems, Micro-mobility

1 http://www.cs.cmu.edu/\protect\unhbox\voidb@x\penalty\@M\tjochem/
nhaa/Journal.html

1 Introduction
Design of autonomous vehicles is not a new effort. One of
the earliest efforts was led by Dickmanns at the Universi-
taet der Bundeswehr inMunich. Dickmanns developed an
autonomous navigation stack based on computer vision
techniques using the VaMoRs vehicle; early publications
are from 1986 [1] and the project is summarized in [2].
About the same time, the US launched its Autonomous
Land Vehicle (ALV) program as part of the Strategic
Computing Initiative [3]. By 1995, Carnegie Mellon Uni-
versity completed a 2,850 mile trip from Pittsburgh to San
Diego; 98.2% of the trip was driven autonomously1. Sub-
sequently, programs such as the European Prometheus
(1987-1995) and the DARPA Grand Challenge programs
(2004-2007) generated a lot of attention around the tech-
nology, which in turn has provided key people to launch
efforts at Waymo [4], Toyota [5], Zoox [6], Aurora [7], etc.
Although tremendous improvements and state-of-the-art
developments have been introduced in recent years, in

*Correspondence: dpazruiz@ucsd.edu
University of California, San Diego, La Jolla, California 92093, USA

many cases the driving is on major roads and freeways
with limited interaction with other road-users beyond
cars. Today, autonomous navigation at scale and in urban
scenarios largely remains an open challenge.
To quantify the challenges associated with last-mile

autonomous navigation and micromobility, we decided to
deploy a set of vehicles for urban operation. Rather than
trying to build our own vehicles, our team acquired off-
the-shelf vehicles and had them retrofitted for computer
control. Our focus is on the sensor suite, sensor calibra-
tion and fusion, perception with minimal maps, robust
path planning and execution on a standard platform. We
utilize two GEM e6 golf carts. Given that our campus
already has 25+ GEM vehicles, it is a known entity and
easy to service for personnel in the vehicle pool. The cars
were retrofitted for computer operation using a CAN bus
solution and standard Linux software. The retrofit was
performed by AutonomousStuff. For initial experiments,
both the Baidu Apollo system [8] and the Tier IV Auto-
ware system [9] were considered. The Autoware software
stack is based on the ROS-1 and Ubuntu Linux. Most of
the team had ROS experience and as such it was a path of
the least development resistance.

© The Author(s), 2021, corrected publication 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s43684-021-00010-2&domain=pdf
http://orcid.org/0000-0003-0766-6772
http://www.cs.cmu.edu/protect unhbox voidb@x penalty @M {}tjochem/nhaa/Journal.html
http://www.cs.cmu.edu/protect unhbox voidb@x penalty @M {}tjochem/nhaa/Journal.html
mailto: dpazruiz@ucsd.edu
http://creativecommons.org/licenses/by/4.0/

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 2 of 35

Fig. 1 The GEM e6 vehicles and the associated sensor layout

We present a comprehensive description and analysis of
the design, implementation, and evaluation of vehicles for
urban operation. We will provide a more detailed view of
the initial design in Section 2. The main lessons / short-
comings from the deployment are analyzed in Section 3
and various approaches to address these challenges are
presented in Section 4. We outline a number of research
challenges for the future in Section 5.

2 Initial build
In this section, the initial architecture designs are intro-
duced given the requirements from Section 1. These
include a description of the development platforms, soft-
ware containerization, sensing methodologies, as well as
the detection, decision making, and control strategies.
The section concludes with additional details on closed-
loop testing and system verification to ensure real-time
capabilities.

2.1 Systems, sensors, and software tools
The development platforms consist of two six-seat GEM
e6 golf carts (Fig. 1(a)); these were retrofitted with drive-
by-wire (DBW) systems, computing modules, logging
devices, and multiple suites of ranging and vision sensors.
The DBW systems provide each vehicle platform with
two-way communication to execute control commands
while simultaneously providing actuator and motor sta-
tus reports for close-loop control. The interfaces include
steering wheel angle control, angular velocity, braking and
acceleration input, and provide status reports for speed,
DBW enable/disable signal, as well as steering, accel-
erator, and brake states. The instructions delegated to
the DBW system are generated after considering percep-
tion, decision-making, and high-level control commands
which are performed from the main onboard computer:
each primary system consists of an Intel Xeon E3-1275

Processor with 32 GB RAM and an NVIDIA GTX 1080 Ti
GPU. Additional system, logger, and sensor details can be
found in [10].

2.1.1 Sensors
Each vehicle was retrofitted with multiple Mako G319
cameras, Velodyne VLP-16 LiDARs, and Bosch Ultra-
sonic sensors. An overview of each sensor configuration
is shown in Fig. 1(b). Intrinsic calibration was performed
manually for each camera using a standard checkerboard
[11] to determine the projection characteristics between
the camera and image frames. On the other hand, extrin-
sic calibration was performed between each camera-
LiDAR pair by manually identifying correspondences in
the camera and LiDAR frames. Camera-LiDAR calibra-
tion is an essential process to leverage projective geometry
techniques. Additional calibration tools were later devel-
oped as described in Section 4.1 to partially automate the
extensive calibration process.

2.1.2 Logging
To facilitate offline data post-processing and analysis, a
data logger was designed for capturing status reports from
each of the vehicles’ actuators, system enable/disable sig-
nals, nominal GPS and ego-vehicle pose updates, and
control inputs. Given that raw sensor data can require
high bandwidth and storage requirements, sensor data is
separately recorded using the ROSBAG file format [12].
The Linux Epoch timestamps are utilized to provide a
reference between the logger and bag file data stored.
This logging device is based on Flask and a RESTful API
that was designed by serializing the reported vehicle sig-
nals over an Ethernet connection; these signals are then
recorded in an SQLite database within a Raspberry Pi
module. The modular design provides a plug-and-play
approach for data logging that is automatically initiated.

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 3 of 35

2.1.3 Software tools and containerization
An important software strategy incorporated into the
design of the system involves software containerization
using Docker. This strategy is motivated by initial chal-
lenges encountered when integrating software packages
and drivers within a single computing platform. Vari-
ous open-source packages and libraries initially utilized
in the design of the algorithms often required dependen-
cies that were incompatible with one another. To address
incompatibility constraints, software packages and related
tools were separated into multiple containers with various
image definitions, as shown in Fig. 2. An additional benefit
of software containerization involves cross-platform com-
patibility, such as different operating systems; this enables
flexible software development across various types of
platforms and was essential during development of our
software.

2.2 The ROS / autoware framework
Designing complex software stacks for autonomous
driving requires design considerations for robust
communication across various hardware, software,
sensor, and actuator components. Given the complexity

of a full-scale vehicle system, abstraction and modularity
become essential design considerations during devel-
opment and verification. To facilitate this process, our
approach for the design of our system leverages the Robot
Operating System (ROS) [12] and Autoware [9]. ROS is
an open-source suite of libraries and tools that enable the
design of various robotic applications and provides com-
munication across various types of software, sensor, and
actuator modules. A particular ROS based framework
that was utilized as part of the foundation of our work is
Autoware. The Autoware package suite includes a collec-
tion of open-source modules that provide certain features
for localization, mapping, perception, and planning.
In this section, we cover the hierarchical design aspects

of our software stack that extend fromAutoware and ROS.
A high-level design diagram of the system is shown in
Fig. 3.

2.2.1 Perception
Perception is a key component within the hierarchical
architecture introduced; it provides the states of poten-
tial obstacles to be able to effectively follow vehicles in
front of the ego-vehicle and prevent collisions in the

Fig. 2 Initial system organization using containerized versions of Autoware and various ROS packages

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 4 of 35

Fig. 3 Hierarchical autonomous driving stack comprised of localization, perception, global planner, motion planner, and control modules

motion planning phase. Our perception module includes
LiDAR based detection and clustering techniques, as well
as camera-LiDAR fusion techniques to provide contextual
information from image representations.
LiDAR Detection and Tracking

Recent developments in learning-based 3D object detec-
tion leverage LiDAR data to regress 3D bounding
boxes for vehicles and pedestrians [13]. Although robust
methodologies have been deployed with real-time char-
acteristics, most of these depend on LiDAR sensors with
higher spatial resolution such as 32-channel or 64-channel
LiDARs. Instead, our approach uses traditional object
clustering for object detection with a 16-channel Velo-
dyne LiDAR that provides 360◦ horizontal field of view
and ±15◦ vertical field of view.
An important consideration while designing this LiDAR

based clustering approach for detection is that relevant
obstacle information may be combined with objects with
minimal interest, such as road surfaces. Therefore, with-
out removing road surface data, it becomes non-trivial
to distinguish obstacles during planning. The approach
utilized in this work for segmenting obstacles from road
surfaces involves ground removal. Autoware leverages this
approach by identifying the LiDAR’s pitch angle, defining
a plane normal to the ground, and eliminating points that
fall below a threshold. However, this approach generates
a high-rate of false detections for regions that are non-
planar, such as steep hills. Therefore, rather than leverag-
ing a single plane fitting methodology, our approach uses

multi-plane definitions to separate ground points from
potential obstacles using the Random Sample Consensus
(RANSAC) algorithm [14]. Figure 4 provides a visualiza-
tion of the approach, and a visualization of the clustering
approach is shown in Fig. 5—where the turquoise point
cloud corresponds to LiDAR points above the ground
and the yellow scans correspond to the ground plane. For
obstacle detection, the LiDAR data that corresponds to
potential obstacles is then clustered based on the relative
distance and nearest neighbors to perform the association
and extract individual objects.
After extracting individual clusters, each object is asso-

ciated across time to reason about an object’s states that
depend on temporal information; this includes velocity
and acceleration. This association is performed using a
Kalman Filter tracker based on each object’s cluster cen-
troid and by keeping track of timestamp information over
time. While this approach works well for tracking smaller
shape objects, variations in performance are observed
for large objects such as large vehicles depending on the
relative orientation and shape characteristics given that
the centroid of each cluster can change. Furthermore,
the performance of LiDAR based detection methods can
depend on the spatial resolution of the sensor and max-
imum perception range. Methods for addressing these
shortcomings are introduced in Section 4.2.
Camera-LiDAR Fusion

While LiDAR sensors can provide range information
with high accuracy for various objects in the scene,

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 5 of 35

Fig. 4 Recursive ground plane filtering from close to far for curved roads. The solid arrows reflects the normal direction of the planes and dash
arrows reflects the initial guess normal

the decision-making process needed to perform complex
maneuvers often requires contextual information such
as object classification and texture information. This is
information that can be readily accessible from image
and learning based methods but becomes non-trivial to
extract from raw LiDAR data. Hence, to further enhance
our LiDAR based detection, we leverage a camera-LiDAR
fusion approach.
To identify representative objects and features in a cam-

era frame from the LiDAR perspective and vice versa,
a calibration process is performed. Calibration seeks to
identify the geometric relationship between two or more
frames of reference. This extrinsic relationship (T ∈
SE(3)) can be captured by matching features in the frames
of interest and solving the Perspective-n-Point problem
(PnP) [15]. The generated camera-LiDAR relationships
can be visualized in Fig. 6, where the relative transforma-
tion between the LiDAR L and a camera Ci corresponds
to CiTL.

Fig. 5 Clusters of points are separated (in turquoise) from the ground
points filtered (in yellow)

To match features between each camera-LiDAR pair, a
visualization toolkit from Autoware was utilized to manu-
ally identify features in the image frame and LiDAR frames
simultaneously.
With these extrinsic properties, a projective geometry

approach can be utilized to project LiDAR clusters gen-
erated by the detection module into image frame. The
relationship between a LiDAR cluster Xj and its corre-
sponding representation in image i in terms of pixels is
given by xj = Ki · CiTL · Xj, where Ki corresponds to
camera i’s intrinsic parameters that describe projection
characteristics. Once the corresponding pixel coordinates
for each cluster are estimated, learning based multi-object
detectors such as YOLOv3 [16] can be used to apply
classification labels as shown in Fig. 7.
The intrinsic parameters for each camera are man-

ually identified using a standard checkerboard calibra-
tion toolkit [11]. Given the extensive calibration pro-
cess required by our approach, techniques for partially
automating this process are explored in Section 4.1.
In the next section, ego-vehicle localization (BTM) is

leveraged to unify static map elements and perception
objects within the same reference frame. Given that the
ego-vehicle’s pose is continuously updating, BTM is a
moving frame. Finally, the map frame M is used to repre-
sent obstacles and perform avoidance maneuvers during
motion planning.

