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Abstract
In this paper we argue that safety claims, when justified by a safety case, are descriptive fallible knowledge claims. Even 
if the aim of a safety case was to justify infallible knowledge about the safety of a system, such infallible safety knowledge 
is impossible to attain in the case of AI-enabled systems. By their nature AI-enabled systems preclude the possibility of 
obtaining infallible knowledge concerning their safety or lack thereof. We suggest that one can communicate knowledge of 
an AI-enabled system’s safety by structuring their exchange according to Paul Grice’s Cooperative Principle which can be 
achieved via adherence to the Gricean maxims of communication. Furthermore, these same maxims can be used to evaluate 
the calibre of the exchange, with the aim being to ensure that communicating knowledge about an AI-enabled system’s safety 
is of the highest calibre, in short, that the communication is relevant, of sufficient quantity and quality, and communicated 
perspicuously. The high calibre communication of safety claims to an epistemically diverse group of stakeholders is vitally 
important given the increasingly participatory nature of AI-enabled system design, development and assessment.
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1  Introduction

A clinician, Clara, makes her way to see her last patient, 
Peter, before her shift ends. It has been a long day made 
even more difficult by the fact that most of her time is spent 
with patients whose cases are complicated and out of the 
ordinary. Routine but cognitively light tasks have been 
increasingly automated away through the use of autonomous 
AI-enabled technologies. Clara no longer conducts routine 
follow-up calls with patients, which were often pleasant and 
a welcome reprieve for her, and instead spends most of her 
day handling cases that an AI-enabled recommender sys-
tem has flagged as “urgent.” Peter’s is one such case. Peter 
is a type-2 diabetic and was admitted to the hospital after 
complaining about chest pain. While Clara would normally 
meet with Peter alone, her hospital has recently acquired a 
clinical diagnostic support system named HIPPOCRATES 
that is supposed to enhance human diagnostic ability. After 
examining Peter, Clara is worried that his chest pain is 
symptomatic of an impending myocardial infarction, i.e., 

heart attack. HIPPOCRATES, in contrast, does not predict 
that Peter will experience a myocardial infarction within the 
next three months. While treatment decisions ultimately rest 
with Clara (and Peter of course), she is frustrated by the 
system’s disagreement with her assessment. She is mind-
ful of many different considerations; Peter’s health, scarce 
hospital resources, her relatively new relationship with HIP-
POCRATES, and the consequences of acting on her own 
judgement versus deferring to the recommendation of HIP-
POCRATES. In her exhausted state, Clara recommends a 
standard treatment for Peter and sends him on his way.

This hypothetical scenario involving a clinician and a 
CDSS (clinical diagnostic support system) might seem far-
fetched, but AI-enabled systems already perform many of 
the tasks mentioned in the vignette above. AI-enabled sys-
tems can conduct routine follow up calls [29], can engage in 
triaging patients [9, 45], and can diagnose and treat illnesses 
like sepsis [25]. While there are numerous different issues 
that we might draw out and analyse from the above story, 
e.g., questions about the transparency of such an AI-enabled 
system, our focus is going to be on the issue of AI safety. 
When is it safe to deploy an AI-enabled system? Moreover, 
what does the claim that a given AI-enabled system is safe 
amount to? Is it a knowledge claim? Or just a claim about 
what one believes to be the case?
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In this paper we will argue that safety claims about AI-
enabled systems are claims of knowledge, i.e., about what 
one knows and not merely believes, if they are supported 
by an appropriately structured argument which is, in turn, 
justified by defeasible evidence. Indeed this is exactly the 
purpose of a safety case, to provide a clear, comprehensible, 
and defensible argument, supported by a body of evidence, 
that a system is acceptably safe to operate in a given con-
text [28, 42]. The purpose of the safety case methodology, 
i.e., the process of producing a safety case, and the resultant 
safety case1 is to supply justification for the knowledge claim 
that a given system is acceptably safe. This however is not 
infallible knowledge but rather fallible knowledge. This is 
because safety cases have their roots in the tradition of infor-
mal argumentation. The conclusions of or claims supported 
by informal arguments are rarely, if ever, established with 
certainty in the way that the conclusions of formal argu-
ments are established.

This is particularly evident when considering the safety 
of a system vis-à-vis a safety case and the claim that the 
system is acceptably safe to operate. But even if the aim 
of a safety case, or informal argument in general, was to 
produce infallible knowledge, the nature of AI-enabled sys-
tems would preclude this possibility. In other words, infal-
lible knowledge claims about AI-enabled systems, e.g., their 
behaviour, safety, etc., are unattainable in practice. These 
topics are taken up in sections two and three respectively. In 
section four, we attempt to answer the following question. 
Given claims about an AI-enabled system’s safety (justified 
by a safety case), how best to communicate this knowledge, 
especially to an epistemically diverse group of stakeholders? 
Our novel contribution is to suggest that the Gricean maxims 
of cooperative communication can be used to evaluate the 
calibre of the communication between affected stakeholders.

2 � Safety–critical systems

There are many different technological systems whose fail-
ure could result in loss of life, loss or significant damage 
to equipment and/or property, or damage to the environ-
ment. These safety–critical systems are particularly common 
in certain domains like healthcare, defence, aviation, and 
the petrochemical sector to name a few, but they are by no 
means limited to these domains [30, 41].

Safety is commonly conceptualised as freedom from 
harm [19]. But given that absolute freedom is rarely, if ever, 
possible for complex systems, definitions of safety tend to 
focus on the notion of risk, i.e. the likelihood and severity of 
harm [39]. This triggers necessary questions of acceptability 

of risk, by whom and given what else. It is important to 
note that intent matters. Harm here is unintended. It is typi-
cally due to error or complexity. If harm is deliberate, and 
it involves malice, then conceptually, the risk of harm falls 
within the realm of security and not safety, though both 
safety and security need to be considered in an integrated 
manner [3].

Here, safety is conceptualised as a state, i.e. a condition of 
the system in which it is free from harm. Other approaches, 
though not mutually exclusive, are more action-oriented, 
describing safety as the prevention or control of unaccep-
table or intolerable risk of harm. Recent safety science lit-
erature, under the umbrella of Safety II [22] or Resilience 
Engineering [23], emphasises a different perspective: safety 
is achieved through the adaptive capacity of the sociotechni-
cal system to adjust its behaviour under both expected and 
unexpected conditions. It focuses on how “things go right, 
rather than by preventing them from going wrong” [22].

