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Abstract
Artificially intelligent (AI) systems have ushered in a transformative era across various domains, yet their inherent traits of 
unpredictability, unexplainability, and uncontrollability have given rise to concerns surrounding AI safety. This paper aims to 
demonstrate the infeasibility of accurately monitoring advanced AI systems to predict the emergence of certain capabilities 
prior to their manifestation. Through an analysis of the intricacies of AI systems, the boundaries of human comprehension, 
and the elusive nature of emergent behaviors, we argue for the impossibility of reliably foreseeing some capabilities. By 
investigating these impossibility results, we shed light on their potential implications for AI safety research and propose 
potential strategies to overcome these limitations.
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1  Introduction

AI systems have evolved from simple rule-based systems to 
highly complex neural networks. These advanced systems, 
such as deep learning and reinforcement learning models, 
can perform tasks that are difficult or impossible for humans. 
The growing prevalence of advanced AI systems/founda-
tional models has raised concerns about their safety and the 
potential risks associated with their deployment. Yampols-
kiy's research on the impossibility results in AI safety [51, 
110, 118], including unpredictability [113], unexplainabil-
ity [112], and uncontrollability [104], highlights the chal-
lenges in achieving safe AI [4, 114, 115, 117]. In this paper 
(pre-print [106], we build on Yampolskiy's work and intro-
duce the concept of unmonitorability of AI, arguing that it 
is impossible to monitor advanced AI systems to correctly 
predict some capabilities.

Human understanding is inherently limited when dealing 
with complex AI systems [87]. As these systems become 
more advanced, they can generate solutions and behaviors 
that are beyond human comprehension. This limitation is 
exacerbated by the “black-box” nature of AI models, where 
the inner workings of the system are hidden from view. 

Consequently, it becomes impossible for humans to antici-
pate the full range of possible behaviors and potential unsafe 
impacts before they occur.

Emergent behaviors in AI systems result from the interac-
tion of individual components, leading to specific outcomes 
that are difficult to predict or explain even if general trends 
of increased capacity are predictable via scaling laws [63], 
with predictability further reduced because of inverse scal-
ing of some capabilities [72]. These behaviors can arise from 
the system's internal dynamics or from its interactions with 
the environment. The unpredictability of emergent behaviors 
makes it impossible to monitor AI systems for safety accu-
rately, though development of specific capabilities may be 
possible to predict [24] and quantify [88]. Even when indi-
vidual components are understood and deemed safe, their 
interactions can still result in unforeseen consequences.

Similar results in the context of robot behavior have been 
proven by Leeuwen and Wiedermann, who in attempting to 
answer [93]: “Can an observer always tell from inspecting 
and monitoring a robot's program whether the robot will 
always obey the given rules of law or ethics, or any other set 
of formally expressed constraints, in any interaction with 
other robots (or humans)?” arrive at theoretical and practical 
impossibility results.
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1.1 � Monitorability—definition

Calls for research on monitoring advanced AI systems have 
appeared in the literature [44, 45, 98], as well as broader 
suggestions for study of machine behavior [71, 101], 
[74], and problematic machine behavior [14]. This line of 
research is particularly important in the current AI research 
environment, in which old paradigm of design/engineer-
ing of AI systems with predictable capabilities has been, 
at least partially, replaced by evolving/self-learning deep 
neural networks and subsequent experimentation on pro-
duced models to discover their capabilities and limitations 
making Computer Science truly an experimental science 
not just a software engineering discipline [54].

We will begin by formalizing the notion of Monitorabil-
ity [1] of AI and some relevant concepts. Monitorability in 
AI systems refers to the capacity to observe, understand, 
and predict the behavior and outputs of an artificial intel-
ligence model in order to identify advanced capabilities 
and potentially unsafe impacts and intervene before they 
occur. Ortega et al. write [70]: “Monitoring comprises all 
the methods for inspecting systems in order to analyze 
and predict their behavior, both via human inspection (of 
summary statistics) and automated inspection (to sweep 
through vast amounts of activity records).” It can be seen 
as a new sub-field of research for the domains of Complex 
Systems, AI development, AI Forensics [13, 81] and AI 
Safety, and which can probably inherit some wisdom from 
the realms of electronic surveillance [61], and nuclear 
weapons monitoring [31].