2.2.2 Mapping and localization
Simultaneous localization and mapping (SLAM) is a topic
that has been studied extensively in the robotics com-
munity using vision and LiDAR methods [17, 18]. This
enables route and motion planning strategies that require
the agent’s pose estimate to execute the next action, mak-
ing it a necessary module in an autonomous stack.
Our work utilizes the concepts of Three-Dimensional

Normal Distributions Transform (NDT) [19] for map-
ping and localization. In the mapping process, we perform
a data collection process at the UC San Diego campus
by driving along the routes of interest and recording
LiDAR data. This data is then used to generate dense

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 6 of 35

Fig. 6 Relative transformation from the map frame to the vehicle frame (baselink) BTM , from the vehicle frame to the LiDAR frame LTB , and from the
LiDAR frame to the camera i frame CiTL

point cloud maps using the Point Cloud Library (PCL)
implementation [20] for NDT. A Voxel 3D Grid filter is
additionally applied to downsample the generated point
cloud. A visualization of the downsampled 3D point cloud
generated from the campus is shown in Fig. 8(a); this
map corresponds to approximately 3.9 miles of drivable
road segments and requires 485MB of storage compared
to 2.7GB before downsampling. With this map, NDT is
also applied to localize the ego-vehicle with respect to the
map using LiDAR based scan matching, this can be visu-
alized in Fig. 8(b). This effectively provides continuous
ego-vehicle pose estimates with respect to themap’s origin
(BTM) as discussed in the previous section (Fig. 6).
While understanding the pose of the vehicle over

time is necessary for point-to-point navigation, addi-
tional contextual information is needed for estimating
short term control actions. This includes identifying lane

markings, traffic signals and centerlines for various sce-
narios including intersection navigation and lane follow-
ing. To facilitate this process, our team incorporated
additional map features with respect to the point cloud
map. These annotations are often referred to as Vec-
tor or High-Definition (HD) maps. Similar maps have
been released in various open-source datasets [21, 22]
over the years with extensive manual labels such as park-
ing areas, exact 3D traffic signal locations, lane types,
and sidewalks. In comparison, we simplify maps and
only annotate centerlines, stop lines, crosswalks, and
speed limits as shown in Fig. 9. Despite reducing the
number of features annotated, the manual annotation
and verification process for the UCSD campus took a
week. In Section 3.2.3, we discuss the limitations with
this approach and introduce alternative methodologies in
Section 4.3.

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 7 of 35

Fig. 7 Camera-LiDAR fusion with cluster classification. The bounding boxes on the left column (a and c) provide labels for the LiDAR clusters shown
on the right (b and d) by using projection overlap

2.2.3 Global andmotion planning
By understanding the pose of the robot over time, a global
plan can be generated given a target location and the
predefined road networks introduced in Section 2.2.2.
This plan is represented by sequences of polylines and
describes the trajectories that need to be traversed to
reach the destination of interest. Given that this plan
is defined within the same reference frame as the ego-
vehicle pose, it can be utilized for motion planning and

decision making by considering static map elements, and
pedestrians and vehicles nearby. To facilitate this process,
we employ a modified version of the OpenPlanner [23]
introduced as part of the Autoware stack.
OpenPlanner consists of two core submodules which

include a global planner and a motion planner. In the
global planning phase, an optimal shortest path between
the pose of the vehicle and a destination is calculated
recursively if the endpoints within the road network

Fig. 8 A downsampled point cloud map for campus (a) and localization using scan matching (b)

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 8 of 35

Fig. 9 Vector/High-Definition (HD) maps displayed on top of the point cloud maps for two campus areas. We annotate centerlines, stop lines,
crosswalks and speed limits

graph are connected; this is represented as a trajectory in
Fig. 10(a). Finally, in the motion planner module, traffic
rules and obstacle avoidance strategies are enforced while
the ego-vehicle uses the reference trajectory provided by
the global planner to reach its destination; the Finite State
Machine (FSM) associated with this process is shown in
Fig. 10(b).
To enable robust navigation while enforcing speed lim-

its, following other vehicles, and making planned stops,
various modifications were performed to the Forward,
Follow, and StopSign states. This was a necessary step
to ensure that the ego-vehicle would react independently
of the road conditions and geometry. Initially, the Open-
Planner logic was designed with the assumption that most
roads are planar thus simplifying the physical constraints.
Speed Keeping

While the logic associated with speed keeping is straight-
forward, there are additional considerations performed
within the Forward state of the FSM. This state specifi-
cally considers the vehicle’s current speed, speed limits,
and the DBW enable signal to generate a target speed. The
target speed converges to the speed limit imposed by the

road segment unless there is a maximum speed set for the
entire mission. The logic associated with this rate of con-
vergence is dictated by the acceleration rates aaccel and
adecel, shown in Algorithm 1; these are constants tuned for
comfort in terms of m/s2.
An important design consideration involves target

speed relaxation when the DBW system is disengaged
to prevent windup effects from the controller. This can
prevent erratic behavior when the system is being re-
engaged and an acceleration or brake command is being
set after large errors were accumulated within the con-
troller. The trigger is shown within the first conditional of
Algorithm 1. A visualization of the signal generated dur-
ing the Forward state can be visualized in Fig. 14; where
the red control signal up to timestep 93 corresponds to
the output generated by our algorithm and the blue signal
corresponds to the speed of the vehicle. Additional details
on the design of the controller employed are covered in
Section 2.2.4.
Obstacles and Planned Stops

The states that account for vehicle following and planned
stops correspond to Follow and StopSign, respectively. In

Fig. 10 Planned global trajectory based on vector map (a) and the Finite State Machine for the motion planner (b)

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 9 of 35

Algorithm 1: The target speed generated during
motion planning is a function of the vehicle’s cur-
rent speed, previous target speed, as well as the DBW
enable/disable signal to generate smooth and com-
fortable acceleration/deceleration signals.
Data: drive-by-wire enable signal auto_enabled,

vehicle speed v, previous target speed v_prev
Result: target speed v_target

1 v_target = v;
2 if auto_enabled then
3 v_target = v_prev;
4 end
5 if v_target > speed_limit + � then
6 a = adecel;
7 else
8 a = aaccel;
9 end

10 v_target = v_target + a · dt

contrast to our approach for speed keeping within the For-
ward state, the estimated acceleration and target speed
generated during vehicle following and planned stops is
dynamic by nature and requires an accurate formulation
to stop within a specific distance for planned stops or to
match the speed of the vehicle in front of the ego-vehicle.
Evidently, this depends on the conditions of the road and
weight of the vehicle. While experiments were performed
with obstacle avoidance maneuvers, due to limited eval-
uation and testing, this state was not incorporated in the
initial version of our experiments. For this reason, this
state is omitted from the FSM.
For both strategies, the decision-making process is initi-

ated by identifying the distance to the waypoint of interest
wp. From Fig. 11, it can be observed that for vehicle follow-
ing, wp corresponds to the waypoint closest to the rear of
the object of interest wobstacle (Fig. 11(a)) and for planned
stops,wp corresponds to the center of the stop linewstopline
(Fig. 11(b)). Although the Euclidean distance between the
waypoint closest to the front of the ego-vehicle (wego) and
wp can be estimated, this distance estimate may not be
representative of the distance that the vehicle will ulti-
mately traverse. Instead, the approach employed uses the
complete trajectory to aggregate the pairwise distances
between adjacent waypoints starting from wego (i) and
ending at wp (j); this estimate can be computed iteratively
by Eq. (1)

dtarget =
j∑

k=i

√(
wk+1 − wk

)� (
wk+1 − wk

)
. (1)

With the distance estimate (dtarget), a linear kinemat-
ics approach is utilized to identify the acceleration rate

needed to ensure that the ego-vehicle stops at the loca-
tion of interest or reaches the speed of the vehicle ahead.
The following expression approximates the acceleration a
needed to reach the desired speed vf within the distance
dtarget given the current speed of the vehicle vego. Fur-
thermore, by noting that a planned stop is a special case
when vf is zero and for vehicle following vf corresponds
to the speed of the vehicle ahead, the same kinematics
formulation can be applied.

2a · dtarget =
(
v2f − v2ego

)

⇒ a =
(
v2f − v2ego

)
/2 · dtarget .

(2)

A final consideration in the design of our approach
involves the state transition triggers. While the accelera-
tion described above can be utilized to update the target
speed vtarget that will be delegated to our downstream
controller, one must first determine the state transition
logic to be able to enter the Follow and StopSign states.
To formulate this trigger, we first characterize the aver-
age braking performance of our vehicles by performing
a sequence of complete stops to measure the quality and
braking performance under various scenarios including
hills and flat roads. Bymeasuring initial speed, final speed,
and distance traversed, an estimate for average acceler-
ation can be identified: abrake. This constant can jointly
be applied with equation Eq. (3) to approximate the dis-
tance required to reach vf given the ego-vehicle speed vego.
This distance denotes dtrigger can then be used to trigger
the state transition logic. The state transition logic is then
triggered when dtrigger > dtarget . As a final note that is
specific to the StopSign state, once the vehicle performs a
complete stop, the StopSignWait state is entered for three
seconds are required by law, before continuing.

dtrigger =
∣∣∣v2f − v2ego

∣∣∣
2 · abrake . (3)

In practice, this approach performs well in a variety of
scenarios including steep inclines with additional passen-
gers onboard. A visualization of the speed signal gener-
ated by the planner for planned stop can be visualized
in Fig. 14 after timestep 93, where the red signal corre-
sponds to the target speed generated by the planner and
the blue signal to the actual vehicle speed after our con-
troller matches the target speed. The details for the design
of our controller are covered in the next section.

2.2.4 Trajectory following and control
The final output from the motion planner consists of
speed encoded waypoints that account for speed limits,
stop lines, and obstacles ahead of the ego-vehicle. With
this trajectory, we employ the Pure Pursuit path tracking
algorithm [24] to estimate the radius of curvature needed

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 10 of 35

Fig. 11 The selection of the waypoint of interest wp for vehicle following (a) and planned stops (b)

to stay on the path. Furthermore, the radius of curvature
is used in conjunction with the bicycle kinematics model
and the vehicle specific steering rack ratio to calculate the
tire and steering angles of the vehicle. Finally, a Propor-
tional Integral Derivative (PID) controller is employed to
determine the accelerator and brake control inputs given
the target speed set during motion planning.
Steering Angle and Angular Velocity

Pure Pursuit uses a simple tunable parameter referred to
as the lookahead distance (l) to identify a moving target
(x, y) along the trajectory. By following the geometric rela-
tionship shown in Fig. 12(a) and Eq. (4), the curvature of
the arc (1/R) that joins the moving target with respect to
the rear axle of the vehicle can be estimated. This expres-
sion implies that the radius of the arc simply differs by a
distance d from the x component of the target point. In
practice, the lookahead distance must be tuned to achieve
good performance. Small values of l can cause extensive

oscillations in steering whereas larger values may reduce
the error gradually.

x + d = R,
x2 + y2 = l2,
R2 = y2 + d2
⇒ R = l2/2x .

(4)

Additionally, to model the relationship between the cur-
vature of the arc and the tire angle (θW) of the vehicle, the
bicycle model is applied using vehicle specific dimensions
(Fig. 12(b)). The rack ratio is then used to estimate the
steering angle input for control Eq. (5).

tan θW = LW√
R2−L2CW

,

θs = Crack tan−1

⎛

⎝ LW√(
l2
2x

)2−LCW

⎞

⎠ .
(5)

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 11 of 35

Fig. 12 Pure Pursuit (a) and bicycle model (b)

Before the steering control input can be executed, the
velocity that corresponds to the estimated steering wheel
angle must be determined. This is a secondary control
input that is provided to the DBW system while execut-
ing the steering control input and must be characterized
depending on the driving conditions. Our approach is
modeled after the notion that minimal steering should be
performed when the vehicle is driving at higher speeds.
On the other hand, if the vehicle is driving slow, maximum
flexibility can be provided to increase maneuverability. To
model this relationship, the speed of the vehicle is used to
formulate an angular velocity estimate using the vehicle-
speed to max-speed ratio (vcurrent/vmax · β) as shown in
Eq. (6) When the ego-vehicle is operating at low speeds,
this ratio approaches zero and maximum angular velocity
is permitted. In contrast, when the vehicle is operating at
speeds close to its limit, the ratio approaches one, and the
angular velocity permitted approaches zero. In practice,
β is simply a constant slightly larger than one to prevent
a zero angular velocity and vmax is set to be 25mph (40.2
km/h); this speed corresponds to the maximum vehicle
speed and is delimited by its manufacturer. Additionally,
the campus speed limit is 25mph.

w = wmax

[
1 − vcurrent

vmax · β

]
. (6)

Acceleration and Braking
As previously discussed, the final output generated from
the motion planner includes a desired speed limit in addi-
tion to the trajectory. While the trajectory waypoints are
useful for estimating steering wheel control inputs, the
target speed can be used to determine the accelerator and
brake control depending on the error between the current
speed and the target speed e(t). In contrast to steering

wheel control, the DBW receives unitless inputs for brak-
ing and acceleration. Thus, making it ideal for controllers
such as the PID controller.
In this work, we employ two traditional PID controllers

to estimate braking and acceleration control inputs. The
iterative process of a PID controller is formulated using
the error e(t) between the target speed and the current
vehicle’s speed as reported by odometry. For acceleration,
the error is defined by e(t)accel = e(t), whereas for brak-
ing, the error is its negative e(t)brake = −e(t). The overall
process is shown in Fig. 13 and the control equation is
shown in Eq. (7).