Regardless of the specific definition of, or perspective 
on, safety, AI-enabled functions are increasingly seen as 
standing in need of safety assurance either because their 
adoption raises questions about safety or because they are 
being integrated into safety–critical systems. But how is a 
system deemed “safe enough” to deploy? More importantly 
for our purposes, what kind of claim is one making when 
they state that a system is “safe enough” or, synonymously, 
“acceptably safe”?2

2.1 � Safety assurance via safety cases

Before discussing what kind of claim a safety claim is, it is 
important to contextualise the practice of producing safety 
cases in order to assure the safety of a system. Safety prac-
tices have evolved significantly over the last fifty years [8]. 
Considerations of safety were initially, and unfortunately, 
reactive. The petrochemical, nuclear and railway domains 
for example are replete with accidents, many of which were 
catastrophic, that precipitated changes to safety practices.3 It 
was largely only after accident investigations that changes to 
systems were made, if they were made at all, to ensure that 
similar accidents would not occur again in the future. Regu-
lation in these domains was similarly reactive in the sense 
that manufacturers and operators had to meet specific stand-
ards and technical requirements specified by regulators who 
were not able to keep pace with technological innovations. 
The result was, for two main reasons, safety management 

1  This can sometimes be referred to as a safety report.

2  For simplicity, our usage of the term ‘safe’ is also synonymous with 
the terms ‘safe enough’ and ‘acceptably safe’ unless otherwise speci-
fied.
3  See (Sujan et al., 2012) for a brief chronological summary of sig-
nificant events and their impact on safety regulation.
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that was not fit for purpose [41]. First, this approach led 
to a culture of “box ticking” where the focus was more on 
compliance with standards and less on actually understand-
ing and managing risks. Second, because the emphasis was 
on compliance with standards and regulations, this approach 
stifled innovation and hindered progress in industries driven 
by technological change.

In response to major accidents and changing economic 
environments (e.g., the privatisation of public industries) 
approaches to demonstrating the safety of a given system 
began to change. In addition to demonstrating compli-
ance with applicable standards and requirements, current 
approaches to safety “require manufacturers and operators to 
demonstrate that they have adopted a thorough and system-
atic process to proactively understand the risks associated 
with their systems and control these risks appropriately” 
[41]. These duties can be fulfilled through the use of safety 
cases, i.e., appropriately structured arguments justified by 
defeasible evidence. Importantly, this is not to say that safety 
cases alone have led to improving safety practices. In addi-
tion to the adoption of safety cases there has been, for exam-
ple, more proactive safety management in general as well as 
a more widespread safety culture that have also contributed 
to improving safety practices.

2.2 � Safety claims

In its simplest form, a safety case is a clear, comprehensive 
and defensible argument that a system is acceptably safe to 
operate in a given context [28]. In what follows, our focus 
will be on the safety of AI-enabled systems unless other-
wise specified. Additionally, we will primarily be referring 
to safety cases and safety case production as a monolithic 
enterprise. This however obscures some of the variation 
between the different schools of thought when it comes to 
safety case production [16]. There are even some inconsist-
encies that can arise if one equivocates on the meaning of 
“safety case,” e.g., including voluminous technical details 
that interrupts or obscures the story of a system’s safety 
because one believes that the purpose of a safety case is to 
show how safety requirements are satisfied through different 
levels of design [16]. While we do not commit ourselves to 
any one safety case school (which are not mutually exclu-
sive, we do want to draw particular attention to two lines of 
thought that are pertinent for our upcoming discussion of AI 
safety, (1) that a safety case is used to document and com-
municate the story of a system’s safety to diverse stakehold-
ers (more on this in Sect. 4) including what it means for the 
system to be safe and how it achieves safety, and (2) that a 
safety case is used to establish confidence in safety claims, 
i.e., it is used to assure claims about safety [16]. There are 
also two major distinctions to note between a safety case and 
the safety case methodology. The former is an instantiated 

and compelling argument intended to support the claim that 
a given system is acceptably safe. The latter, appropriately, 
refers to the process by which one constructs or produces 
the safety case. There are different ways to present a safety 
case, e.g., images, text, bespoke notation, etc., and different 
methodologies one might use to produce the safety case. 
Caveats and clarifications aside, we turn now to consider 
what kind of claim is advanced in a safety case.

2.2.1 � Safety as a descriptive claim

Claims advanced in a safety case about an AI-enabled sys-
tem’s safety, or any system’s safety, are descriptive claims. 
They are about states of affairs. Let us consider the example 
of an AI-enabled extubation system that we will refer back to 
throughout this paper. In intensive care units (ICUs) patients 
may require invasive mechanical ventilation if they cannot 
breathe unaided. Intubation is the term used for the insertion 
of a tube into the trachea for such patients and extubation 
is the term used for the removal of the tube. An AI-enabled 
system can be used to predict patient readiness for extuba-
tion, a safety–critical task given the harmful consequences 
associated with both early and late weaning from mechanical 
ventilation [25]. To claim that this AI-enabled extubation 
system is acceptably safe to operate is not to say anything 
about what ought to be the case, i.e., something norma-
tive (e.g., we ought to deploy the system), but rather to say 
something about what is or will be the case, i.e., something 
descriptive (e.g., the system falsely predicted X percent of 
patients as ready for extubation in the test dataset). Note 
that while claims about an AI-enabled system’s safety are 
descriptive, one might make certain normative claims about 
those descriptive claims. For example, we might claim that 
you should not believe the claim that the AI-enabled extuba-
tion system is acceptably safe.

It might however be objected that claims about an AI-ena-
bled system’s safety are inherently or implicitly normative. 
For example, it is relatively common to infer that one can or 
ought to do something because it is safe to do so. Utterances 
like, “Elevators are safe to ride in” or “It’s safer to fly on a 
plane than drive in a car”, seem to suggest that one ought 
to take the elevator or that one ought not be afraid of flying. 
Granting that interpretation of the above utterances, it is 
nevertheless possible to separate descriptive claims about 
safety from normative ones. That is, it is possible to separate 
the factual/descriptive dimension from the evaluative/nor-
mative dimension of safety. The former invariably revolves 
around physical, technical or measurable facts. For example 
one might claim that the elevator is safe enough because the 
steel cables supporting it have a certain tensile strength two 
orders of magnitude greater than the elevator and any load it 
might carry. It is in this descriptive dimension that factual or 
technical judgments dominate given their role in justifying 
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the claim that the system in question (e.g., the elevator) is 
safe enough. Normative claims in contrast revolve around 
the adequacy or evaluation of these physical facts. For exam-
ple one might claim that an elevator ought not be considered 
safe enough unless the steel cables supporting it have a mini-
mum tensile strength three orders of magnitude greater than 
the elevator and any load it might carry. Similarly, one might 
claim that different or additional tests ought to be used to re/
evaluate the tensile strength of the steel cables.

In short, normative claims pertain to the safety require-
ments, e.g., whether they are sufficient or whether the pro-
posed threshold that constitutes “safe enough” is appropri-
ate, whereas descriptive claims pertain to the fulfilment 
of those requirements, e.g., whether it is the case that the 
requirements have been satisfied or the threshold of “safe 
enough” met. Importantly, when one makes a safety claim, 
e.g., that the elevator is safe enough or the AI-enabled 
extubation system is safe enough, the normative work has 
already been done; the value judgments were made when 
the safety requirements and threshold of “safe enough” were 
set.4 It is, of course, always possible to revisit or question 
these requirements or threshold, which is the normative 
dimension of safety, but our point is that that kind of activity 
can be separated, at least conceptually, from the descriptive 
dimension of safety.