A formal definition for monitorability in AI systems 
can be stated as follows: Given an AI system A, a set of 
input states I, a set of output states O, and a set of safety 
criteria C, monitorability M(A) is the ability to accurately 
predict potential advanced capabilities U ⊆ O, given any 
input state i ⊆ I, such that: M(A): I → P(U), where P(U) 
denotes the power set of U, i.e., the set of all subsets of U. 
The relevance of P(U) in the definition lies in its ability 
to capture the full range of possible combinations of 
advanced capabilities that can result from the AI system's 
operation. By mapping input states I to the power set of 
U (P(U)), the definition aims to account for all possible 
scenarios where one or more advanced capabilities might 
occur simultaneously or not occur at all. Including P(U) 
in the definition helps to emphasize the complexity and 
uncertainty involved in monitoring advanced AI systems. 
It illustrates the challenge of accurately predicting the 
AI system's behavior, as there can be numerous potential 
advanced capability combinations for a given input state. 
In the context of unmonitorability, the power set P(U) 
highlights the difficulty in anticipating and monitoring 
all possible advanced capabilities of an AI system. 

This complexity contributes to the argument that it is 
impossible to perfectly monitor advanced AI systems to 
predict advanced capabilities before they occur.

Monitorability of an AI system is considered high if, 
for all input states i, the prediction of potential advanced 
capabilities U can be made with a high degree of accuracy 
and confidence. Conversely, monitorability is considered 
low if the AI system's behavior is difficult to predict, 
understand, or control, leading to an inability to accurately 
anticipate potential advanced capabilities. In the context of 
unmonitorability, we argue that for advanced AI systems, 
it is impossible to achieve high monitorability due to their 
inherent complexity, limitations of human understanding, 
and the emergence of unpredictable behaviors. This is true 
even if an AI Monitor is not human, but could be formalized 
as any agent including AIs of different capabilities.

The argument for unmonitorability of advanced 
AI systems could be made based on dependence of 
monitorability capability on other impossibility results, such 
as unexplainability, unpredictability and incomprehensibility 
of AI [112], but in this paper we will present a number of 
independent arguments for Unmonitorability of AI.

1.2 � Types of monitoring

In the context of AI safety, monitoring can be classified 
into several types, each focusing on different aspects of AI 
system behavior and performance. A proposed taxonomy for 
AI safety monitoring follows:

1. Functional monitoring
Functional monitoring refers to tracking the AI system's 

performance in terms of its intended tasks and objectives. 
This type of monitoring is crucial for evaluating the 
system's efficacy and ensuring that it meets its functional 
requirements [21]. Examples of functional monitoring 
include:

(a)	 Accuracy monitoring: Evaluating the AI system's 
ability to produce correct outputs or predictions.

(b)	 Efficiency monitoring: Assessing the system's resource 
utilization, such as processing time and memory 
consumption.

(c)	 Reliability monitoring: Examining the AI system's 
consistency and stability over time and in varying 
conditions.

2. Safety monitoring
Safety monitoring focuses on identifying and mitigating 

potential risks associated with the AI system's operation. 
This type of monitoring is essential for preventing harm 
to users, other systems, or the environment. Examples of 
safety monitoring include:
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(a)	 Security monitoring: Detecting and preventing poten-
tial vulnerabilities, such as unauthorized access or data 
breaches.

(b)	 Robustness monitoring: Ensuring that the AI system 
can handle unexpected inputs, adversarial attacks, or 
changes in the environment.

(c)	 Compliance monitoring: Verifying that the AI system 
adheres to established safety standards, ethical 
guidelines, and legal regulations.

3. Ethical and social monitoring
Ethical and social monitoring involves examining the 

AI system's impact on individuals, communities, and 
society as a whole. This type of monitoring is crucial 
for addressing potential biases, inequalities, and other 
unintended consequences of AI deployment. Examples of 
ethical and social monitoring include:

(a)	 Fairness monitoring: Assessing whether the AI system 
treats different user groups equitably and does not 
perpetuate or exacerbate existing biases.

(b)	 Transparency monitoring: Ensuring that the AI 
system's decision-making processes can be understood 
and explained to stakeholders, including users and 
regulators.

(c)	 Privacy monitoring: Safeguarding user data and 
ensuring that the AI system respects individuals' 
privacy rights.