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

. (7)

Two additional considerations performed while imple-
menting the PID controllers involve the windup effect and
integral sum thresholding. During DBW disengagements,
it is possible that the desired speed and the current speed
diverge. As a result, this can lead to excessive integral
sums if a maximum threshold is not set and the DBW
system may set a maximum acceleration or brake com-
mand while re-engaging the system depending on if the
error is positive or negative. To prevent this from occur-
ring, the integral sum is reset to zero when the vehicle’s
speed is relatively close to zero and the maximum feasi-
ble control input is used to threshold and prevent the sum
from reaching high numerical values. Finally, additional
steps are taken in the motion planner: if a disengagement
is reported by the DBW system, the planner will auto-
matically reset the target speed to prevent large errors
from occurring and increment or decrement gradually
based on the current speed if the system re-engages. By
thresholding the integral sum and informing the planner
on the state of the DBW, this effectively prevents adverse

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 12 of 35

Fig. 13 The PID controller for braking and acceleration control

windup effects. A visualization of the ego-vehicle per-
forming acceleration, speed keeping, and braking under
the approach introduced is shown in Fig. 14.

2.3 Verification and early testing
An important aspect throughout the development, verifi-
cation, and testing phases involves safety. To ensure that
proper testing procedures were followed, our team devel-
oped in simulation using OpenPlanner and verified in
non-public roads for six months. The ROS andOpenPlan-
ner framework facilitated data-driven simulation to verify
that the planner entered the correct navigation states
given perception and localization information. Addition-
ally, a simple kinematics model was employed to verify
basic functionality such as map definitions and global plan
generation. This approach facilitated the initial imple-
mentation and helped debug complex cases.
For live testing, safety precautions were considered by

using an emergency stop button (Fig. 15) and by enabling
direct manual override using the steering wheel or brake
pedal. In the next section, our approach is evaluated in
an autonomous mail delivery scenario. While our sys-
tem was evaluated offline and in non-public roads prior
to initial deployment, the safety drivers that participated
in the pilot deployment participated in a training pro-
gram provided by the UCSD RiskManagement office. The
deployment and testing associated with this pilot pro-
gramwas performed in collaboration and with approval of
UCSD facilities, police station, and the mailing center.

3 Lessons from first long-term test
To gain a better understanding of the capabilities and
overall robustness of our system, our team conducted a
project on autonomous mail delivery over the course of
four-months in collaboration with the UC San Diegomail-
ing center. To facilitate mail delivery applications, one
of the vehicles introduced in Section 2 was retrofitted

with a ramp and hamper fasteners (Fig. 16). The field
experiments were performed with the same safety driver
throughout the deployment period between summer and
fall 2019.

3.1 Disengagements from autonomous mail delivery
By fall 2019, our vehicle had engaged in a total of 89.9km
or equivalently 6.9 hours in autonomous mode. As intro-
duced in Section 2.1.2, various signals were recorded using
a logging device including localization information, target
speed, vehicle control signals for steering, braking, accel-
eration, and the DBW enable/disable signal. Secondly, the
ROSBAG file format was used to record raw sensor data
including image and LiDAR data. Finally, disengagement
details were labeled by the engineer onboard of the vehi-
cle for every intervention performed by the safety driver.
The overall robustness of the system is characterized by
using mean-distance between interventions and mean-
time between interventions [25]. This is performed by
using the DBW enable signal to separate the total distance
traveled and total uptime in autonomous and manual
modes. To further understand the dependability of the
system on the safety driver, the manual and autonomous
segments are separated as shown in Eqs. (8) to (11), where
MDBIA and MTBIA measure the overall robustness of the
system over time. On the other hand,MDBIM andMTBIM
describe the average distance and time for which the safety
driver performed manual interventions. This effectively
normalizes the number of disengagements in terms of
time and distance whilst simultaneously describing the
dependability of the system on human drivers.

MDBIA = Total Auto Distance
Number of Interventions

. (8)

MTBIA = Total Auto Uptime
Number of Interventions

. (9)

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 13 of 35

Fig. 14 The target speed generated in m/s by the motion planner and the vehicle’s speed are shown in blue and red, respectively. Both signals are a
function of time in second

MDBIM = Total Manual Distance
Number of Interventions

. (10)

MTBIM = Total Manual Uptime
Number of Interventions

. (11)
With the metrics introduced, the statistics for the sum-

mer and fall quarters are summarized in Table 1 and the
overall across both quarters is shown in Table 2. From
the overall disengagement statistics, one can infer that the
vehicle drove autonomously an average of 380m between
a disengagement, where each disengagement performed
by the safety driver corresponded to approximately 23m
of manual driving. This is equivalent to driving for 106s

between a disengagement, where each disengagement
corresponds to approximately 12 s of manual driving.
Additionally, summer and fall quarter campus trends are
reflected in the performance. During summer, the pedes-
trian and vehicle activity is considerably less compared
to fall quarter. This explains the difference in terms of
performance given the complexity. The disengagement
reciprocals are also provided in each of the tables. Ideally,
these values should approach a limit of zero; meaning that
zero interventions were encountered.
Lastly, to gain a comprehensive understanding of failure

modes, the concept of intervention maps was introduced
to capture spatial dependencies and trends thatMDBI and

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 14 of 35

Fig. 15 The emergency button for safety consideration

MTBI may be unable to capture. An intervention map
incorporates the disengagement data into a 2D map rep-
resentation of the routes traversed during autonomous
navigation. This is accomplished by discretizing the state
of the vehicle overtime with a 1 × 1m2 grid resolution
and when a disengagement occurs, the disengagement
count for the closest matching cell is incremented. The
intervention map that corresponds to our two-quarter
mail delivery project is shown in Fig. 17. All disengage-
ment grids shown in this figure are normalized based on
the grid with maximum disengagement value to convey
density.

3.2 Lessons
In this section, various lessons are drawn from the dis-
engagement data previously introduced. While there are
various engineering related efforts that can increase the
overall robustness of our approach, we focus on the core
limitations experienced that are active research efforts.
This includes lessons on perception, scalability and scene
understanding for robust navigation.

Fig. 16 The retrofitted vehicle for mail delivery

Table 1 MDBI and MTBI Disengagement Summary for summer
and fall 2019

Summer 2019 MDBI MDBI−1 MTBI MTBI−1

Autonomous 414.201 0.0024 113.82 0.00878

Manual 24.00 0.0416 12.77 0.07829

Fall 2019

Autonomous 283.08 0.0035 84.44 0.0118

Manual 19.25 0.0519 11.54 0.0866

3.2.1 Sensor fusion for detection
By introducing fusion-based perception methodologies
in our software stack, additional contextual information
can be provided for downstream tasks that depend on an
object’s classification and pose that is often a critical com-
ponent for decision making and ultimately robust naviga-
tion. Nevertheless, in the processes of fusing features and
objects across various sensor frames, considerable prepa-
ration overhead was encountered. This corresponds to the
process of characterizing sensor properties: intrinsic and
extrinsic calibration. As previously introduced, the former
describes the camera projection properties and the lat-
ter the transformation between a sensor pair. However,
this calibration process was performedmanually and peri-
odically to ensure that vibration did not generate severe
compound errors during projection. This presents a hur-
dle in the development and testing process in terms of
continuous maintenance. For this reason, online calibra-
tion systems for parameter estimation are of great interest;
research directions in this area are explored in Section 4.1.
Another challenge encountered in the process of evalu-

ating our perception system involves detection and track-
ing of large moving objects such as cars, trucks, and buses.
As introduced in Section 2.2.1, our approach employs a
clustering-based approach for object detection.While this
technique works well for smaller agents such as pedes-
trians, the approach does not readily capture the cen-
troid, shape, and orientation characteristics of rectangular
objects. This can make state estimation a non-trivial task
depending on the perspective of the object even if it is
stationary.
As a step towards improved centroid and shape esti-

mation, an L-shape fitting approach [10] was explored
that leverages RANSAC to identify the best fit orthogo-
nal lines given a vehicle cluster detection. This method
assumes that at least two sides of a vehicle are detected

Table 2 MDBI and MTBI overall disengagement summary

Overall MDBI MDBI−1 MTBI MTBI−1

Autonomous 380.42 0.0026 106.25 0.0094

Manual 22.77 0.0439 12.46 0.08028

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 15 of 35

Fig. 17 The intervention map

from the LiDAR perspective and the longer side corre-
sponds to the longitudinal axis of the vehicle. However,
in practice this assumption again depends on perspective
and may initialize a track with swapped lateral and longi-
tudinal axes. This failuremode can be visualized in Fig. 18,
where the L-shape detection approach incorrectly assigns
the orientation of a vehicle with track B. In contrast, the
pedestrian with track A is constantly detected and tracked
as it crosses in front of the ego-vehicle. Given the impor-
tance of detection and state estimation for various agents
in a scene, learning based methods for sensor fusion are
explored in Section 4.2.

3.2.2 Long term forecasting, intent recognition, and
interactions

From Fig. 17, it is evident that intersections are among
the areas with higher number of disengagements. Addi-
tionally, road segments marked as Unstructured corre-
spond to areas that are highly dynamic and often involve
complex interactions with road users. In fact, prediction

related interactions are among the primary reasons that
disengagements were performed during our mail delivery
missions. These specific interactions are further analyzed
by reviewing the logs provided by the engineer onboard
of the self-driving vehicle throughout the four-month
deployment period. The scenarios considered part of this
subset of disengagements involve errors due to inaccurate
behavior forecasting of other agents in the scene that as a
result propagated incorrect control actions by the planner
and controller. From these logs, a subset of our original
intervention map is generated as shown in Fig. 19, where
the green regions correspond to areas with at least one
disengagement related to prediction failures. Evidently,
intersections are among the areas with higher failure rates
given that these often involve negotiating right-of-way.
An important note involves recent developments in

prediction. Even though prediction has been studied
extensively in recent years in the form of trajectory
prediction including methods that leverage Genera-
tive Adversarial Networks (GAN) [26–30], Conditional

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 16 of 35

Fig. 18 The clustering-based method works well for pedestrians (A) but not for vehicles (B). L-shape estimation might flip the edges when an
observation is incomplete. In the figure, agent tracks are represented by yellow trajectories

Variational Autoencoders (CVAE) [31, 32], Graph Con-
volutional Networks (GCN) [33], and Self-Attention [34],
less efforts have been made to understand intent and
interactions that can potentially involve communication.
An example is illustrated in Fig. 20, where two cyclists are
negotiating the right-of-way with another vehicle agent
and the safety driver of our self-driving vehicle. Since
gestures are a natural way of conveying intent, there are
design considerations when it comes to the development
of intelligent vehicle systems that operate with or without
a driver. In the example highlighted, the cyclist assumes
that our safety driver has control of the vehicle leading
to a gap between the design of prediction strategies and
execution.

In addition to reducing the gap between the design of
prediction strategies and execution, additional research
directions involve interactions with law-enforcement,
emergency vehicles, and construction personnel. An
example of an interaction with construction workers in a
dynamic environment is illustrated in Fig. 21 that corre-
sponds to images captured from the front and side-view
cameras during a data collection mission. In this scenario,
a construction worker is controlling two-way traffic along
a closed lane. From a navigation perspective, the system
must revise its current plan by dynamically generating
a new trajectory to account for the traffic cones, whilst
simultaneously following instructions from the construc-
tion workers: the construction worker shown overrides

Fig. 19 Prediction related interventions (in green)

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 17 of 35

Fig. 20 Example of interactions between a bicyclist and other vehicles (left), and between bicyclist and safety driver (right). This intersection
corresponds to location B in Fig. 19. The images were captured by the forward facing cameras from the ego-vehicle

the existing navigation plan that entails making a stop at
the intersection by using a ‘SLOW’ traffic sign followed
by a hand gesture to wave the vehicle through. While it
may be possible to define additional states for construc-
tion logic and employ learning-based techniques as part
of a state-based planner, ensuring that the approach will
generalize outside of the training distribution presents a
new set of challenges.