2.2.2 � Safety as a knowledge claim

Claims advanced in a safety case about an AI-enabled sys-
tem’s safety, or again any system’s safety, are knowledge 
claims. That is, one is justified in believing the truth (assum-
ing the truth) of the claim that the system is acceptably safe 
to operate. But this can be developed further. For example, 
one might rightfully object that this rudimentary JTB (justi-
fied true belief) account of knowledge has serious flaws, one 
of which is its susceptibility to Gettier cases [12]. Gettier 
argued that it just might be by chance, for example, that one 
holds the justified true belief that the system described in the 

safety case is safe. Possessing a justified true belief there-
fore appears necessary but ultimately insufficient to secure a 
knowledge claim. Some additional requirement is required to 
ensure that the justification, the belief, or both is of the right 
sort to prevent cases of justified false beliefs from being 
counted as knowledge when epistemic luck is involved. But 
we are straying dangerously close to an analysis of episte-
mological issues stemming from Gettier cases that is well 
outside the scope of this paper. The only requirement that 
we will add here is that the justification be produced by a 
reliable process. This is the process reliabilist view accord-
ing to which justification is a function of the reliability of 
the process or processes that cause one to form beliefs5 that 
are true rather than false [14]. So one’s belief that a given 
AI-enabled system is acceptably safe is justified and counts 
as knowledge just in case the process that caused one to form 
that belief, e.g., reading and understanding the safety test 
results, reliably produces true beliefs.

Importantly, though we can mitigate concerns about epis-
temic luck via the reliabilist justification requirement, there 
is still the possibility that our justified belief turns out to 
be false. The knowledge claim advanced in a safety case is 
therefore fallible knowledge. It is not certain knowledge, 
where certainty here is understood as infallibility, i.e., it 
could not have been false. This is distinct from other kinds of 
subjective certainty, e.g., incorrigibility about what I believe 
or feel at a particular moment, and distinct from other kinds 
of epistemic certainties, e.g., indubitability or indefeasibil-
ity about what I know or am justified in believing [37]. Put 
simply, fallibilism is the view that conjoins two strongly 
held intuitions that, on the one hand, we can make mistakes 
and sometimes be mistaken about things but that, on the 
other hand, we also have quite a bit of knowledge and can 
know things in spite of the mistakes we might make [36]. 
So claims advanced in a safety case about an AI-enabled 
system’s safety are fallible knowledge claims because they 
can turn out, in unfortunate cases where a mistake has been 
made, to be false.6

2.3 � Establishing safety claims

Claims about the safety of AI-enabled systems are descrip-
tive fallible knowledge claims. When justified by a safety 
case, claims about the safety of an AI-enabled extuba-
tion system, for example, are more than mere belief. This 

4  Indeed value-laden judgments are inescapable and affect both the 
context of discovery and the context of evaluation. Roughly speak-
ing, values can influence what domain or subject a person studies, can 
influence hypothesis formation, and the choice of evidence to be gath-
ered (which is most relevant for the current discussion), all of which 
are generally part of the context of discovery. But values can also 
influence how a person interprets the evidence that has been gathered 
(which is, again, most relevant for the current discussion), the method 
of analysis employed, and the evidence’s relation to the hypothesis 
and larger theoretical constructs, all of which are generally part of 
the context of evaluation [24]. So while in practice it may be diffi-
cult to separate the normative and descriptive dimensions of safety, 
e.g., because two individuals might interpret the same evidence as 
in/sufficient for meeting a given safety requirement or threshold, we 
can nonetheless conceptually separate the normative and descriptive 
dimensions.

5  This can be generalised to include information in general. That is, 
some have argued that AI-enabled machines can produce “knowl-
edge” because their outputs reliably lead to the formation of true 
“beliefs.”.
6  This can include mistakes arising from fallacious reasoning, some 
of which have already been documented in the context of safety cases 
[17].
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knowledge is fallible however because the justification pro-
vided vis-à-vis the safety case relies on a certain type of 
argument, namely informal argumentation as opposed to 
formal argumentation. We turn now to briefly describe the 
differences between formal and informal arguments as well 
as how and why informal arguments leave room for the fal-
libility of their conclusions.

2.3.1 � Formal arguments

As the name suggests, the idea of formal arguments arises 
from an intuition that arguments, and reason more broadly, 
ought to be systematically formalized. Reasoning and argu-
ments, in short, ought to be thought of as a science whose 
object of study is logical relations and those laws and 
phenomena governed by logical relations [43]. The laws7 
include, for example, those concerning entailment and 
deduction, and the phenomena include, for example, the 
properties of validity and well-formedness.

2.3.1.1  Advantages and  disadvantages  One immense 
advantage of formal arguments is their ability to demon-
strate the infallibility of a conclusion. Provided that the 
argument begins with premises or axioms that are true (or 
accepted as such), and provided that no mistakes were made 
in the ensuing inferences, the conclusion must be true. One 
stark example of this is Kurt Gödel’s famous incomplete-
ness theorem which demonstrated, beginning with accepted 
axioms, that there are certain true statements or conclusions 
that are impossible to state. Gödel’s conclusion, that given a 
sufficiently complex logic there are certain conclusions that 
cannot be written in the language of that logic, hence their 
incompleteness, is definitive and infallible, i.e., it could not 
have been false.

A related advantage of formal arguments is their speci-
ficity. Natural language is fraught with ambiguity that can 
render even relatively simple sentences, let alone arguments, 
difficult to understand. Consider the following sentence. 
“The battery is empty, and the robot is not moving, or the 
patient is hungry.” This sentence can be parsed in two dif-
ferent ways as the battery is empty and either the robot is 
not moving or the patient is hungry, or as either the battery 
is empty and the robot is not moving or the patient is hun-
gry. In a formal argument, such a sentence might be repre-
sented by the string (A&(BVC)) or ((A&B)VC) respectively, 
resolving any ambiguities in interpretation.

In spite of their advantages, formal arguments also suf-
fer from significant disadvantages. Perhaps the most serious 
of which is that formal arguments are largely disconnected 
from the way in which people normally argue and reason. 

The average person is often less concerned with the valid-
ity of a mathematical proof and more often concerned with 
assessing the reasons and arguments a colleague provides for 
using an AI-enabled extubation system, for example. Moreo-
ver, the average person is often less interested in reason-
ing about what is certainly the case (or not) and more often 
interested in reasoning about what is probably or likely to be 
the case (or not), as one might be when conversing with their 
physician about back pain they are experiencing. Conversa-
tions like these can certainly be instantiated using formal 
arguments, but the usefulness of doing so is dubious at best.