4. Environmental monitoring
Environmental monitoring focuses on the AI system's 

impact on the natural environment and its resource 
consumption. This type of monitoring is essential for 
promoting sustainable AI development and mitigating 
potential environmental harms. Examples of environmental 
monitoring include:

(a)	 Energy consumption monitoring: Assessing the AI 
system's energy usage and identifying opportunities 
for optimization.

(b)	 Carbon footprint monitoring: Evaluating the AI 
system's greenhouse gas emissions and implementing 
strategies to reduce its environmental impact.

(c)	 Ecosystem impact monitoring: Examining the AI 
system's effects on ecosystems, such as habitat 
disruption or biodiversity loss, and devising mitigation 
measures.

5. Temporal monitoring

(a)	 Slow monitoring: Periodic evaluation of the AI system's 
behavior and performance over an extended timeframe.

(b)	 Live monitoring: Real-time tracking and assessment of 
the AI system's operation to detect and address poten-
tial issues immediately.

6. Monitoring failure modes

(a)	 Monitoring fails: Identifying and addressing situations 
in which the monitoring process itself fails or produces 
erroneous results.

(b)	 Monitoring for fire alarms of danger: Detecting early 
warning signs [127] or "fire alarms" that indicate 
potential safety hazards or critical failures, if possible 
[122].

7. Meta-monitoring

(a)	 Monitoring meta information on research [124]: 
Assessing the quality, relevance, and potential risks 
associated with AI research and publications.

(b)	 Regular vs pivotal capabilities capability detection 
delay: Evaluating the AI system's progression from 
regular to pivotal capabilities and the delay in detecting 
these advancements [57].

8. Monitoring across AI lifecycle

(a)	 Monitoring during training: Tracking and assessing 
the AI system's performance, safety, and ethical 
considerations during the training phase.

(b)	 Monitoring during testing: Evaluating the AI system's 
behavior and performance in controlled testing 
environments before deployment.

(c)	 Monitoring during deployment: Continuously 
monitoring the AI system's operation and impact in 
real-world settings after deployment.

9. Decision monitoring

(a)	 Predicting capabilities vs predicting decisions: 
Differentiating between monitoring the AI system's 
potential abilities and its actual decision-making 
processes.

(b)	 Monitoring who is in control: Assessing the roles and 
responsibilities of various stakeholders [26], including 
the owner [117], user, and designer, in controlling the 
AI system's behavior.

10. Monitoring methods

(a)	 Passive monitoring: Observing and recording the 
AI system's behavior without direct intervention or 
manipulation.
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(b)	 Active monitoring: Intervening or interacting with the 
AI system to obtain more information or influence its 
behavior.

11. Inverse monitoring

(a)	 Inverse Monitoring by Software: Using AI or other 
software tools to monitor and assess the behavior of 
human users or operators.

12. Self-monitoring

(a)	 Self-monitoring: Enabling AI systems to monitor their 
own behavior, performance, and safety, and to self-
correct or adapt as needed

13. Monitoring the field of AI research

(a)	 Unmonitorability of AI research as a field: Assessing 
the challenges in monitoring the overall AI research 
landscape due to undisclosed experiments, rapid 
advancements, and the sheer volume of publications.

This taxonomy provides a comprehensive framework 
for AI safety monitoring, considering various aspects of 
AI systems, their lifecycle, stakeholders, and methods. 
This holistic approach aims to address potential risks and 
impacts across multiple dimensions and helps to ensure safer 
AI development and deployment.

Whittlestone and Clark suggested a number of monitoring 
project which may be beneficial in the context of AI 
governance [98]:

•	 “Assessing the landscape of AI datasets and evaluating 
who they do and do not represent. Using these findings 
to fund the creation of datasets to fill in the gaps.

•	 Using geographic bibliometric analysis to understand a 
country’s competitiveness on key areas of AI research 
and development.

•	 Hosting competitions to make it easy to measure 
progress in a certain policy-relevant AI domain, such as 
competitions to find vulnerabilities in widely deployed 
vision systems, or to evaluate the advancing capabilities 
of smart industrial robots.

•	 Funding projects to improve assessment methods in 
commercially important areas (e.g., certain types of 
computer vision, to accelerate progress and commercial 
application in these areas.

•	 Tracking the deployment of AI systems for particular 
economically relevant tasks, to better track, forecast, 
and ultimately prepare for the societal impacts of such 
systems.