3.2.3 Static maps in dynamic environments
As previously introduced, our design strategy for navi-
gation leverages road network definitions annotated at
a centimeter-level that involved an extensive annota-
tion process. While this HD map approach simplifies
the complexity of trajectory identification for navigation,
it presents several limitations in terms of scalability in
dynamic environments. Since the annotations assume a
static environment, drastic changes such as construction
sites can impact the original definitions.
To provide further context, two examples in which the

original map was affected by construction are shown in

Figs. 22 and 23. Figure 22 corresponds to a mailing route
that extends from a main road onto a large walkway; this
route was shifted by a construction fence at the time
the trajectory was generated. Not only do these changes
imply that a new trajectory must be redefined as a result,
but they can additionally impact the robustness of the
localization algorithm given that the pointcloud map may
contain missing features. A similar area that was affected
by construction corresponds to Fig. 23, in which a three-
way intersection along a mailing route of interest was
converted into a round-about. For this scenario specially,
the vehicle would be unable to navigate given the drastic
changes to the road network and a new definition would
be needed as well. While the UC San Diego campus cov-
ers a smaller area compared to large scale autonomous
driving applications, the dynamic characteristics of urban
environments present a scalability challenge that must be
further explored. This is an area of interest that is investi-
gated in Sections 4.3 and 4.4 by introducing an approach
for dynamic trajectory generation without reliance on
complex HD maps.

Fig. 21 Example of an interaction with a construction worker (b) that directs opposing traffic using a single lane near a construction site (a).
Navigating in complex environments requires dynamic methods that may not align with prior maps

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 18 of 35

Fig. 22 A fence (in green) was removed and the route (in blue) needs to be adjusted

3.2.4 Closed loop simulation and testing
Although the simulation strategies employed can pro-
vide aid in early development and assist during case
specific improvements, there is a gap between simula-
tion and the real-world as well as scalability implications
for data-driven methods. For fully simulated method-
ologies, accounting for non-linearities from real-world
interactions becomes a non-trivial task and may not
be a realistic approximation; examples include render-
ing photorealistic images and even simulating LiDAR
data. While data-driven methods may be an excellent
alternative, the approach quickly presents scalability con-
straints when small perturbations to the original data are
needed or additional cases within the same category are of
interest.
This presents a new direction in terms of sim-

ulation for reducing the gap between simulated
representations whilst simultaneously increasing the
scalability. Although there are more considerations such
as generating realistic agent-to-agent interactions, we
begin a search for different simulation strategies in
Section 4.5.

4 Addressing the challenges
To address the challenges discussed in the previous
section, we study further into these problems. In this

section, we present our research in automatic calibra-
tion, sensor fusion, semantic mapping, dynamic trajectory
generation, and building a digital twin.

4.1 Automatic calibration
One of our greatest challenges was posed by calibra-
tion. The calibration process provides intrinsic parame-
ters of the camera and extrinsic parameters of the relative
transformation between camera and LiDAR. These are
fundamental for the detection, mapping tasks, and our
sensor fusion approach. Both of the parameters need to
be calibrated frequently as intrinsics change with tem-
perature and extrinsics are affected by vibration. We
start with a calibration board for intrinsic calibration
and a hand-picked association based method for extrin-
sic calibration. These approaches are time-consuming and
labor-intensive. Accordingly, efforts have been made to
design automatic or semi-automatic calibration methods.
In this section, we present our approach for intrinsic
auto-calibration using traffic signs and extrinsic semi-
automatic calibration with a black board.

4.1.1 Camera intrinsic auto-calibration
Camera intrinsic calibration is essential to relate image
pixels with 3D feature points in the camera frame. For the
applications, the accuracy of camera intrinsic parameters

Fig. 23 An intersection (a) was converted into a round-about (b)

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 19 of 35

determines the performance of depth estimation, speed
inference, and scene reconstruction.
There have been mature algorithms for estimating cam-

era intrinsic parameters. For example, Zhang’s method
based on checkerboard [11] is widely used. Although auto-
matic calibration for intelligent vehicles on the road is
still an unsolved problem, we first question, is continu-
ous automatic calibration necessary? From a 4.69mi drive
around the UC San Diego campus, the results indicate
a variation of 6.5% for the intrinsic parameters. Thus,
making automatic calibration necessary.
One key challenge in auto-calibration lies in identify-

ing adequate 2D-3D correspondences. Previous research
efforts have focused on retrieving or constructing struc-
tures in the environment with known dimensions. For
instance, road lines or carefully designed grid markings
are common choices from which corners or vanishing
points are extracted [35–37]. However, these structures
are either variable in sizes and vulnerable to external
influences, or are uncommon in urban environments.
It is therefore reasonable to require that the reference,
from which the correspondences are generated, has ubiq-
uitous existence and standard size. Initially, we studied
vehicle license plates, but vast experiments found large
calibration errors with license plate points extracted from
KITTI [38] dataset’s video recordings. It was observed
that license plates were small and blurry in images (due to
vehicle motion); therefore, they introduced lots of uncer-
tainty. On the contrary, we find traffic signs everywhere;
these are relatively large and remain stationary. Before
leveraging these references, we measured their distribu-
tion in a typical urban area to ensure sufficient features
are present.. Figure 24 shows the distribution of stop signs
along a UCSD campus loop. There are 43 stop signs over
a distance of 7.47mi, and on average 195.5 detections/mi
were estimated by using a benchmark object detection
model [39]. As it is later verified, the amount of stop signs
along can achieve frequent and accurate auto-calibration.
Experiments showed that the estimation accuracy of 2D

feature points plays an important role in getting reason-
able intrinsic parameters, and often a deviation unobserv-
able by human eyes can lead to absurd calibration results.
[40] suggests that line segments can be used to compen-
sate for the pixel position noises. Therefore, we designed a
pipeline to extract sub-pixel accurate corner points of traf-
fic signs and use them for auto-calibration. As a concrete
example, all our studies were based on stop signs. Starting
with an image frame, we detect and crop out stop signs
(if any) with a deep neural network using Mask RCNN
[41]. We then apply a modified canny edge detector [42]
to get the octagon contour. These contour points are pro-
cessed by a RANSAC algorithm repeatedly, fitting eight
line functions as the eight edges. If these are intersected
in order, the estimated corner points achieve sub-pixel

accuracy. Unlike 2D points, relative 3D coordinates can
be looked up directly from the government’s traffic sign
manual. Finally, we complete the automatic system with
Zhang’s planar object calibration method.
During applications, we collect sequences of point pairs

and calibrate one batch at a time. The two processes
- data collection and batch calibration - can be asyn-
chronous, and thus achieve real-time speed. It is, however,
not straightforward to determine the batch size: a bigger
batch will produce better intrinsic parameters (proven by
experiments), but require more storage and longer time
interval between updates. As an alternative, we intro-
duced a Kalman filter to incorporate temporal data, and
to carry out continuous updates.
This pipeline worked well in general, but sudden large

errors appeared occasionally. While, these errors were
reduced by the Kalman filter as more data was collected,
this was because the estimated corner points deviated
from the ground truth positions due to bad illumination.
Therefore, we proposed two solutions for increasing the
system robustness. First, after fitting the eight edges, the
line positions are refined locally according to the image
gradient in the perpendicular direction. Second, we check
the shape formed by the eight fitted lines and make sure it
is an octagon. These extra steps proved to be effective for
speeding up the convergence of calibration updates.
The final system is shown in Fig. 25. Although stop

signs are used to characterize the calibration process, the
system can be easily adapted to various traffic signs or
landmarks. More details can be found in [43].
A stop sign dataset was also built for experiments.

The images were collected by one of our experimental
autonomous vehicles (Fig. 1(b)) when driving through
UCSD campus. We stored PNG images to preserve high-
quality compression. Two cameras onboard of the vehicle
were used and each detected 1,507 and 1,330 stop sign
candidates using Mask R-CNN, respectively.
We compare our results with the ground-truth intrinsic

parameters (GT) obtained from checkerboard calibration
beforehand. The selected scale-free metric is the relative
error of each focal length Eq. (12). It should be noted that
for both of the stop sign candidate sets, the line refine-
ment module was turned off. Experiments showed that
the line refinement was helpful when the detected stop
signs were fewer. Thus, line refinement is still necessary if
the system is running in a region where the stop signs are
rarely detected. The system selected 444 (Camera1) and
844 (Camera2) candidate stop signs ready for calibration.
System results with Kalman Filters are shown in Figs. 26
and 27.

Relative Error off = f − f GT

f GT
, (12)

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 20 of 35

Fig. 24 A demonstration of a campus loop and the stop sign distribution. The blue, green, and red trajectories correspond to the three routes the
vehicle drove in sequence

Our approach converges to the correct parameters as
shown in the figures. A 5% relative error is achieved for the
driver-side camera. We also intuitively demonstrate the
effect of the relative error using a simple example of dis-
tance measurement. Suppose the principal point is fixed
at the center of the image plane. If an algorithm measures
the distance between an object and the camera, which
is calibrated using our system, the measurement error
(assuming the algorithm itself does not introduce addi-
tional error) is equal to the relative error of the estimated
focal lengths. Take the driver-side camera as an example,

an object estimated at 50m away will be located between
47.62 and 52.63m (50m

1±5%). This error range is acceptable
for safe reaction in urban areas with a 25mph (11.175m/s)
speed limit: emergency braking experiments from 25mph
to 0mph indicate that on downhill roads, 27.7m (4.4 s) are
needed during emergency stops using our vehicles.

4.1.2 Camera-LiDAR extrinsic semi-auto-calibration
Camera-LiDAR extrinsic calibration calculates the trans-
formation between LiDAR and camera. This transforma-
tion is important in sensor fusion tasks. For example, in

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 21 of 35

Fig. 25 A demonstration of the camera intrinsic auto-calibration framework

Fig. 26 Calibration Results of Driver-side Front Camera

Fig. 27 Calibration Results of Passenger-side Front Camera

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 22 of 35

low-level fusion, the transformation is needed to project
the LiDAR point cloud into the image to retrieve its color.
In high-level fusion, the transformation is necessary to
match objects detected in an image frame with the objects
detected in the LiDAR data.
The calculation of the transformation is a straightfor-

ward problem. The challenge lies in specifying the cor-
responding features from the two sensors. Extrinsic cali-
bration methods can be broadly divided into target-based
or targetless approaches. While targetless approaches are
more flexible, they often still have requirements of the
environments, such as visual or geometrical textures [44].
Hence we pursuit the target-based approach. Such tar-
gets are usually hand crafted, such as chessboard, sphere
[45] or board with AR tags [46]. We use a simple black
rectangle board that is easy to obtain for this process.
Some approaches involve manual feature selection. For

example, in [46], LiDAR points are manually grouped into
edges so that corners can be calculated. The open-source
tool provided by Autoware2 we used initially also requires
manual work. The tool provides a visualization for the
point cloud and image frames, and requires us tomanually
select the corresponding points. We need to align a spe-
cial landmark with the point cloud to make sure that we
can tell the correct pair of points. Since the LiDAR point
cloud is sparse, the alignment is not easy. Furthermore, to
ensure the robustness, we had to repeat the process for
more than 9 point pairs for various distances, which took
a long time.What’s worse, the transformation may change
after one run of the vehicle due to vibration, the calibra-
tion takes up most of the time during our field-testing.
Hence, we were in urgent need of designing a process to
reduce the time for extrinsic calibration. The work clos-
est to our approach is [47], where they also only requires
a plain board. They use line detectors for images and the
point clouds and formulate an optimization problem with
a set of constraints.
It is relatively easy to detect 2D features in images, such

as corners and edges. This is not the case for LiDAR. The
Velodyne VLP-16 we equipped our sensor suite with is
very sparse vertically; thus, it is blind to horizontal edges
and points. Instead, we use rotated boards without hori-
zontal edges for calibration, similar in [46]. As shown in
Fig. 28, this is achieved by rotating the board to 30-60
degrees, so that all four edges have multiple intersections
with horizontal lines. These intersections can be automat-
ically picked from the data. With enough intersections
along an edge, we can calculate the edge equation. Given
all four edge equations, we can then calculate four cor-
ner points in 3D and the corresponding corner points in
2D can be calculated from a canny edge detector, followed