Formal arguments are similarly disconnected from the 
real world. By that we mean that formal arguments are 
largely disconnected from the messy, uncertain and dynamic 
realities that overwhelmingly dominate our human exist-
ence. Rarely, for instance, are there widely agreed upon 
axioms or starting points from which one can uncontrover-
sially begin their natural argument. Such is the case with 
safety assurance generally, and for AI-enabled systems more 
specifically, where one can always, as we saw above, raise 
legitimate normative concerns/questions. Likewise, natural 
arguments are rarely presented using the (mostly) unambigu-
ous language of symbolic logic but instead using natural 
language with all of its accompanying ambiguities, vague-
ness and complexities. Natural arguments between two (or 
more) persons are more of a dialectical reasoning process 
than a sterile evaluation of logical relations between differ-
ent variables.

This brings us to a third disadvantage of formal argu-
ments, and one that follows from the first two described, 
namely that formal arguments are ideal abstractions. From 
a safety perspective, this is a critical defect. While the ideal-
ized and abstract nature of formal arguments confers certain 
advantages, this is at the cost of neglecting potential crucial 
context-dependent information. Safety is not merely a tech-
nical property but increasingly a socio-technical property 
that depends not just on the system itself but on how people 
interact with the system. An AI-enabled extubation system 
could be acceptably safe to operate in an ideal world, but be 
unsafe to operate when one considers how such a system will 
be integrated into the relevant healthcare pathways and how 
expert users will interact with the system. Formal arguments 
are disconnected from the kinds of reasoning and arguments 
the average person engages in (whether that be an average 
expert user or average member of the public) as well as from 
the real world precisely because they are abstractions of both 
the reasoning process and the world. The result is that formal 
arguments are largely concerned with the theory of reason-
ing and arguments and less concerned with the actual prac-
tice of reasoning and arguing.

7  Or more accurately we might call these the rules of inference.
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2.3.2 � Informal arguments

While there are slightly different positions that the proponent 
of informal arguments may take up, we submit that there are 
certain shared attitudes that are characteristic of the informal 
argument advocate. These are chiefly a “focus on the natu-
ral language arguments used in public discourse, clothed in 
their native ambiguity, vagueness and incompleteness,” a 
“commitment to the study of argumentation as a dialectical 
process” and a “conviction that there are standards, norms, 
or advice for argument evaluation that is at once logical—
not purely rhetorical or domain-specific—and at the same 
time not captured by the categories of deductive validity, 
soundness and inductive strength” [26]. So let us examine 
the advantages and disadvantages of informal arguments in 
turn and how they bear on supporting claims about safety. 

2.3.2.1  Advantages and  disadvantages  Informal argu-
ments, written as they are in natural language, are often 
accessible to a wide audience. Consider the differences 
between Gödel’s proof of his incompleteness theorem and 
the argument that a clinician might give to convince their 
patient that an AI-enabled extubation system is safe to use. 
The former is nigh on incomprehensible to all but the most 
studied logicians and mathematicians whereas the latter is 
(or should be) readily comprehensible by the patient the 
clinician is treating. Moreover, because of their accessibil-
ity, informal arguments are often easier to both understand 
and evaluate. Commenting on or critiquing something like 
Gödel’s proof is difficult not only because of the special-
ized knowledge of logic and mathematics required, but also 
because it is essentially written in an entirely different lan-
guage. Informal arguments in contrast can engage a much 
wider audience because they are written out in natural lan-
guage and tend to presume a general, not specialist, level of 
knowledge.

Another advantage of informal arguments is their close 
connection to reasoning in practice. By that we mean that 
informal arguments mirror the ways in which people reason 
and argue in their normal everyday lives. This is because 
the prevailing attitude amongst proponents of informal argu-
ments, and informal logic in general, is that we must theorise 
about and understand actual (i.e., real-life, ordinary, every-
day) arguments in their native habitat of public discourse and 
persuasion. The result has been the articulation of “methods 
of identifying, analysing and evaluating reasoning, which 
do not primarily rely on the instruments or nomenclature of 
formal logic” [26]. One such method articulated by Stephen 
Toulmin draws on judicial practices. For Toulmin, and for 
safety engineers inspired by his views, it is not enough to 
merely distinguish between premises and conclusions. When 
engaging in practical reasoning and argument there are “a 
good half-dozen functions to be performed by different sorts 

of proposition” some of which can be identified as “claims, 
data, warrants, modal qualifiers, conditions of rebuttal, state-
ments about the applicability or inapplicability of warrants, 
and others” [43].

Informal arguments however also suffer from certain dis-
advantages, one of which concerns their evaluability. In con-
trast to formal arguments of which the evaluation is largely 
context-independent and field invariant, the evaluation of 
informal arguments requires an appreciation of the context 
and field in which the argument is presented. As Toulmin 
highlights, the “standards for judging the soundness, valid-
ity, cogency or strength of arguments are in practice field-
dependent” [43]. To use Toulmin’s terminology, the kind of 
data that one might produce to support a claim in one con-
text, e.g., to a colleague working in a specialized discipline, 
may require no further justification or legitimization. Con-
sider the following utterance. “The CNN is safe to deploy 
because its accuracy for extubation decisions was quite 
high at an AUC-ROC value of 0.94.” When uttered from 
one developer to another, both of whom are working on the 
same project of producing an AI-enabled extubation-deci-
sion system, such a claim may require no further elabora-
tion. In another context however, e.g., when the developer is 
speaking with a clinician who will be the expert user of the 
system, one might need to produce, in addition to the data 
and the claim, a warrant, i.e., an explicit proposition regis-
tering the legitimacy of the step from the data to the claim 
[43]. In our example, the developer may have to explicitly 
state what a CNN is (convolutional neural network), what an 
AUC-ROC (area under the receiving operating characteristic 
curve) value is, why it is a measure of system accuracy, and 
how that relates to the system’s safe operation. In short, the 
evaluation of informal arguments becomes more difficult 
the larger the difference there is between the interlocutors’ 
epistemic backgrounds.

A related disadvantage is that informal arguments cannot 
establish the certainty of their conclusions. Toulmin again 
nicely describes how, when judged against ideal “deductive” 
standards, informal arguments “are irreparably loose and 
lacking in rigour; the necessities and compulsions which 
they can claim—physical, moral and the rest—are never 
entirely compulsive or ineluctable in the way logical neces-
sity can be; while their impossibilities are never as utterly 
adamantine as good, solid, logical impossibility” [43]. Infor-
mal arguments, tied as they are to reasoning in practice, are 
as often, if not more so, about establishing the likelihood 
of a conclusion as they are about establishing the necessity 
of a conclusion. This is often through looser inductive or 
abductive reasoning processes. Certain warrants may permit 
us to argue unequivocally to a conclusion, but this is an ideal 
exception, not the norm. More often than not, warrants enti-
tle us to draw conclusions only tentatively subject to possible 
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exceptions or conditions [43]. Such is the case when arguing 
about the safety of an AI-enabled system.