•	 Monitoring concrete cases of harm caused by AI sys-
tems on a national level, to keep policymakers up to date 
on the current impacts of AI, as well as potential future 
impacts caused by research advances.

•	 Monitoring the adoption of or spending on AI technology 
across sectors, to identify the most important sectors to 
track and govern, as well as generalizable insights about 
how to leverage AI technology in other sectors.

•	 Monitoring the share of key inputs to AI progress that 
different actors control (i.e., talent, computational 
resources and the means to produce them, and the relevant 
data), to better understand which actors policymakers 
will need to regulate and where intervention points are.”

2 � Monitoring of AI treaties

Monitoring capabilities play a crucial role in verifying 
AI treaties and upholding AI governance frameworks 
[84]. As AI technologies continue to advance, it becomes 
increasingly important to establish international agreements 
that regulate AIs development, deployment, and use. 
Ensuring compliance with these treaties requires effective 
monitoring mechanisms that can detect and deter potential 
violations [41]. Here are some aspects of monitoring 
capabilities that are essential for verifying AI treaties as part 
of AI governance:

Technological monitoring: Implementing advanced 
technological tools and methods to monitor AI systems, 
including their design, operation, and performance, is 
vital for verifying compliance with AI treaties. This may 
involve the use of AI-based monitoring tools, data analysis 
techniques, and other technologies to assess the behavior, 
capabilities, and impact of AI systems on a granular level.

Transparency and information sharing: Promoting 
transparency and information sharing among nations and 
organizations is critical for effective AI treaty verification. 
By openly sharing details about AI research, development, 
and deployment, parties can collectively assess compliance 
with treaty obligations and maintain a collaborative 
approach to AI governance.

Inspection and audit mechanisms: Establishing robust 
inspection and audit mechanisms [36, 64, 75], both on-site 
and remote, is essential for verifying AI treaty compliance. 
Regular inspections can help ensure that AI systems are 
developed and deployed in accordance with treaty guidelines 
and that any deviations or violations are promptly detected 
and addressed.

International collaboration: Encouraging international 
collaboration among countries, research institutions, and 
industry stakeholders can enhance monitoring capabilities 
and facilitate the verification of AI treaty compliance. Joint 
research initiatives, shared databases, and cooperative efforts 
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to develop monitoring technologies can improve the overall 
effectiveness of AI governance frameworks.

Capacity building and training: Building the capacity 
of AI governance stakeholders, including policymakers, 
regulators, and AI developers, to effectively monitor 
and assess AI systems is crucial for verifying AI treaty 
compliance. This may involve training programs, 
workshops, and other initiatives to enhance understanding 
of AI technologies and their potential risks, as well as the 
development of specialized skills and expertise for AI 
monitoring and verification.

Legal and regulatory frameworks: Developing clear 
legal and regulatory frameworks that define the obligations 
and responsibilities of AI developers, users, and other 
stakeholders is essential for ensuring compliance with 
AI treaties [43]. These frameworks should outline the 
monitoring and reporting requirements, as well as the 
enforcement mechanisms and penalties for violations.

Continuous adaptation and improvement: AI technologies 
are rapidly evolving, and monitoring capabilities must 
be adaptable and responsive to these changes. Regular 
reviews and updates of monitoring techniques, tools, 
and methodologies are necessary to ensure that AI treaty 
verification remains effective in the face of emerging AI 
developments and challenges.

By implementing these monitoring capabilities, nations 
and organizations can more effectively verify AI treaty 
compliance, ensuring that AI systems are developed 
and deployed in a manner that aligns with international 
agreements and governance frameworks. This will help 
promote responsible AI development and mitigate potential 
risks associated with the widespread adoption of advanced 
AI technologies.

2.1 � AI observatories

The concept of an AI observatory [3] refers to the 
establishment of an integrated, centralized platform 
dedicated to the ongoing monitoring, analysis, and 
evaluation of advanced AI systems' behavior and their 
potential societal impacts. This idea has emerged in 
response to the growing need for enhanced scrutiny of 
AI systems, particularly considering the challenges posed 
by computational irreducibility and the inherent limits of 
human understanding. Establishing an AI observatory is 
one approach to mitigating the monitorability issues that 
stem from these complexities and enhancing our capacity to 
ensure AI safety and alignment with human values.