2https://github.com/Autoware-AI/autoware.ai/tree/1.8.0/ros/src/sensing/
fusion/packages/autoware_camera_lidar_calibrator

Fig. 28 One of our team members holding the board in the
calibration process. LiDAR points are projected onto the image using
the calculated extrinsic parameters. The color of LiDAR points is based
on distance

by intersection points of edges. For a pair of image and
point cloud data, we can extract at most four correspond-
ing points, and thus wemove the board around to increase
the data pairs for robustness.
In practice, we calibrate the system using a black board

against an off-white wall to make sure the edge detectors
work without interference from the background.Wemove
the board to various poses in the intersection of the field
of view of the camera and LiDAR. An ROS node runs the
calibration program repeatedly until we are satisfied with
the number of point pairs and reprojection error. A typi-
cal calibration process involves more than 60 point pairs
that can be collected within a minute. Since we can easily
get more point pairs than we need, a RANSAC variation
m-estimator sample consensus (MSAC) [48] was used to
improve the robustness.
Figure 28 shows our team member holding the board

in the calibration process. After obtaining the extrin-
sic parameters, we color the LiDAR points by depth
and project them into the image based on the estimated
extrinsic parameters. The data collected for calibration
can also be used to visualize the calibration results qual-
itatively. As we can see, the LiDAR points align well with
the board. Typically, a reprojection error between 2 to 4
pixels is obtained. For reference, a 3px error for our cam-
era data, with 1920px in width and a 60◦ horizontal field
of view, means less than 0.1 degree error. For an object at
50 meters away, this could result in 8 cm error, which is
acceptable. However, we later found that this reprojection
error could be misleading about the actual performance of
the system.

https://github.com/Autoware-AI/autoware.ai/tree/1.8.0/ros/src/sensing/fusion/packages/autoware_camera_lidar_calibrator
https://github.com/Autoware-AI/autoware.ai/tree/1.8.0/ros/src/sensing/fusion/packages/autoware_camera_lidar_calibrator

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 23 of 35

The system sometimes demonstrates much larger errors
than expected. We determined that the data collected
occasionally posed challenges for the optimization. As
shown in Fig. 29, where the ground truth camera loca-
tion is given by the gray box. When we move the board
around, the depth range can be limited by the sparsity
of LiDAR scans. If we go too far, sufficient LiDAR scans
may not intersect with the board’s edges. Now, suppose
our movement is near line 2 and matched key points were
identified. Due to the error in the key point localization,
we might finally estimate the red camera pose shown in
dash lines. This estimated pose, despite being off both in
translation and rotation, gives a low reprojection error for
keypoints on line 2. But the error gets much larger for a
longer distance, such as for points on the line 1.
Ideally, this could be resolved by collecting data for var-

ious distance ranges. But as we mentioned, the sparsity of
LiDAR rings can limit the distance. When no larger board
is available, we can perform RANSAC multiple times and
pick the result that visually aligns well for various dis-
tance ranges. Alternatively, we consider the fact that the
optimization challenge comes from a drift both in transla-
tion and rotation that reduces the reprojection error. Since
the camera has rather low translational movement after
vibration, we can fix the translation and only optimize the
rotation.

4.2 Sensor fusion for robust tracking
Our sensor configuration implies that sensor fusion is
necessary for robust tracking. The sparsity of the Velo-
dyne VLP-16 LiDAR makes it challenging to detect
objects beyond 30 meters robustly. This is especially hard
for tracking vehicles. The clustering-based method [49]

does not reflect the true center of vehicle and sometimes
causes sudden shifts. On the other hand, the L-shape esti-
mation approach discussed in Section 3.2.1 was not able
to perform robustly for challenging scenes when there
are only a few points projected on the vehicle. Currently,
the state-of-the-art perception methods are heavily based
on deep learning [50], [51], which generate much better
predictions for the centers and dimensions of bounding
boxes. However, they require a large amount of labeled
data that is not provided for our collected data. For
this reason, we investigate related topics on open-source
datasets. The nuScenes dataset [21] was chosen as it
includes radar, which provides potential for radar related
fusion research.
Fusing multiple complementary sensors has been a

popular research topic in autonomous driving. They are
expected to improve the robustness and reduce the cost
[52]. Fusion can happen in various stages [53]. Low-level
fusion often involves highly coupled system design. For
example, objects detected in cameras retrieve its depth
from LiDAR data [54], or projecting LiDAR data into cam-
era to get its color [55]. High-level fusion are modular at
the expense of loosing some information. In [56], LiDAR,
radar and camera objects are detected first then fused
with an Extended Kalman Filter (EKF). More recently,
deep learning based fusion achieve great performance
[57], [58], [55]. But these black box models are hard to
interpret.
Our first attempt was on fusing the LiDAR detected

3D bounding box with radar detected point targets using
an EKF based approach [56]. We conducted experiments
on a small subset of the nuScenes dataset for cars only.
And evaluate based on the AverageMulti-Object Tracking

Fig. 29 The two camera positions has their keypoints match well on the line 2 but mismatch for the line 1

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 24 of 35

Table 3 Tracking results of the LiDAR and radar EKF based fusion

Modality and fusion method AMOTA↑ AMOTP↓
v0: LiDAR 0.4957 1.0021

v1: LiDAR + radar update state 0.4460 1.2872

v2: LiDAR + radar update score 0.5091 1.0020

v3: LiDAR + radar update hits 0.4992 0.9675

Accuracy (AMOTA) and Average Multi-Object Track-
ing Precision (AMOTP) [59]. We follow the tracking-by-
detection paradigm and use the detection from [51]. We
then implement the LiDAR-based tracking following [60],
and incorporated radar to the tracker. However, as shown
in Table 3, adding the radar to update the state of the EKF
trackers (v1) decreases the performance of the tracker.
This contradicts our intuition that adding information can
only be more helpful. Data analysis was performed to
investigate the issue.
The result lies in the fact that radar data does not

reflect the center of the object. As shown in Fig. 30, the
LiDAR detection is like a bell shape curve around the
ground truth. However, this is not the case for radar. The
peak of the curve for radar was one meter off the center.
The Extended Kalman Filtermeasurementmodel assumes
the measurement is a Gaussian distribution around the
ground truth. Given that the radar data does not satisfy
this assumption, we observe that the result becomes worse
when adding the radar.

Given that the radar objects is not informative about
the center location, a follow-up question would be, does
it reflect the existence of the object? State-of-the-art
LiDAR-based object detectors often produces a lot of false
positives. Hence, it would be valuable if radar objects can
help eliminate some false positives. During our exper-
iment, we determine that in some cases radar helps
improve the accuracy of tracking by providing existence
information, such as confidence score or hits (times of
measurements being matched to a track). For example,
when a radar detection is matched with an existing track,
we update the confidence score of the track (v2) or update
its hits (v3) to prevent it from being eliminated. Compared
to direct state fusion that decreases the performance,
these strategies increase the performance. However, the
increment was negligible. This is because the radar only
provides weak evidence of existence. As shown in the
Fig. 31, many cases there are ground truth annotations
but no radar objects. And given that track management
system already eliminates most false positives using tem-
poral consistency, this weak evidence from radar cannot
contribute much.
Based on our experiments, incorporating radar mea-

surements from nuScenes does not contribute much to
the system. Similar results was also reported in [21],
where learning based methods were explored. However,
this does not mean that radar systems have no value for
autonomous vehicles. Notice that our evaluation has a
limited range up to 50 meters. This is a short range where

Fig. 30 Detection center to ground truth center distance distribution for cars

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 25 of 35

Fig. 31 Visualization of radar points (in green) and ground truth bounding boxes (in red)

LiDAR point cloud can be dense enough. But the value of
radar is its long range perception capability, which cannot
be evaluated based on the current dataset (which is anno-
tated based on LiDAR). This is a common challenge for
radar-based perception systems. Additionally, radar tech-
nology is also receiving improvements in terms of spatial
resolution and signal-to-noise ratio.

4.3 Semantic mapping
High-definition (HD) maps can provide detailed struc-
tured information about the environment such as road
topology, crosswalks, and stop signs. Many current

autonomous driving systems depend on those detailed
maps to help vehicles reason about the surrounding road
elements and to make intelligent decisions accordingly.
However, given the fast changing nature of the envi-
ronment, maps become easily outdated, and it becomes
expensive and laborious to maintain the maps [61]. Sev-
eral works have been proposed to learn the road graph
topology such as [62, 63]. Besides the topology of map,
detailed features of HD map are also required for robust
sensing and localization. Among all the features of HD
maps, semantic attributes are crucial for accurate and
robust mapping, providing an abstraction from the raw

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 26 of 35

Fig. 32 Probabilistic Semantic Mapping pipeline

image data and abundant details about the static environ-
ment. To tackle this problem, several methods have been
proposed to automate/semi-automate this process. In
[64], a hierarchical Conditional Random Fields approach
was combined with pairwise potential minimization. Sen-
gupta et al. [65] incorporate stereo pairs for depth image
estimation. Westfechtel et al. [66] used LiDAR-based
SLAM to build a large scale 3D semantic map. Random
forest and deep learning methods were also applied to
reclassify the label.
Incorporating the road priors can benefit more robust

semantic mapping and provides a better way of cap-
turing the uncertainties. Inspired by this, we have pro-
posed a probabilistic semantic mapping approach [61].
Our pipeline for building the semantic maps is shown in
Fig. 32. We first use DeepLabV3Plus [67] to do 2D seman-
tic segmentation and associate semantic pixels with the
corresponding 3D LiDAR points by using the extrinsics
between camera and LiDAR. After the semantic associ-
ation step, we use the proposed semantic mapping algo-
rithm to update the bird’s eye view (BEV) semantic belief
by using confusion matrix and LiDAR intensity prior. The
confusion matrix is utilized to estimate the uncertainty
of the semantic segmentation networks, while the LiDAR
intensity is used to capture the infrastructure prior as the
road elements have different reflectivities. The update rule
for semantic mapping follows the classical filtering algo-
rithm with additional consideration of the above priors.
For details of the algorithm, please refer to the probabilis-
tic semantic mapping paper [61].
We tested the above algorithm using our campus envi-

ronment with several challenging scenarios including
junctions, hills, and construction sites. The generated
global map using our best model is shown in Fig. 33.
Quantitative results are shown in Table 4. The Vanilla

approach does not consider any mentioned priors and

only updates the belief with uniform probability. Vanilla+I
considers the LiDAR intensity prior. CFN uses the con-
fusion matrix as the probability to update the belief.
Finally, CFN+I considers, both the intensity and the con-
fusion matrix. As we can see, adding LiDAR intensity
can improve baseline’s accuracy and IoU of lane marks
as the intensity is a strong indicator of potential lane
marks. Also, the confusion matrix will benefit the estima-
tion of crosswalks and lane marks by a large margin. In the
next section, we explore the applications of probabilistic
semantic maps for dynamic trajectory generation in urban
environments to explore alternative to HD maps.