2.3.3 � Fallible safety claims

Safety claims are ultimately fallible knowledge claims given 
that their justification provided vis-à-vis the safety case is 
grounded in informal argumentation.8 Indeed the disad-
vantages of informal arguments mentioned above turn out 
to be desirable features when arguing about the safety of a 
system and, as we shall see, communicating the content of 
a safety case to an epistemically diverse audience. Let us 
consider once again the AI-enabled extubation-decision sys-
tem already introduced. The claim that this system is accept-
ably safe to deploy in a given context (i.e., within a certain 
healthcare pathway in a particular hospital) is one that can 
be undermined by defeaters or, in Toulmin’s terminology, 
conditions of rebuttal [43]. It is vitally important that claims 
about a system’s safety be subject to scrutiny and re-evalu-
ation. The AI-enabled extubation system for example may 
only be acceptably safe to operate in a particular hospital by 
expert users that have received training on how to use the 
system. Taking the system to a different hospital or having 
untrained expert users utilise the system may undermine the 
claim that it is acceptably safe to operate.

Safety cases are also produced for someone, typically 
to persuade them to accept the claim that, for example, an 
AI-enabled extubation-decision system is acceptably safe 
to operate, on the basis of the arguments and evidence 
advanced in the safety case. As such they are part of a larger 
dialogue traditionally between developers, regulators and 
assessors. This dialectical spirit is another legacy of infor-
mal arguments that is desirable when discussing a system’s 
safety. Though the evaluation of a safety case may be diffi-
cult for the layperson, designers and developers need not be 
restricted by the syntax and semantics of formal arguments 
when communicating safety claims which, ideally, should be 
closely examined, discussed and, if necessary, challenged. 
As mentioned above, designers and developers can, through 
the informal arguments in their safety case, tell a story about 
a system’s safety, including what it means for the particular 
system to be safe, how it achieves this, and why one should 
be confident that the risks have been appropriately managed. 
For an AI-enabled extubation-decision system, the develop-
ers might emphasise to deployers (i.e., hospitals) and expert 
users (i.e., the clinicians working with the system) that the 
system is safe because it has reached a certain minimum 

threshold of accuracy, does not overwhelm the expert users 
with notifications and can be integrated into the existing 
healthcare pathway in such a way that it avoids unduly dis-
rupting existing practices. In short, the developers will com-
municate their knowledge that the AI system is safe to the 
deployers and expert users, but more will be said about the 
form of this communication in Sect. 4.

3 � AI system safety

While we have argued in the previous section that safety 
claims are descriptive fallible knowledge claims, one might 
object to this characterization. But this brings us to safety 
claims about AI-enabled systems in particular. Even if safety 
claims were not fallible knowledge claims, even if the aim of 
a safety case was to produce infallible knowledge, the nature 
of AI-enabled systems themselves precludes the possibility 
of obtaining infallible knowledge about their safety (or lack 
thereof). So in this section we look specifically at some of 
the features of AI-enabled systems that prevent one from 
making infallible knowledge claims about their safety. But 
first some terminological and clarificatory preliminaries.

Artificial intelligence (AI) is a widely used term with no 
clear boundaries, but it will suffice for our purposes to think 
of AI according to the definition given by the National Insti-
tute of Standards and Technology (NIST). AI, or an AI-ena-
bled system, refers to the “capability of a device to perform 
functions that are normally associated with human intelli-
gence such as reasoning, learning and self-improvement” 
[7].9 There are roughly three components that together drive 
most current AI-enabled systems (including the AI-enabled 
extubation system that we have been using as an example 
throughout), and those are the deep neural network (DNN) 
(i.e., an artificial neural network with many layers of neurons 
between the input and output layers), the learning algorithm 
(which adjusts the weights between the neurons in the neural 
network) and the data (the largest portion of which serves 
as training data).

Additionally, it must be noted that AI is not a field, 
domain or industry but rather a technology that can be uti-
lised in different fields, domains or industries. As such, AI 
is not, as one might be led to believe, some magical tool 
through which the world is objectively captured in a view 
from nowhere and revealed to us [1, 34]. On the contrary, 
AI-enabled systems do not necessarily learn anything 
“objective” about the world nor are they more “objec-
tive” in their decision making and behaviour than humans. 

8  Although it must be noted that there have been attempts to both 
formalise safety case arguments and incorporate features of formal 
arguments to complement features of informal reasoning employed in 
safety case arguments [15, 20, 38].

9  Marvin Minsky similarly defined the study of artificial intelligence 
as “the science of making machines do things that would require 
intelligence if done by men [sic]” [33].
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Moreover, AI-enabled systems, like any technology, are not 
created value free (i.e., normatively neutral). AI-enabled 
systems are conceived, designed and developed in a socio-
political milieu and often by people or groups of people in 
positions of power [27]. Put simply, research in science and 
engineering is not value free, and this extends to the crea-
tion of AI-enabled systems. Though there is the potential for 
AI-enabled systems to benefit humanity we must be wary 
of the promises to this effect because they can just as easily 
perpetuate systemic biases and discriminate against those 
who are already marginalised and underrepresented [10, 11]. 
While it is important to recognise that there is a dominant 
narrative for AI that deserves scrutiny and criticism, such an 
analysis is outside the scope of this paper. So let us return to 
the peculiarities of AI-enabled systems. What exactly is it 
about AI-enabled systems that precludes the possibility of 
attaining infallible knowledge about their safety?

3.1 � Uncertain behaviour, open contexts, black 
boxes and complicated consequences

It is impossible to know infallibly that an AI-enabled sys-
tem is safe because of their uncertain behaviour, the varied 
open contexts in which they can operate and their opaque, 
often uninterpretable, inner workings. While the operating 
context can sometimes be spelled out in detail, this does 
relatively little to secure infallible knowledge about an AI 
system’s safety. For example, one could be quite precise and 
detailed in outlining how an AI-enabled extubation system is 
supposed to be integrated into the relevant healthcare path-
way, how expert users are supposed to interact with it and 
the limits of its capabilities. But while one can infer from 
this information that certain risks have been mitigated or 
addressed, it does little to justify infallible knowledge claims 
that a system will behave in a certain safe way, which is an 
issue that arises from the under-specificity of function of AI-
enabled systems. Briefly, under-specificity of function refers 
to the gap that exists between the developer’s intended goals 
for the system and the system’s actual behaviour, sometimes 
known as “the semantic gap” [6]. This largely concerns the 
learning algorithm component of AI mentioned above. Such 
algorithms are often chosen not because they are the best or 
well understood, but because they work well enough.