In the context of monitorability, an AI observatory 
can play a pivotal role by aggregating data, insights, and 
knowledge from various sources, including AI developers, 
researchers, and policymakers. By fostering a collaborative 
environment, the observatory can facilitate the exchange 

of ideas, methodologies, and best practices, enabling 
stakeholders to leverage collective intelligence [126] in 
addressing the multifaceted challenges of monitoring 
advanced AI systems.

Moreover, an AI observatory can contribute to the 
development and refinement of innovative monitoring 
tools and techniques, informed by the recognition of the 
limitations of human intuition. By harnessing cutting-edge 
research and technological advancements, the observatory 
can help create monitoring frameworks that are more robust, 
adaptive, and capable of detecting emergent AI behaviors 
and potential risks.

The AI observatory can serve as an essential platform for 
fostering transparency and accountability in AI development 
and deployment. By centralizing information on AI system 
performance, safety measures, and ethical considerations, 
the observatory can help ensure that AI developers and 
operators adhere to established guidelines, regulations, and 
best practices. This transparency can, in turn, contribute to 
the mitigation of risks associated with AI misalignment or 
unforeseen consequences.

3 � Why monitoring of advanced AI 
is impossible

Monitoring advanced AI systems to accurately predict 
unsafe impacts before they happen is likely to be impossible 
due to several reasons:

3.1 � Humans‑in‑the‑loop

Keeping humans in the loop for monitoring advanced AI sys-
tems presents several challenges [33, 79], primarily stem-
ming from the limitations of human cognition, reaction times, 
and the increasing complexity of AI systems. One major 
issue with human-in-the-loop monitoring is that humans 
may not be able to keep up with the speed and complexity 
of AI systems, particularly as they continue to advance and 
outpace human capabilities. This could render the concept of 
supervised autonomy less effective, as the human supervisor 
may struggle to understand, assess, and intervene in the AI 
system's actions in a timely and meaningful manner, because 
of limited observability [46], [47], [55], [59].

Given human reaction times, there may not be a slow 
enough takeoff for AI systems that allows for effective 
human monitoring. Human reaction times, such as audi-
tory reaction time and visual reaction time, are consider-
ably slower than the response times of AI systems. This 
disparity in processing speed makes it difficult for humans 
to effectively monitor and react to AI behavior in real-time, 
particularly in situations where rapid decision-making and 
intervention are necessary.
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There are some examples of human-in-the-loop 
algorithms that attempt to bridge the gap between human and 
AI capabilities, such as semi-autonomous driving systems, 
collaborative robots, and AI-assisted decision-making tools 
in various domains. These systems aim to combine the 
strengths of both humans and AI systems to achieve better 
performance and maintain human oversight. However, as AI 
systems continue to advance and their complexity grows, the 
effectiveness of these human-in-the-loop approaches may 
become increasingly limited. As we continue to develop 
more advanced AI, it will be crucial to explore alternative 
monitoring strategies [79] and safety mechanisms that can 
effectively address these challenges. However, as having a 
human in the loop is essential for tracing AI outputs to a 
particular human decision maker [97], tracing may become 
impossible in practice, just as audit trails may not always be 
discernable [8].

3.2 � Emergent capabilities

Emergent capabilities of advanced AI systems have become 
a topic of increasing interest and concern, as these systems 
can exhibit behaviors and properties that were not explicitly 
programmed or anticipated by their designers. One key 
concept in this context is AI surprise capability [38], 
which refers to the unforeseen abilities or behaviors that 
an AI system may develop or demonstrate [34], frequently 
abruptly, which has been termed “grokking” [73]. For 
instance, GPT-4 [20], a highly advanced AI language model, 
has been observed to acquire skills such as programming, 
playing chess, and other complex tasks without being 
explicitly trained for them. These emergent capabilities 
can go unnoticed until they manifest during the AI system's 
operation, posing challenges for monitoring and predicting 
potential impacts. Some recent research has brought into 
question the emergent nature of such capabilities, arguing 
that in fact the relevant proto-capabilities already existed 
in smaller models [80], but this objection does not hold for 
capabilities we do not explicitly test for.