4.4 Dynamic trajectory generation (TridentNet)
Classical global planner, behavior planner and local plan-
ner pipeline usually has high dependency on HD maps

Fig. 33 The BEV of generated semantic map of a campus environment

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 27 of 35

Table 4 Quantitative evaluation of probabilistic semantic
mapping algorithm. RD, CW, LM refer to roads, crosswalks, lane
marks respectively

Methods
IoU

mIoU
Accuracy

RD CW LM RD CW LM

Vanilla 0.715 0.537 0.135 0.462 0.797 0.577 0.180

Vanilla+I 0.712 0.510 0.163 0.462 0.789 0.548 0.234

CFN 0.671 0.605 0.301 0.526 0.708 0.696 0.652

CFN+I 0.669 0.588 0.298 0.518 0.705 0.676 0.657

which have poor scalability as the environment is con-
stantly evolving due to events such as construction and
road closure. As we have discussed in the previous section,
maintaining theHDmap is expensive and laborious. Thus,
reducing the dependency of detailed map is required for
more robust navigation and planning. Moreover, lowering
the barrier to entry by making the technological require-
ments more accessible is essential to the advancement
of autonomous driving, as the benefits are dependent
on widespread adoption of the technology. To tackle the
challenges, several end-to-end learning based methods
have been proposed to learn control actions based on
coarse directional cues and current perceived environ-
ment. Hecker et al. [68] used a coarse map combined with
LSTM to estimate steering and speed controls. Amini et
al. [69] built a variational network to learn the point-to-
point navigation and localization based on noisy GPS data
and coarse maps. However, as the control actions are cou-
pled with vehicle-specific configurations, the approach
may not scale and apply to other vehicle platforms.
To decouple path planning from control, we focus on
dynamically generating trajectories that can be used in

combination with existing path tracking and kinematics
models as described in Section 2.2.4. Given that the trajec-
tories may be multi-modal as there exist several paths to
reach the destination given the goal and dynamic environ-
ment, we propose a conditional generative model called
TridentNet [70] to generate dynamic trajectories utilizing
only a global plan based on coarse OpenStreetMap (OSM)
[71] and a local probabilistic semantic map as described in
Section 4.3.
The proposed pipeline is shown in Fig. 34. Instead

of using detailed HD maps to generate the navigation
waypoints, a coarse OSM is used to provide high-level
directional cues. More specifically, our global planner
implementation will output the shortest path from the
current pose to the destination by using only the road
graph of OSM. We then use a raster mask to embed
those directional cues. Since the OSM may not be able
to capture complete contextual information including
road markings, the probabilistic map is used; this map
can be updated with the semantic belief as car per-
ceives new observations of the environment [61]. Convo-
lutional Neural Networks are used to learn feature embed-
dings of rasterized directional cues and local probabilistic
maps. Afterwards, a Conditional Variational Autoencoder
(CVAE) [72] is utilized to generate multiple trajectory
hypotheses. The latent variables of the CVAE are capable
of capturing different driving modes given the directional
representations. During training, multiple latent variables
are sampled, and during inference, the latent variable
with the highest confidence score is used to generate
the planned trajectory. This trajectory can then be pro-
cessed by the downstream path tracking algorithm and
controller. Additional details about the methods can be
found in TridentNet [70].

Fig. 34 Architecture of TridentNet

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 28 of 35

Table 5 Evaluation results of TridentNet on collected UCSD
dataset

UC San Diego Dataset

Model ADEFULL ADEHALF FDE MDE

TridentNet-H10-S3 1.056245 0.336941 2.447714 2.494614

TridentNet-H15-S2 2.341875 0.753802 6.127183 6.177646

To evaluate the performance, we adopt Average Dis-
placement Error (ADE) and Final Displacement Error
(FDE), which is commonly used in trajectory predic-
tion literature [73]. Additionally, Maximum Displacement
Error (MDE) is used to measure the worst waypoint pre-
dicted along a trajectory. The results for two different
models are shown in Table 5. The first model, TridentNet-
H10-S3, is configured to dynamically generate trajectories
that are represented by 10 waypoints spaced 3m apart;
on the other hand, TridentNet-H15-S2 uses 15 waypoints
spaced by 2m apart. As the initial set of waypoints are
more likely to be executed by the ego-vehicle, those way-
points are critical for robust and safe navigation. To this
end, ADEHALF is used to evaluate short-term perfor-
mance.While both of the models can generate trajectories
up to 30m, H10-S3 decodes less waypoints compared
to H15-S2, and as a result reduces potential compound
errors. Test samples generated from H10-S3 can be seen
in Fig. 35.
Our proposed models show low relative error in terms

of ADEHALF . Thus, indicating their potential capabilities
of capturing short-term intent and generating accurate
planned paths while eliminating dependencies on man-
ually labeled HD maps. Additionally, our results present
future research directions on obstacle avoidance, motion
planning, and closing the gap with perception modules
such as prediction.

4.5 Building a digital twin
Testing and verification for systems that are intended to
operate in safety critical scenarios is indispensable. During
the development process, our team used a combination
of fully simulated modules and data-driven techniques
to verify localization, perception, and planning strategies.
This provided early indication on how the various com-
ponents would perform separately and jointly. However,
in various cases, it was determined that fully simulated
data did not provide a comprehensive representation of
real scenarios. While it is possible to collect new data
with a full-scale vehicle, this presents a considerable over-
head and may not scale if manual annotation is involved,
or a larger number of related test samples are needed.
This motivates the direction for building a digital model
for simulation that not only provides the convenience of
fully simulated methods but additionally provides rep-
resentative data that matches real-world testing. In this
section, we discuss efforts to evaluate larger scale data col-
lection methods, as a means to create synthetic models
representative of the real world, for algorithmic testing.

4.5.1 Fromworld to worldmodel
Map creation for autonomous driving highlights the need
for temporal model representations of the world to be
sufficiently close to the real-world to ensure safe naviga-
tion. Rapidly changing road conditions, from construc-
tion works to lane re-painting and vegetation growth on
nearby embankments, all emphasize the requirement for
scalable map generation techniques. Google Streetview
[74] was one of the first efforts to leverage road vehi-
cle mounted sensors to acquire map data at scale. With
the requirements of fleets of vehicles to map every street
across nations, the complexity and delays involved to
track changes have made Google Maps a best-effort solu-
tion to resolve map creation. Alternative efforts, such as
those to crowd-source sensor data [75], have emphasized

Fig. 35 Test samples generated by H10-S3 are shown for lane following (a), an intersection right-turn (b), and an intersection left-turn (c). Ground
truth waypoints shown in blue and predicted waypoints are shown in green

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 29 of 35

the pain-points associated with geo-referencing and data
requirements of data collection.We believe that HDMaps
are unsustainable at scale, but that high-level road infor-
mation may be a reasonable prior, paired with dynamic
trajectory generation, as discussed in Section 4.4. As such,
we investigate the options of using aerial data for map and
model creation.
On the UC San Diego campus, we tackled scalability

of map data collection across a campus-wide effort by
using Unmanned Aerial Vehicles (UAV) in conjunction to
vehicle mounted sensors. Through RTK-GPS referenced
aerial image collection with a Phantom 4-RTK platform,
a collection of over 1,400 images across 2 flights resulted
in 0.38 km2 coverage with a Ground Sampling Distance
(GSD) of 1.8cm/pixel, shown in Figs. 36 and 37. All data
georeferencing was completed using aerial pose estimates
derived from RTK based timing correction to GPS to
achieve<2cm localization accuracy in a global coordinate
system. While the data collected was a progressive incre-
ment towards larger area scanning, it was concluded that
aerial-based map data collection efforts provide a valid
and feasible path towards state and nationwide timely
reference map creation.
The benefits of efficient, large-area data acquisitions

did not come without difficulties. Firstly, bringing multi-
altitude UAV and satellite data together resulted in feature
discontinuities such as lane markings. Geo-referencing
with state-of-art RTK systems provided localization accu-
racies to sub 5-cm for UAV data, which was still too
large to ensure perfect alignment. It was also found
that many public map contents also adhered to georef-
erencing standards on the order of 50cm, as observed
in Fig. 38. Additionally, dense multi-view reconstruction
techniques for image based reconstructions commonly
use depth filtering to reduce reconstruction noise. Arti-
facts such as power-lines, poles and traffic signs were all
subject to occasional filtering, hence being removed from

Fig. 36 UC San Diego engineering campus 3D point cloud from
geo-referenced UAV imaging

the reconstructions. While there are methods to han-
dle thin-features in multi-view reconstructions [76], these
are often missing in open-source reconstruction libraries.
The findings highlighted important considerations when
attempting to use only real-world aerial data for map
creation in the scope of autonomous vehicles. Table 6
summarizes the approximate spatial resolutions and geo-
referencing capabilities associated with different scales of
data acquisition systems including UAV [77], aerial and
satellite maps [78] as well as ground vehicle [79] based
map creation systems. While some overlap, it can be seen
that manned aircraft with high spatial imaging resolu-
tion systems offers both high spatial density (GSD) as well
as strong geo-referencing, with the benefit of being even
more scalable than UAV based mapping. Future improve-
ments in sensory packages and platforms will yield further
options for scalable, real-world data capture methods that
are applicable to map creation for autonomous ground
vehicles.

4.5.2 Synthetic driven data
The lack of readily available ground-truth data from sen-
sory perspectives in real-world data encourages the cre-
ation of fully synthetic data. Such synthetic models can be
real-world based (derived from captured data but fitted
to pre-defined geometric primitives) or designed fiction-
ally. As a step towards this end, various autonomous
driving simulators were explored including CARLA [80]
and LGSVL [81]. These provide tools and methodologies
for close loop testing with existing autonomous driving
frameworks that includemap customization tools, physics
engines, sensor models, as well as simulated road users.
Although both simulators provide highly customizable
toolkits for map generation, CARLA incorporates direct
API support for the RoadRunner mapping software which
facilitates georeferenced road network mapping in addi-
tion to a suite of configurable sensor types as shown
in Fig. 39. RoadRunner utilizes a combination of aerial
imagery, elevation maps, and point clouds to generate
road network definitions that account for various geome-
tries and elevation characteristics. Leveraging the UAV
data captured and publically available satellite imagery,
a digital twin was initially generated with complete road
networks for approximately 70% of the UC San Diego
campus; three parts of campus are shown in Figs. 40(a),
40(c), and 40(e). All data was referenced to a local Carte-
sian coordinate system with a global offset.
Although the initial road network definition for campus

can be applied for verification across planning strategies
given the ROS bridge support for our navigation stack,
the gap between the simulated perception and real sensor
data persists. Additionally, generating realistic simula-
tion scenarios relies on accurate representation of road
furniture, buildings, vegetation, traffic signs, etc. Having

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 30 of 35

Fig. 37 UC San Diego engineering campus 2D orthogonal view with marked stop signs from geo-referenced UAV imaging

developed campus wide semantic models as described in
Section 4.3 and experimented with semantic scene mod-
els for dynamic trajectory generation to address scalability
limitations (Section 4.4), we first explore a semantic rep-
resentation strategy. This representation is portrayed in
Figs. 40(b), 40(d), and 40(f) following the color map from
our work on semantic mapping. Given that our approach
for dynamic trajectory generation operates with semantic
representations, this presents an opportunity for testing
and verification, but also in terms of generating unseen
scenarios during navigation that can be useful during
training machine learning based models. Secondly, for
use-cases the depend on photorealistic representations, as
shown in Figs. 36 and 37, an active research direction

Fig. 38 Semi-transparent overlay of UAV captured, geo-referenced
orthomosaic image data over Google satellite imagery of intersection
at the UC San Diego engineering campus. Inconsistencies of
pedestrian crossings emphasize the issues associated with
geo-referencing, and temporal data agreement, in addition to strong
scale differences

involves incorporating photorealistic 3D models through
the process of surface reconstruction.

5 Lessons and issues for the future
The design of the vehicles for urban mobility has made
it clear that there are still a number of challenges for the
future. The challenges span the full system architecture.
Driving in an area with a lot of pedestrians requires the

ability to detect other road-users and predict their intent.
The present system is good at detecting pedestrians, but
the prediction of future motion is at best 1-3 seconds,
which is not enough to safely avoid a collision if a person
steps onto the road.
A similar problem is experienced with cars. The vision

and LiDAR systems are only line of sight. In traffic,
the system only sees the car immediately in front of it.
Consequently, we are slowly evaluating use of radar sys-
tems from several providers to determine the best way to
improve situational awareness. The radars also have oper-
ating long-range, which is needed to be able to detect
other cars at intersections. Entering a busy street from a
side street requires detection of cars at least 450 ft / 150
m away. In addition, longer range detection and tracking
is desirable to allow for robust intent recognition over a
period of 10+ seconds.
An interesting issue that has not yet been fully studied

in the system architecture includes both, hardware and

Table 6 Approximate real-world geospatial map data source
comparisons for GSD and geo-referencing accuracies

Data Sources GSD (cm/pix) Geo-Referencing (cm)

UAV 1-10 5

Satellite 20-100 50+

Manned Aircraft 5-20 10

Ground Vehicle 1-10 5

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 31 of 35

Fig. 39 Synthetic stereo panoramic camera data generated with CARLA. From top to bottom: RGB images of cameras, bottom-left: respective depth
maps, bottom-right: respective semantic segmentation maps

software components. Recently, a proliferation of high-
performance embedded systems have entered the market
such as the NVIDIA Jetson Nano and the Qualcomm RB5
system. The systems can interface to 4+ cameras, and have
embedded GPUs. The systems can perform 10+ trillion
operations per second. As such, an interesting question
is how to partition the system to have much of the pro-
cessing carried out at the edge. One could imagine a
system that is a federation of embedded systems intercon-
nected by high-speed Ethernet, which would reduce the
need for cabling and allow for much higher flexibility, but
debugging such systems is much harder. Finding the right
balance is an open research challenge.
The role of maps is another interesting question. Most