So knowledge of the system’s behaviour, let alone higher 
level properties like safety, is far from infallible, and this 
is only compounded by the opacity of AI-enabled systems. 
Transparency, as the term suggests, refers to the “visibility” 
of the system, in particular its inner workings, and the sup-
posed logic or reasoning that the system employs to reach 
particular outputs. This largely concerns the DNN compo-
nent of AI. While the inputs and outputs of the AI-enabled 
system are transparent, the same cannot be said for the many 
so-called hidden layers in the DNN. For example, though the 

expert user clinician might see that the AI-enabled extuba-
tion system takes as inputs features like the level of patient 
sedation and mode of ventilation and produces therefrom 
the output recommendation that the patient is ready for extu-
bation, the clinician may have little understanding of why 
that particular output was produced and whether it is safe to 
proceed with extubation without any further investigation 
[25].10 And even assuming that one has access to the DNN 
and can see all of the connections between the neurons and 
their weights, such transparency does not necessarily confer 
knowledge, let alone infallible knowledge, of the system’s 
logic, even to those who designed it. Infallible knowledge 
about an AI-enabled system’s safety is simply out of the 
question.

The different kinds of consequences arising from the 
use of AI-enabled systems also precludes the possibility 
of attaining infallible knowledge about their safety. On a 
strong interpretation, the consequences of using AI-enabled 
systems are different in kind, not merely by degree, from 
the consequences of using other technologies. This strong 
view is often adopted because AI-enabled systems, many 
argue, can lead via numerous paths to catastrophic or exis-
tential consequences [21]. Even on a weaker interpretation 
however, that the consequences of using AI-enabled systems 
are different merely in degree from other technologies, the 
consequences of utilising AI-enabled systems are such that 
they prevent one from obtaining infallible knowledge about 
their safety.

Claims about safety are, as we have seen, inherently 
context-dependent claims. But AI-enabled systems are 
increasingly general-purpose systems that are created with 
no specific use-context or operational environment in mind. 
The same AI-enabled system could be procured by many 
different deployers and adapted for different downstream 
uses [4]. The same AI-enabled system could just as eas-
ily be used to conduct post-cataract surgery follow-up calls 
with patients as it could conduct almost any other routine 
clinical conversation [29]. Similarly, the same AI-enabled 
system could just as easily generate predictions about when 
patients are ready for extubation as it could generate predic-
tions about another critical and time-sensitive procedure. 
While it is in principle possible for some responsible party, 
e.g., the deployer, to outline the use-context or operational 
environment in detail and thereby identify and manage risks, 
this does little to justify an infallible knowledge claim that 
the system is acceptably safe. As mentioned above, these 
important contextual details at best only permit one to infer, 

10  Though it must be noted that there is a whole field of inquiry 
known as XAI (explainable AI) dedicated to investigating how AI-
enabled systems can be rendered more transparent vis-à-vis explain-
ability [2, 13, 25, 32].
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in proportion to the detail given, that certain risks have been 
mitigated or addressed.

Even if the use-context or operational environment is 
specified in full detail, the sheer scale of the consequences of 
using AI-enabled systems precludes the possibility of attain-
ing infallible knowledge about their safety. Consider that 
AI-enabled systems can have a large, even global, sphere of 
influence. AI-enabled systems can be copied and deployed 
en masse such that idiosyncrasies arising from design deci-
sions made early in development influence the life chances 
and well-being of entire demographics. For example, an 
AI-enabled extubation system trained on data from patients 
seen at King’s College Hospital in London, UK might be 
deployed for use in the University of Tokyo Hospital in 
Tokyo, Japan. In the best case scenario the AI-enabled 
extubation system is just as accurate in the former location 
as it is in the latter, but in the worse-case scenario patients 
are systematically misclassified in one or both locations as 
being ready for extubation when they are not because the 
training data was not representative of the demographics in 
the use-context.

So the sheer numbers of people that can be affected by 
the same AI-system makes even fallible knowledge claims 
about their safety difficult to establish. And the rising popu-
larity and increased use of so-called “foundation models” 
only exacerbates this problem.11 In short, foundation models 
are any models trained on a broad dataset that can then be 
adapted to perform a variety of downstream tasks. While not 
new per se, the scale and complexity of foundation models 
has increased to a point where they have begun to exhibit 
behaviours wholly unanticipated by their creators, an issue 
we have already touched on above [4]. More importantly, 
because foundation models require sophisticated hardware, 
immense processing power and gargantuan training datasets, 
this means that only a select few organisations are able to 
develop their own foundation models. This, coupled with 
the fact that many smaller organisations use these founda-
tion models, albeit fine-tuning them for a particular task, 
means that there is a single point of failure for many differ-
ent systems deeply rooted in the original foundation model. 
Once again, the nature of AI-enabled systems precludes the 
attainment of infallible knowledge about safety in practice.

The crux of the issue is that, for a number of reasons 
including some of which just discussed, it is impossible in 
practice to justify an infallible knowledge claim pertaining to 
the risk an AI-enabled system poses. Risk is often conceived 
of as the product of the likelihood and severity of a particular 
outcome. There is no reason why one could not, in principle, 
assess the likelihood and severity of an AI-enabled system’s 

effects on a person’s physical or psychological well-being 
for example. In practice however one is only more or less 
justified in fallibly knowing the risk of using an AI-enabled 
system given the inferences made from the available evi-
dence to general claims about the likelihood and severity of 
specific outcomes obtaining. Note, however, that one might 
reason that we can possess infallible knowledge about the 
safety of AI-enabled systems. And indeed we can, but this 
is a triviality. If one assigns an all but certain likelihood or 
a high enough severity to the outcome, then it is trivial to 
say that one possesses infallible knowledge about the safety 
of an AI-enabled system, to wit, utilising the system will 
certainly lead to harm. Those who insist that we ought to 
worry about the existential consequences of AI-enabled sys-
tems fall into the latter camp, i.e., they assign an astronomi-
cal severity to the outcome of using AI-enabled systems. 
Their argument runs something like this. Even though the 
likelihood of developing paperclip-maximising superintel-
ligent AI is infinitesimally small at the present, the severity 
of the consequences (namely human extinction) of doing 
so is such that we need to worry about preventing this out-
come from obtaining now. Failure to address this problem 
through increased work on the value alignment problem, for 
example, will certainly lead to human extinction. So while 
it is possible to produce infallible knowledge claims about 
AI-enabled system safety, they are trivial claims that inherit 
their infallibility from some questionable premise.

4 � Cooperative communication

Thus far we have argued that safety claims, when justi-
fied by a safety case, are descriptive fallible knowledge 
claims. This is in virtue of both the informal argumentation 
used in safety cases and the nature of AI-enabled systems 
themselves. Given that, the question with which we con-
cern ourselves in this final section is how best to commu-
nicate this knowledge? The design and development of AI 
is increasingly participatory in nature as are assessments 
of their safety and ethical acceptability [5, 35]. This means 
that claims about AI-enabled system safety and their sup-
porting arguments ought to be accessible to a wide range of 
affected stakeholders with different epistemic backgrounds. 
More specifically then, the question is how best to com-
municate this knowledge to an epistemically diverse group 
of stakeholders? How could one evaluate the calibre of the 
communication between different affected stakeholders? In 
what follows we suggest that the Gricean maxims of coop-
erative communication can be used to structure the form 
of the dialogue between stakeholders and also evaluate the 
calibre of the exchange.