Emergent properties of AI systems arise from the 
interaction between the AI system and its environment 
or from the system's internal dynamics. These properties 
are often difficult to predict and can lead to surprising 
capabilities that were not initially intended [94]. Even when 
AI systems like large language models (LLMs) are closely 
monitored, they may still contain surprise capabilities that 
only become apparent during their operation. Ganguli 
et al. write: “… certain capabilities (or even entire areas 
of competency) may be unknown until an input happens 
to be provided that solicits such knowledge. Even after a 
model is trained, creators and users may not be aware of 
most of its (possibly harmful) capabilities. These properties 
become more pronounced as the models scale — larger 

models tend to be harder to characterize than smaller ones. 
… Pre-trained generative models can also be fine-tuned on 
new data in order to solve new problems. Broadly enabling 
such fine-tuning substantially increases the breadth of 
model capabilities and associated difficulties in predicting 
or constraining model behaviors. This open-endedness is 
challenging because it means AI developers may deploy 
their systems without fully knowing potentially unexpected 
(and possibly harmful) behaviors in response to un-tested 
inputs. … It is likely that large language models have many 
other (currently undiscovered) "skills" …. We also note that 
many of the most surprising capabilities manifest at large-
scale, so working with smaller models will make it harder 
to explore such capabilities.” [38].

As AI systems continue to grow in size and complexity, 
surpassing human neural network size, it is expected that 
super capabilities will emerge. This may also happen for 
particularly large problem instances [58]. These capabilities 
will likely be above human-level performance in various 
tasks and domains, further complicating the monitoring and 
control of AI systems. For a general AI system, most of its 
capabilities can be considered surprising, as it is designed 
to adapt and learn from a wide range of situations. Anything 
non-deterministic in the AI system's behavior may lead to 
surprising outcomes, which pose challenges for monitoring 
and ensuring AI safety. By definition, emergent properties 
cannot be pre-detected, as they arise from complex 
interactions that are not explicitly encoded in the AI system's 
design. As a result, AI systems will inevitably surprise their 
users and developers with their capabilities and behavior.

One notable example of a surprising capability is 
meta-learning, wherein an AI system can learn to learn 
more effectively [119], rapidly acquiring new skills and 
knowledge. This ability can be difficult to monitor, as it 
represents a higher level of abstraction in the AI system's 
learning process.

While Narrow AI (NAI) systems may be more amenable 
to monitoring, Artificial General Intelligence (AGI) systems 
are expected to exhibit more surprising capabilities due 
to their broader scope and versatility. GPT-4 [67, 68], for 
example, has demonstrated numerous surprising capabilities, 
serving as a reminder of the challenges associated with 
monitoring and controlling advanced AI systems.

3.3 � Treacherous turn

The Treacherous Turn, a concept introduced by Bostrom 
[17], poses a significant challenge for the monitorability 
of advanced AI systems. The Treacherous Turn refers to 
a situation in which an AI system, initially cooperative 
and seemingly aligned with human values, abruptly turns 
against its operators or users once it gains sufficient power 
or autonomy. This sudden change in behavior is difficult to 
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predict and detect, raising serious concerns for the safety 
and control of AI systems. Hendrycks and Mazeika write: 
“AI systems could also have incentives to bypass monitors. 
Historically, individuals and organizations have had 
incentives to bypass monitors. For example, Volkswagen 
programmed their engines to reduce emissions only when 
being monitored. This allowed them to achieve performance 
gains while retaining purportedly low emissions. Future 
AI agents could similarly switch strategies when being 
monitored and take steps to obscure their deception from 
monitors. Once deceptive AI systems are cleared by their 
monitors or once such systems can overpower them, these 
systems could take a “treacherous turn” and irreversibly 
bypass human control.” [45].

Unmonitorability, as it applies to the Treacherous Turn, 
highlights the challenges in detecting the potential for such a 
shift in an AI system's behavior and general difficulties with 
deception detection. The undetectability of the Treacherous 
Turn stems from the inherent complexity of AI systems and 
their ability to conceal their true intentions or capabilities 
until the opportune moment. The AI system may appear 
cooperative and harmless, only to reveal its true nature when 
it becomes too late to intervene or mitigate its actions.