AV companies rely on HD-maps, which poses a chal-
lenge in terms of updating and maintenance. We have
adopted a more minimalistic approach with a hierarchy

of map representations of high-level topological graphi-
cal models (such as Open Street Maps) over local maps
to instantaneous models that are updated in real-time. At
the same time there is a need for a semantic dimension
as well to characterize the relative location of sidewalks,
traffic signs, crosswalks, The semantic models provide
a strong prior on the interpretation of the environment
which in term allow for prediction of the layout of the
environment and the behavior / intent of other road-users.
Finding the right balance between these prior and online
map representations is an interesting research question in
its own right.
The value of a digital twin is another issue that we have

only started to explore. There are numerous use-cases for
such a system. It is possible to simulate the system and
explore many issues for behavior verification, for train-
ing of ML models to bootstrap models prior to real-world

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 32 of 35

Fig. 40 Various BEV road network definitions for the UC San Diego campus. On the left column ((a)(c) and (e)), the road networks are generated
using standard road textures provided by RoadRunner. The corresponding semantic maps are shown in (b)(d), and (f)

fine-tuning. The twin system can also be used for post-
mission analysis of system behavior. As we use the ROS
system, the default data-viewer is RViz, which is great,
but it lacks a lot of the tools for analysis. In addition,
the digital twin is interesting for level 4-5 systems as it
is possible to augment the digital twin system with an
AR/VR embedding that would allow remote supervision
and tele-operation, which has numerous advantages for
training and monitoring of systems during deployment.
Obviously, the remotemonitoring poses new challenges in
terms of adequate / robust communication links to ensure
safe operation and the design of robust control methods
in the presence of variable time-delays.
Finally, there is a need to consider new techniques for

software engineering. The present design with a mixture
of Python and C++/ROS is very flexible but it is diffi-
cult to have a robust framework for debugging and to
provide any form of safety guarantee. Design of mass
scale autonomous systems will require mature software
tools with an ability to design, simulate, code-generate and
debug systems at multiple levels of abstraction. We are

far from such a system, and it is very much a research
challenge for the future.
The effort at UC San Diego in the Autonomous Vehicle

Laboratory is an interesting start, and we have made seri-
ous progress both in terms of systems realization and in
terms of long-term evaluation. At the same time, we are
just getting started. There are many more M.Sc. and Ph.D.
theses to be written before we are at the end. In parallel, we
are trying to transition some of our results to industry to
demonstrate impact beyond the academic environment.

Acknowledgements
We acknowledge the support from Dr. Todd Hylton and members of the
Autonomous Vehicle Lab at UC San Diego that have shared valuable input
throughout the course of our research, specifically co-authors in [10, 25, 61].
We thank Prof. Falko Kuester, Eric Lo and Jonathan Klingspon, at the UC San
Diego Dronelab, for providing access to the data in Section. 4.5. We also
appreciate the partnership and collaboration with UC San Diego facilities,
mailing center, and police station for supporting our research.

Authors’ contributions
Dr. Henrik I. Christensen directed the project described in this manuscript.
David Paz’ main contributions include Sections 2, 3, 4.3, and 4.4; additional
efforts and input were provided in Sections 4.1, and 4.5. Hengyuan Zhang’s

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 33 of 35

main contributions include Sections 2.2, 4.1, 4.2, and 4.3; additional efforts and
input were provided in Sections 2, 3, and 4.4. Dominique Meyer contributed
significantly to Section 4.5; he also provided valuable input in Sections 2, 3.
Hao Xiang’s main contributions include Section 4.3; he has also provided
valuable input to Section 4.4. Yunhai Han and Yuhan Liu contributed
significantly to Section 4.1. Andrew Liang, Zheng Zhong, and Shiqi Tang’s
main contributions include Sections 2.3, 3.2.2, and 4.5, respectively. The
authors read and approved the final manuscript.

Funding
The effort has been funded by UC San Diego through the Contextual Robotics
Institute with support from Qualcomm.

Availability of data andmaterials
The datasets associated with Sections 4.1.1 and 4.4 and related search efforts
can be accessed from http://avl.ucsd.edu.

Code availability
Various code repositories from this work can be found at https://github.com/
AutonomousVehicleLaboratory.

Declarations

Competing interests
The authors do not have any external engagement related to this project.

Received: 3 August 2021 Accepted: 14 September 2021

References
1. E. D. Dickmanns, A. Zapp, inMobile Robots, SPIE, ed. by Wolfe W.J.,

Marquina N. A Curvature-based Scheme for Improving Road Vehicle
Guidance by Computer Vision, vol. 727, (Bellingham, 1987), pp. 161–168

2. E. Dickmanns, Dynamic Vision for Perception and Control of Motion.
(Springer Verlag, Heidelberg, 2007)

3. M. A. Turk, D. G. Morgenthaler, K. D. Gremban, M. Marra, VITS - A Vision
System for Autonomous Land Vehicle Navigation. IEEE Trans. Pattern
Anal. Mach. Intell. 10(3), 342–361 (1988)

4. B. Marr, Key milestones of Waymo - Google’s self-driving cars (2018).
https://forbes.com/sites/bernardmarr/2018/09/21/key-milestones-of-
waymo-googles-self-driving-cars. Accessed 02 Oct 2021

5. I. Bonifacic, Toyota is developing autonomous taxis with help from Aurora
(2021). Engadget. https://www.engadget.com/toyota-aurora-denso-
autonomous-vehicle-partnership-191500404.html. Accessed 02 Oct 2021

6. A. Palmer, Amazon Zoox unveils self-driving robotaxi (2020). CNBC,
https://cnbc.com/2020/12/14/amazons-self-driving-company-zoox-
unveils-autonomous-robotaxi.html. Accessed 02 Oct 2021

7. A. Adler, Aurora closes in on production version of self-driving truck
technology (2021). FreightWaves, https://www.freightwaves.com/?p=
358829. Accessed 02 Oct 2021

8. Baidu-Apollo-team, Apollo: Open source autonomous driving (2017).
https://github.com/ApolloAuto/apollo. Accessed 02 Oct 2021

9. S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, T. Hamada, An
open approach to autonomous vehicles. IEEE Micro. 35(6), 60–68 (2015).
https://doi.org/10.1109/MM.2015.133

10. D. Paz, P.-J. Lai, S. Harish, H. Zhang, N. Chan, C. Hu, S. Binnani, H.
Christensen, in Field and Service Robotics. Lessons learned from deploying
autonomous vehicles at UC San Diego, (Tokyo, JP, 2019)

11. Z. Zhang, A flexible new technique for camera calibration. IEEE Trans.
Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

12. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.
Ng, in ICRAWorkshop on Open Source Software. ROS: an open-source
Robot Operating System, vol. 3, (2009)

13. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). PointPillars:
Fast encoders for object detection from point clouds, (2019),
pp. 12689–12697. https://doi.org/10.1109/CVPR.2019.01298

14. M. Fischler, R. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography.
Commun. ACM. 24, 381–395 (1981)

15. V. Lepetit, F. Moreno-Noguer, P. Fua, EPnP: An accurate O(n) solution to
the PnP problem. Int. J. Comput. Vis. 81, 155 (2009). https://doi.org/10.
1007/s11263-008-0152-6

16. J. Redmon, A. Farhadi, YOLOv3: An Incremental Improvement. ArXiv
abs/1804.02767 (2018)

17. C. Campos, R. Elvira, J. Rodríguez, J. Montiel, J. D. Tardós, ORB-SLAM3: An
accurate open-source library for visual, visual-inertial and multi-map
SLAM. ArXiv abs/2007.11898 (2020)

18. J. Zhang, S. Singh, in Robotics: Science and Systems. LOAM: Lidar odometry
and mapping in real-time, (2014)

19. M. Magnusson, The three-dimensional normal-distributions transform—
an efficient representation for registration, surface analysis, and loop
detection. PhD dissertation, Örebro universitet (2009)

20. R. B. Rusu, S. Cousins, in IEEE International Conference on Robotics and
Automation (ICRA). 3D is here: Point Cloud Library (PCL), (Shanghai, China,
2011)

21. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y.
Pan, G. Baldan, O. Beijbom, in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). nuScenes: A multimodal dataset for
autonomous driving, (2020). https://doi.org/10.1109/CVPR42600.2020.
01164

22. C. Ming-Fang, L. John, S. Patsorn, S. Jagjeet, B. Slawomir, H. Andrew, D.
Wang, C. Peter, L. Simon, R. Deva, H. James, in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). Argoverse: 3D tracking
and forecasting with rich maps, (2019), pp. 8740–8749

23. H. Darweesh, E. Takeuchi, K. Takeda, Y. Ninomiya, A. Sujiwo, Y. Morales, N.
Akai, T. Tomizawa, S. Kato, Open source integrated planner for
autonomous navigation in highly dynamic environments. J. Robot.
Mechatron. 29, 668–684 (2017). https://doi.org/10.20965/jrm.2017.p0668

24. R. C. Coulter, Implementation of the pure pursuit path tracking algorithm.
Tech. rep. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992)

25. D. Paz, P.-J. Lai, N. Chan, Y. Jianf, H. I. Christensen, in International
Conference on Intelligent Robots and Systems (IROS). Autonomous vehicle
benchmarking using unbiased metrics (IEEE/RSJ, Las Vegas, NV, 2020a)

26. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, 2018, in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Social GAN:
Socially Acceptable Trajectories with Generative Adversarial Networks,
pp. 2255–2264. https://doi.org/10.1109/CVPR.2018.00240

27. T. Fernando, S. Denman, S. Sridharan, C. Fookes, in Computer Vision – ACCV
2018, ed. by C. V. Jawahar, H. Li, G. Mori, and K. Schindler. GD-GAN:
Generative Adversarial Networks for Trajectory Prediction and Group
Detection in Crowds (Springer International Publishing, Cham, 2019),
pp. 314–330

28. J. Amirian, J. Hayet, Pettré J, in 2019 IEEE/CVF Conference on Computer
Vision and Pattern RecognitionWorkshops (CVPRW). Social Ways: Learning
multi-modal distributions of pedestrian trajectories with GANs, (2019),
pp. 2964–2972

29. A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, S.
Savarese, in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). SoPhie: An attentive GAN for predicting paths
compliant to social and physical constraints, (2019), pp. 1349–1358.
https://doi.org/10.1109/CVPR.2019.00144

30. V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi, S.
Savarese, in Advances in Neural Information Processing Systems, Curran
Associates, Inc., ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’
Alché-Buc, E. Fox, and R. Garnett. Social-bigat: Multimodal trajectory
forecasting using bicycle-gan and graph attention networks, vol. 32,
(2019). https://proceedings.neurips.cc/paper/2019/file/
d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf

31. T. Salzmann, B. Ivanovic, P. Chakravarty, M. Pavone, Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data
(2020). https://arxiv.org/pdf/2001.03093.pdf

32. X. Feng, Z. Cen, J. Hu, Y. Zhang, in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). Vehicle trajectory prediction using
intention-based conditional variational autoencoder, (2019),
pp. 3514–3519. https://doi.org/10.1109/ITSC.2019.8917482

33. A. Mohamed, K. Qian, M. Elhoseiny, C. Claudel, in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). Social-STGCNN: A
social spatio-temporal graph convolutional neural network for human
trajectory prediction, (2020), pp. 14412–14420. https://doi.org/10.1109/
CVPR42600.2020.01443

http://avl.ucsd.edu
https://github.com/AutonomousVehicleLaboratory
https://github.com/AutonomousVehicleLaboratory
https://forbes.com/sites/bernardmarr/2018/09/21/key-milestones-of-waymo-googles-self-driving-cars
https://forbes.com/sites/bernardmarr/2018/09/21/key-milestones-of-waymo-googles-self-driving-cars
https://www.engadget.com/toyota-aurora-denso-autonomous-vehicle-partnership-191500404.html
https://www.engadget.com/toyota-aurora-denso-autonomous-vehicle-partnership-191500404.html
https://cnbc.com/2020/12/14/amazons-self-driving-company-zoox-unveils-autonomous-robotaxi.html
https://cnbc.com/2020/12/14/amazons-self-driving-company-zoox-unveils-autonomous-robotaxi.html
https://www.freightwaves.com/?p=358829
https://www.freightwaves.com/?p=358829
https://github.com/ApolloAuto/apollo
https://doi.org/10.1109/MM.2015.133
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1109/CVPR42600.2020.01164
https://doi.org/10.1109/CVPR42600.2020.01164
https://doi.org/10.20965/jrm.2017.p0668
https://doi.org/10.1109/CVPR.2018.00240
https://doi.org/10.1109/CVPR.2019.00144
https://proceedings.neurips.cc/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
https://arxiv.org/pdf/2001.03093.pdf
https://doi.org/10.1109/ITSC.2019.8917482
https://doi.org/10.1109/CVPR42600.2020.01443
https://doi.org/10.1109/CVPR42600.2020.01443