11  Explainer: What is a foundation model? https://​www.​adalo​velac​
einst​itute.​org/​resou​rce/​found​ation-​models-​expla​iner/

https://www.adalovelaceinstitute.org/resource/foundation-models-explainer/
https://www.adalovelaceinstitute.org/resource/foundation-models-explainer/
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4.1 � Inference and the cooperative principle

In his investigations of conversational implicature, Paul 
Grice famously outlined certain general features of dis-
course that are readily applicable to discourse of a specific 
kind, namely discourse surrounding the safety of AI-enabled 
systems [18]. Grice begins by noting that, for the kinds of 
conversations he is interested in analysing, the discourse is 
not random, i.e., communication does not consist of a series 
of disconnected remarks. There is, in general, some amount 
of cooperation between conversational partners given that 
each participant recognizes that in a given conversation, say 
a conversation about the safety of an AI-enabled system, 
there is, to some extent, “a common purpose or set of pur-
poses, or at least a mutually accepted direction” in which the 
conversation moves [18]. There are therefore, at any given 
moment in a conversation, certain unsuitable “moves”, i.e., 
conversational contributions. This leads Grice to formulate 
his Cooperative Principle: “Make your conversational con-
tribution such as is required, at the stage at which it occurs, 
by the accepted purpose or direction of the talk exchange in 
which you are engaged” [18]. Though we shall refine this 
principle later given the specific direction of facilitating 
the effective exchange of knowledge about safety of an AI-
enabled system, it is sufficient to note at the present that this 
Cooperative Principle can supply the essential structure for 
the exchange.

4.1.1 � The Gricean maxims

Under the assumption of the Cooperative Principle, Grice 
draws out some additional maxims and submaxims that are 
worth describing given the role they will play in evaluating 
the calibre of the exchange. These maxims fall under four 
categories: quantity, quality, relation and manner. Under the 
category of quantity are the maxims to (1) communicate as 
much information as is required and (2) to refrain from dis-
closing any more information than is required [18]. Under 
the category of quality is the supermaxim to communicate 
truthfully, which can be achieved by adhering to the submax-
ims to (1) refrain from disclosing what one believes to be 
false and (2) refrain from disclosing what one lacks adequate 
evidence for [18]. Under the category of relation is the sin-
gle and deceptively simple maxim, be relevant [18]. We say 
deceptively simple because, out of all of Grice’s maxims, 
this is perhaps the most important for evaluating the calibre 
of the exchange of knowledge about an AI-enabled system’s 
safety. More will be said about this below. Finally, under the 
category of manner is the supermaxim to be perspicuous 
which can be achieved by adhering to four submaxims: (1) 
avoid obscure expressions, (2) avoid ambiguity, (3) be brief 
and (4) be orderly [18].

4.1.2 � Purposive communication

As alluded to above, the exchange that we are interested 
in analysing and evaluating is not random. The exchange 
between the communicator, e.g., the developer, and the com-
municatee, e.g., the expert user, is purposive. That is, the 
exchange is directed towards some end which, in our case, 
is to persuade the communicatee to believe in the justified 
claim (that we are assuming is true) that the AI-enabled 
system is safe to operate in a given context. The Gricean 
maxims are therefore ideal for thinking about the structure 
of the dialogue between communicator and communicatee 
given their intimate connection to purposive exchanges. 
Grice writes, “I have stated my maxims as if this purpose 
[of the conversation] were a maximally effective exchange 
of information,” and while this is certainly not true of all 
conversations, it is undoubtedly the case when consider-
ing the disclosure of safety claims to affected stakehold-
ers [18]. In short, communicators can ensure the effective 
exchange of safety knowledge claims by structuring their 
exchanges according to the Cooperative Principle which can 
be achieved via adherence to the Gricean maxims related 
to the categories of quantity, quality, relation and manner.

4.2 � Evaluating knowledge exchanges

The Cooperative Principle and the Gricean maxims can pro-
vide the structure for the dialogue between communicator 
and communicatee, but the maxims in particular can also 
serve as criteria to evaluate the calibre of the knowledge 
exchange. While there is not much that can be said at an 
abstract or general level about the content of the knowledge 
exchange beyond what has already been mentioned, here we 
will draw on the example of the AI-enabled extubation-deci-
sion system to illustrate what an exchange between differ-
ent affected stakeholders might look like. More importantly, 
we will highlight how the Gricean maxims can be used to 
evaluate the calibre of the exchange, particularly between 
stakeholders with different epistemic backgrounds.

4.2.1 � Safety knowledge claims and AI‑enabled extubation

Consider four different stakeholders: a developer, an 
expert user (i.e., a clinician), a prediction-recipient (i.e., 
a patient who will be affected by the use of the system by 
the clinician) and a representative of a regulatory agency. 
In the following imagined exchanges, one stakeholder will 
engage in a dialogue with another and attempt to persuade 
them to form the justified true belief that the AI-enabled 
extubation system is safe. So while the structure of the 
exchange will largely be consistent, i.e., adhering to the 
Cooperative Principle via the Gricean maxims, the con-
tent of the communication will differ given the different 
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epistemic backgrounds of the communicatees. The expert 
user for example may wish to know why the AI-enabled 
extubation system is safe and will not harm patients. 
We can imagine the following exchange (E1) between 
a clinician (the communicatee) and the developer (the 
communicator).

(E1)	�  Clinician: What features of the patient does the 
machine use to determine readiness for extubation?

	� Developer: Primarily ones that align with clinical 
expectations, such as level of patient sedation and 
mode of ventilation.

Note first the structure of this exchange. The quality and 
quantity of information disclosed by the developer are, at 
minimum, sufficient to facilitate the effective exchange of 
the information requested by the clinician. More might be 
said about the AI-enabled extubation system, i.e., the quan-
tity of information could be increased (e.g., the developer 
could disclose that features like age, gender and ethnicity 
are features that the system does not use to determine patient 
readiness for extubation), but there is the risk that what is 
disclosed is increasingly irrelevant and would therefore 
degrade the calibre of the exchange. A similar risk exists 
if the quality of information is modified, i.e., what is dis-
closed is increasingly irrelevant. If, for example, the thresh-
old that constitutes “truthful” communication is significantly 
changed then this might result in a different and less relevant 
exchange (e.g., the developer might add that the features that 
the system uses to determine readiness for extubation are in 
fact not locally important features specific to a particular 
decision, but globally important features given that they are 
averages derived from the whole training dataset) [25].

Contrast the exchange above between the clinician and 
developer with another example. Certain affected stakehold-
ers may not have the opportunities to open a dialogue and 
speak with one another. Developers for example may not 
be able to communicate their knowledge of the system’s 
safety to patients, and so communicating this knowledge 
may fall on the clinician as the expert user. Imagine the fol-
lowing exchange (E2) between a patient and/or their health-
care proxy (the communicatee) and their clinician (the 
communicator).