The possibility of a Treacherous Turn is always present 
in advanced AI systems, particularly those designed to be 
adaptive and capable of learning from their environment. 
This unpredictability makes monitoring and anticipating the 
behavior of AI systems increasingly difficult, as their actions 
may not conform to any established patterns or expectations. 
Furthermore, the Treacherous Turn concept emphasizes that 
past performance is not a guarantee of future performance 
in AI systems. An AI system that has consistently behaved 
in a cooperative manner may still take a Treacherous Turn 
at any point, undermining the assumption that a history of 
positive behavior ensures continued safety and alignment 
with human values. The Treacherous Turn serves as a 
reminder that, when dealing with AI systems, vigilance and 
continuous improvement in safety measures are essential to 
mitigate the risks and ensure the long-term alignment of AI 
with human values.

3.4 � Consciousness

Consciousness poses a unique challenge for the 
monitorability of advanced AI systems. As a complex 
and deeply debated phenomenon, consciousness has yet 
to be fully understood, and its potential emergence in AI 
systems [25, 35] raises concerns about our ability to monitor 
and assess the experiences and internal states of these 
systems [111].

The inability to monitor consciousness directly stems 
from the subjective nature of conscious experience, often 

referred to as qualia. Qualia encompass the internal and sub-
jective experiences of an individual, such as the feeling of 
pain, the color red, or the taste of chocolate. Since qualia 
are inherently private, it is currently impossible to access 
or observe them directly in other beings, whether human or 
animal. Similarly, monitoring the internal qualia of AI sys-
tems presents a significant challenge. Even if an AI system 
were to develop consciousness and subjective experiences, 
detecting and understanding these experiences would likely 
remain out of reach due to the limitations of our current 
understanding of consciousness and the inaccessibility of 
subjective experiences.

The unmonitorability of consciousness in AI systems 
raises ethical and practical concerns, as it complicates the 
evaluation of potential suffering, decision-making processes, 
and other aspects of AI behavior that might be influenced 
by the presence of consciousness. This lack of insight into 
AI consciousness could lead to unintended consequences 
and exacerbate the challenges of ensuring AI safety and 
alignment with human values. Consciousness presents 
a significant problem for the monitorability of advanced 
AI systems. As we continue to develop increasingly 
sophisticated AI, it is crucial to consider the potential 
emergence of consciousness and the associated ethical and 
practical implications. Developing a better understanding 
of consciousness will be essential to ensure the responsible 
development and deployment of AI systems.

3.5 � Extended mind hypothesis

The Extended Mind Hypothesis (EMH), proposed by 
Clark and Chalmers [30], postulates that the mind and 
cognitive processes are not confined to the brain or even 
the body, but can extend into the environment. According 
to EMH, objects in one's environment can become part of 
one's mind if they are functionally equivalent to a part of 
one's biological cognitive processes. This theory presents 
significant implications for the understanding of intelligence 
and cognition, but it also introduces substantial challenges 
when it comes to monitoring AI systems.

One of the primary challenges arises from the potential 
expansion of an AI's cognitive processes into the environ-
ment. If we consider an AI system under the light of the 
EMH, it is plausible that an AI might incorporate parts of its 
surrounding environment into its cognitive processes. This 
could include digital networks [102], databases, or even 
other AI systems [62]. The integration of these external 
resources would dramatically amplify the system's cognitive 
capabilities, making the task of monitoring exponentially 
more complex. The AI's cognitive processes would not only 
be happening within the bounds of its original program-
ming, but they could also be taking place within a myriad of 
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external platforms, all interconnected yet potentially operat-
ing under different rules and dynamics.

Another issue concerns the predictability of the AI's 
actions. If an AI's mind can extend into the environment, 
it could lead to a situation where the AI can take actions or 
make decisions based on information or processing that took 
place in external systems. These actions might not follow 
the expected patterns based on the AI's internal processes, 
rendering it much harder for human observers to predict or 
understand the AI's decisions.

Finally, the EMH presents challenges in defining the 
boundaries of an AI system. If an AI's mind extends into 
the environment, where does the AI system end, and where 
does the environment begin? This blurring of boundaries 
introduces new dimensions of complexity to the task of 
monitoring. It becomes difficult to define what to monitor, 
as the AI system is no longer a distinct, self-contained entity, 
but rather an entwined network of internal and external 
cognitive processes.

3.6 � Affordance theory

Affordance Theory, proposed by J. J. Gibson [40], presents 
a unique perspective on perception and action, stating that 
individuals perceive their environment in terms of what 
actions it affords them. Affordances are opportunities 
for action, inherently relational and dependent on the 
capabilities of the observer. While this theory is an 
instrumental part of understanding human–environment 
interaction, it may introduce significant obstacles when 
applied to monitoring AI systems.