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 34 of 35

34. J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, C. Schmid, in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
VectorNet: Encoding hd maps and agent dynamics from vectorized
representation, (2020), pp. 11522–11530. https://doi.org/10.1109/
CVPR42600.2020.01154

35. A. Ribeiro, L. Dihl, C. Jung, in International Conference on Systems, Signals
and Image Processing. Automatic camera calibration for driver assistance
systems, (2006), pp. 173–176

36. L. Lu, X. Lu, S. Ji, C. Tong, in Intelligent Information Processing VII. A traffic
camera calibration method based on multi-rectangle (Springer, Berlin,
Heidelberg, 2014), pp. 230–238

37. H. Wang, Y. Cai, G. Lin, W. Zhang, A novel method for camera external
parameters online calibration using dotted road line. Adv. Robot. 28,
1033–1042 (2014). https://doi.org/10.1080/01X00000.6918642014.902329

38. A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets robotics: The KITTI
dataset. Int. J. Robot. Res. (IJRR). 32(11), 1231–1237 (2013)

39. Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick, Detectron2 (2019). https://
github.com/facebookresearch/detectron2. Accessed 02 Oct 2019

40. C. B. Madsen, H. I. Christensen, Chapter 1. Modelling and testing the stability
of edge segments: Length and orientation. (World Scientific Press,
Singapore, 1995), pp. 1–15

41. K. He, G. Gkioxari, P. Dollár, R. Girshick, in 2017 IEEE International Conference
on Computer Vision (ICCV). Mask R-CNN, (2017), pp. 2980–2988. https://doi.
org/10.1109/ICCV.2017.322

42. R. Grompone von Gioi, G. Randall, A Sub-Pixel Edge Detector: an
Implementation of the Canny/Devernay Algorithm. Image Process. On
Line. 7, 347–372 (2017). https://doi.org/10.5201/ipol.2017.216

43. Y. Han, Y. Liu, D. Paz, H. Christensen, Auto-calibration method using stop
signs for urban autonomous driving applications. ArXiv abs/2010.07441
(2021). https://doi.org/2010.07441

44. C. Park, P. Moghadam, S. Kim, S. Sridharan, C. Fookes, Spatiotemporal
Camera-LiDAR calibration: A targetless and structureless approach. IEEE
Robot. Autom. Lett. 5, 1556–1563 (2020)

45. J. Kümmerle, T. Kühner, in 2020 IEEE International Conference on Robotics
and Automation (ICRA). Unified intrinsic and extrinsic camera and LiDAR
calibration under uncertainties, (2020), pp. 6028–6034. https://doi.org/10.
1109/ICRA40945.2020.9197496

46. A. Dhall, K. Chelani, V. Radhakrishnan, K. M. Krishna, LiDAR-Camera
Calibration using 3D-3D Point correspondences. ArXiv e-prints
1705.09785 (2017)

47. S. Mishra, G. Pandey, S. Saripalli, in 2020 IEEE Intelligent Vehicles Symposium
(IV). Extrinsic calibration of a 3D-LIDAR and a camera, (2020),
pp. 1765–1770

48. P. Torr, A. Zisserman, MLESAC: A new robust estimator with application to
estimating image geometry. Comput. Vis. Image Underst. 78, 138–156
(2000)

49. R. B. Rusu, Semantic 3D object maps for everyday manipulation in human
living environments. PhD thesis, Computer Science department,
Technische Universitaet Muenchen, Germany (2009)

50. T. Yin, X. Zhou, P. Krähenbühl, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Center-based 3D object
detection and tracking, (2021), pp. 11784–11793

51. B. Zhu, Z. Jiang, X. Zhou, Z. Li, G. Yu, Class-balanced grouping and
sampling for point cloud 3D object detection. ArXiv abs/1908.09492
(2019)

52. J. V. Brummelen, M. O’Brien, D. Gruyer, Najjaran H, Autonomous vehicle
perception: The technology of today and tomorrow. Transp. Res. C Emerg.
Technol. 89, 384–406 (2018). https://doi.org/10.1016/j.trc.2018.02.012

53. J. Elfring, R. Appeldoorn, S. Dries, M. Kwakkernaat, Effective world
modeling: Multisensor data fusion methodology for automated driving.
Sensors (Basel, Switzerland). 16, 1668 (2016)

54. A. Rangesh, M. M. Trivedi, No blind spots: Full-surround multi-object
tracking for autonomous vehicles using cameras and lidars. IEEE Trans.
Intell. Veh. 4(4), 588–599 (2019). https://doi.org/10.1109/TIV.2019.2938110

55. Z. Ding, Y. Hu, R. Ge, L. Huang, S. Chen, Y. Wang, J. Liao, 1st place solution
for Waymo open dataset challenge - 3D detection and domain
adaptation. ArXiv abs/2006.15505 (2020)

56. H. Cho, Y. Seo, B. V. K. V. Kumar, R. R. Rajkumar, in 2014 IEEE International
Conference on Robotics and Automation (ICRA). A multi-sensor fusion
system for moving object detection and tracking in urban driving
environments, (2014), pp. 1836–1843. https://doi.org/10.1109/ICRA.2014.
6907100

57. C. R. Qi, W. Liu, C. Wu, H. Su, L. J. Guibas, in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Frustum PointNets for 3D object
detection from RGB-D data, (2018), pp. 918–927. https://doi.org/10.1109/
CVPR.2018.00102

58. D. Xu, D. Anguelov, A. Jain, in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. Pointfusion: Deep sensor fusion for 3D bounding
box estimation, (2018), pp. 244–253

59. X. Weng, J. Wang, D. Held, K. Kitani, 3DMulti-Object Tracking: A Baseline
and New EvaluationMetrics, (2020), pp. 10359–10366

60. H.-k. Chiu, A. Prioletti, J. Li, J. Bohg, Probabilistic 3d multi-object tracking
for autonomous driving. ArXiv abs/2001.05673 (2020)

61. D. Paz, P. J. Lai, N. Chan, Y. Jianf, H. I. Christensen, Probabilistic semantic
mapping for urban autonomous driving applications (IEEE, 2020),
pp. 2059–2064

62. N. Homayounfar, W. C. Ma, J. Liang, X. Wu, J. Fan, R. Urtasun, in Proceedings
of the IEEE/CVF International Conference on Computer Vision. Dagmapper:
Learning to map by discovering lane topology, (2019), pp. 2911–2920

63. N. Homayounfar, W.-C. Ma, S. K. Lakshmikanth, R. Urtasun, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
Hierarchical recurrent attention networks for structured online maps,
(2018), pp. 3417–3426

64. S. Sengupta, P. Sturgess, L. Ladickỳ, P. H. Torr, in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Automatic dense visual
semantic mapping from street-level imagery (IEEE, 2012), pp. 857–862

65. S. Sengupta, E. Greveson, A. Shahrokni, P. H. Torr, in 2013 IEEE International
Conference on robotics and Automation. Urban 3D semantic modelling
using stereo vision (IEEE, 2013), pp. 580–585

66. T. Westfechtel, K. Ohno, R. P. B. Neto, S. Kojima, S. Tadokoro, in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). Fusion of camera and
lidar data for large scale semantic mapping (IEEE, 2019), pp. 257–264

67. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, in Computer Vision -
ECCV 2018. Lecture Notes in Computer Science, ed. by V. Ferrari, M. Hebert, C.
Sminchisescu, and Y. Weiss. Encoder-decoder with atrous separable
convolution for semantic image segmentation, vol. 11211 (Springer, 2018)

68. S. Hecker, D. Dai, L. Van Gool, in Proceedings of the european conference on
computer vision (ECCV). End-to-end learning of driving models with
surround-view cameras and route planners, (2018), pp. 435–453

69. A. Amini, G. Rosman, S. Karaman, D. Rus, in 2019 International Conference
on Robotics and Automation (ICRA). Variational end-to-end navigation and
localization (IEEE, 2019), pp. 8958–8964

70. D. Paz, H. Zhang, H. I. Christensen, TridentNet: A conditional generative
model for dynamic trajectory generation, (Singapore, 2021)

71. M. Haklay, P. Weber, Openstreetmap: User-generated street maps. IEEE
Pervasive Comput. 7(4), 12–18 (2008)

72. K. Sohn, X. Yan, H. Lee, in Proceedings of the 28th International Conference
on Neural Information Processing Systems. Learning structured output
representation using deep conditional generative models, vol. 2 (MIT
Press, Cambridge, 2015), pp. 3483–3491

73. T. Yang, Z. Nan, H. Zhang, S. Chen, N. Zheng, in 2020 IEEE Intelligent
Vehicles Symposium (IV). Traffic agent trajectory prediction using social
convolution and attention mechanism (IEEE, 2020), pp. 278–283

74. D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L.
Vincent, J. Weaver, Google street view: Capturing the world at street level.
Computer. 43(6), 32–38 (2010)

75. P. Zhang, M. Zhang, J. Liu, Real-time HD map change detection for
crowdsourcing update based on mid-to-high-end sensors. Sensors. 21(7),
2477 (2021)

76. Y. Zhang, X. Yuan, Y. Fang, S. Chen, UAV low altitude photogrammetry for
power line inspection. ISPRS Int. J. GEO-Inf. 6(1), 14 (2017)

77. E. Remzi, E. Alkan, A. Aydin, A comparative analysis of UAV-RTK and
UAV-PPK methods in mapping different surface types. Eur. J. For. Eng.
7(1), 12–25 (2020)

78. L. Barazzetti, F. Roncoroni, R. Brumana, M. Previtali, Georeferencing
accuracy analysis of a single worldview-3 image collected over milan.
XXIII ISPRS Congress. 38, 429–434 (2016)

79. P. Daruthep, N. Sutthisangiam, in 2020 22nd International Conference on
AdvancedCommunication Technology (ICACT). Development of automated
processing for high-definition mapping system (IEEE, 2020), pp. 507–510

80. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, in Proceedings of the
1st Annual Conference on Robot Learning. CARLA: An open urban driving
simulator, (2017), pp. 1–16

https://doi.org/10.1109/CVPR42600.2020.01154
https://doi.org/10.1109/CVPR42600.2020.01154
https://doi.org/10.1080/01X00000.6918642014.902329
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.5201/ipol.2017.216
https://doi.org/2010.07441
https://doi.org/10.1109/ICRA40945.2020.9197496
https://doi.org/10.1109/ICRA40945.2020.9197496
https://doi.org/10.1016/j.trc.2018.02.012
https://doi.org/10.1109/TIV.2019.2938110
https://doi.org/10.1109/ICRA.2014.6907100
https://doi.org/10.1109/ICRA.2014.6907100
https://doi.org/10.1109/CVPR.2018.00102
https://doi.org/10.1109/CVPR.2018.00102

Christensen et al. Autonomous Intelligent Systems (2021) 1:11 Page 35 of 35

81. G. Rong, B. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Mozeiko, E. Boise, G.
Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda, M.
Reyes, D. Zelenkovsky, S. Kim, in 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC). LGSVL Simulator: A high fidelity
simulator for autonomous driving, (2020), pp. 1–6

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Initial build
	Systems, sensors, and software tools
	Sensors
	Logging
	Software tools and containerization

	The ROS / autoware framework
	Perception
	Mapping and localization
	Global and motion planning
	Trajectory following and control

	Verification and early testing

	Lessons from first long-term test
	Disengagements from autonomous mail delivery
	Lessons
	Sensor fusion for detection
	Long term forecasting, intent recognition, and interactions
	Static maps in dynamic environments
	Closed loop simulation and testing

	Addressing the challenges
	Automatic calibration
	Camera intrinsic auto-calibration
	Camera-LiDAR extrinsic semi-auto-calibration

	Sensor fusion for robust tracking
	Semantic mapping
	Dynamic trajectory generation (TridentNet)
	Building a digital twin
	From world to world model
	Synthetic driven data

	Lessons and issues for the future
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Code availability
	Competing interests
	References
	Publisher's Note