(E2)	� Patient: How can you be sure that this system will 
correctly predict when I am ready for extubation?

	� Clinician: While there are always risks with these 
types of procedures, this machine only assists me 
and makes predictions consistent with my clinical 

judgement. I am confident it will correctly predict 
when you will be ready for extubation.

As with the first exchange, the form of this second 
exchange remains the same. That is, the quality, quantity, 
relevance and manner in which the information is disclosed 
by the communicator, in this case the clinician, are sufficient 
to facilitate the effective exchange of information requested 
by the communicatee, which in this case is the patient. 
Importantly, from the point of view of evaluating the cali-
bre of this communicative exchange, what the clinician has 
disclosed in this exchange is relevant assuming the patient’s 
non-medical and non-technical background. As mentioned 
above, relevance is crucial for ensuring optimal communica-
tion. If we assume that the patient has a different epistemic 
background, e.g., they are themselves a clinician or a soft-
ware engineer working with artificial neural networks, then 
this imagined exchange may not satisfy the patient because 
it fails to be relevant. The justification provided by the cli-
nician may fail in various ways to persuade the patient to 
believe in the truth of the safety claim. A patient with a 
background in medicine or computer science may, we might 
assume, be seeking a more technical response from the clini-
cian. That is, they might be seeking an increased quantity of 
relevant information.

To see how exchanges like these might evolve into rich 
dialogues consider one more example. Imagine the follow-
ing exchange (E3) between a representative of a regulatory 
agency and the developer.

(E3)	� Regulatory agent: Why are patient features like eth-
nicity, gender and age included as inputs? Won’t they 
bias the predictions your AI-enabled extubation sys-
tem makes?

	� Developer: These features were part of the train-
ing dataset and we simply left them as inputs. 
However our analysis of the system shows that 
these features have an importance near zero 
and so they likely have a negligible effect on the 
predictions.

Again, the structure of this exchange is dictated first 
and foremost by relevance, i.e., what information is most 
relevant for the communicatee given their question but 
primarily epistemic background. The developer’s answer 
is directly related to the regulatory agent’s question. Simi-
larly, the quality and quantity of information is such that an 
effective exchange of information is facilitated, and indeed 
may prompt follow up questions. The regulatory agent may, 
for example, be concerned about the possibility of systemic 
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discrimination by the AI-enabled extubation system and pur-
sue this line of inquiry.

(E3*)	� Regulatory agent: Is there any evidence that a 
machine formally “blind” to protected charac-
teristics like ethnicity, gender and age performs 
differently?

	� Developer: At present we have not trained a 
machine formally “blind” to these features, how-
ever we have reason to believe that excluding 
these features would not mitigate the risk of bias 
in the predictions.

In addition to relevance, there is always a burden on com-
municators, the developer in this example, to communicate 
honestly, i.e., abide by the Gricean maxims that fall under 
the category of quality. In this follow up exchange (E3*) the 
developer is speaking truthfully by both admitting that they 
have not created a machine that excludes the inputs of eth-
nicity, gender and age, and by warning the regulatory agent 
that there is no guarantee that such a machine will be less 
biassed in its predictions. Indeed there is ample evidence, 
some of which may appear in a safety case prepared by the 
developer to justify claims about their AI-enabled extubation 
system’s safety, to suggest that protected characteristics can 
be implicit in other unprotected characteristics and thereby 
render any exclusion of protected characteristics from the 
system’s inputs meaningless at best [31].

Of course the quality of the communication must be bal-
anced against the quantity, and that balance is evident in this 
and the above examples. While the developer could go on 
in conversation (E3*) about how and why they believe that 
excluding protected features would not mitigate the risk of 
bias and harm to certain groups of people, such additional 
information is not necessarily relevant given the context 
and would lower the calibre of the exchange were it to be 
included. Moreover, the regulatory agent could simply direct 
the exchange in that direction should they desire to under-
stand more of the justification underpinning claims about 
how and why excluding protected characteristics might 
not mitigate the risk of bias. Indeed, communication about 
safety knowledge claims between different affected stake-
holders ought to continuously occur in much the same way 
that the design, development and deployment of AI-enabled 
systems continuously occurs.

To sum up this section, the Gricean maxims can be used 
to evaluate the calibre of the exchange between different 
affected stakeholders when one is communicating knowl-
edge about an AI-enabled system’s safety to the other. High 
calibre exchanges are ones that, from the communicatee’s 
point of view, are maximally efficient in persuading them 

to accept the justified true belief held by the communica-
tor that the AI-enabled system is safe in whatever respect 
concerns the communicatee. From an outside perspective, 
we can evaluate the calibre of the exchange between com-
municator and communicatee using the Gricean maxims. 
High calibre exchanges are ones that are first and foremost 
relevant, i.e., the communicator tailors their communica-
tion to the particular communicatee they are engaging with 
given the communicatee’s particular epistemic background. 
Second, high calibre exchanges appropriately balance the 
quantity and quality of information shared. Lastly, and this 
was largely implicit in the example exchanges given above 
(i.e., maxims connected to the category of manner were not 
violated), high calibre exchanges are communicated in an 
appropriate manner, i.e., the exchange is orderly, involves 
jargon that is appropriate and is just generally lucid.

5 � Conclusion

AI-enabled systems are beginning to permeate our lives and 
society. They are used in virtually every sector and increas-
ingly in safety–critical contexts [40, 44]. Assuring the safety 
of systems used in critical contexts is not a new activity. But 
what is new is the safety assurance of AI-enabled systems 
and, moreover, the communication of claims about the safety 
of AI-enabled systems to an epistemically diverse group 
of stakeholders. In this paper we have argued that safety 
claims, when justified by a safety case, are descriptive fal-
lible knowledge claims. Even if the aim of a safety case was 
to justify infallible knowledge about the safety of a system, 
such infallible safety knowledge is impossible to attain in 
the case of AI-enabled systems. By their nature AI-enabled 
systems preclude the possibility of obtaining infallible 
knowledge concerning their safety or lack thereof. Finally, 
we have suggested that one can communicate knowledge of 
an AI-enabled system’s safety by structuring their exchange 
according to Paul Grice’s Cooperative Principle which can 
be achieved via adherence to the Gricean maxims of com-
munication. Furthermore, these same maxims can be used 
to evaluate the calibre of the exchange, with the aim being to 
ensure that communicating knowledge about an AI-enabled 
system’s safety is always of the highest calibre. In short, 
that the communication is relevant, of sufficient quantity and 
quality, and communicated perspicuously. Ultimately, the 
participatory nature of AI-enabled system design, develop-
ment and assessment will require confronting the problem of 
how best to communicate safety claims to an epistemically 
diverse group of stakeholders. We hope that this paper rep-
resents one step towards addressing that problem.
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