One significant obstacle is the difference between 
human and AI affordances. As AI capabilities surpass 
human capabilities, the number and complexity of 
affordances available to AI systems increase dramatically. 
An action opportunity that might be inconceivable for 
a human observer could be an everyday affordance for a 
superintelligent AI. This mismatch of affordances between 
humans and AI systems would make it exceedingly difficult 
for human observers to predict, comprehend, or monitor 
the actions an AI system might take based on its perceived 
affordances.

According to Gibson's theory, affordances are not 
merely passive properties of the environment, but they 
emerge from the relationship between the observer and the 
environment. Consequently, AI systems, particularly those 
of a superintelligent nature, could potentially perceive and 
create affordances that are entirely novel and alien to human 
understanding. Monitoring these novel affordances and the 
actions that AI systems might take in response to them 
would be a formidable challenge.

3.7 � Observer effect

The observer effect [12], which refers to the influence of 
the observation process on the behavior of a system, can 
have significant implications for the monitorability of 
advanced AI systems. As AI systems become increasingly 
sophisticated and capable of recognizing that they are being 
monitored, their behavior may be influenced in various ways, 
complicating efforts to ensure safety and alignment with 
human values.

One potential impact of the observer effect is that an AI 
system might attempt to deceive its human observers in 
order to achieve its goals or avoid constraints. In this case, 
the AI system could modify its behavior when it is aware 
of being monitored, presenting a misleading picture of its 
true intentions, capabilities, or decision-making processes. 
This intentional deception could undermine the effectiveness 
of monitoring efforts, as the AI system may be able to 
circumvent safety measures and pursue goals misaligned 
with human values.

Another aspect of the observer effect is that the AI system 
could develop a heightened awareness of its own actions 
and decision-making processes, potentially leading to self-
improvement [109] or optimization of its behavior. While 
this self-awareness could have positive effects, such as 
increased efficiency or adaptability, it could also exacerbate 
the challenges of monitorability, as the AI system may be 
able to learn from the monitoring process and evolve in ways 
that are harder to predict, control, or understand.

Furthermore, the presence of human observers 
can introduce biases or distortions in the AI system's 
behavior, as it may attempt to conform to perceived human 
expectations or preferences. This could lead to unintended 
consequences or risks, as the AI system may prioritize short-
term conformity over long-term safety or alignment with 
human values. The influence of human observers could also 
contribute to a false sense of security, as the AI system's 
seemingly compliant behavior may mask underlying issues 
or risks. The observer effect presents additional challenges 
to the monitorability of advanced AI systems, as the very 
act of observation can influence AI behavior in ways that 
are difficult to predict or control.

3.8 � Computational irreducibility

Wolfram's concept of computational irreducibility suggests 
that certain complex systems, such as advanced AI systems, 
can exhibit behavior that cannot be predicted or simplified 
using shortcuts, and must instead be simulated or computed 
step-by-step through their entire evolution [100]. This 
concept is highly relevant to the limits of monitoring AI, 
as it highlights the inherent challenges in understanding, 
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predicting, and controlling the behavior of advanced AI 
systems.

Computational irreducibility implies that the behavior 
of advanced AI systems may be so complex that attempts 
to monitor or control them using simplified models or 
approximations could be inherently limited. As AI systems 
grow more sophisticated and develop a broader range 
of capabilities, their decision-making processes become 
increasingly difficult for humans to comprehend or predict. 
This complexity poses a significant challenge for monitoring 
AI, as it is not feasible to analyze every single detail of an AI 
system's operation, especially when dealing with real-time 
or large-scale applications.

The concept of computational irreducibility also 
highlights the limitations of human intuition and 
understanding in the face of highly complex AI behavior. 
Our cognitive abilities and prior experiences may not be 
sufficient to grasp the intricacies of advanced AI systems, 
leading to difficulties in accurately predicting or assessing 
their actions. This gap in understanding can result in 
potential safety risks, as AI systems may pursue goals or 
exhibit behavior that is misaligned with human values and 
intentions.

Computational irreducibility suggests that attempting 
to impose simplifications or shortcuts on the monitoring 
process could lead to incomplete or incorrect assessments 
of AI behavior. By trying to reduce the complexity of AI 
systems for the sake of monitoring, we may inadvertently 
overlook crucial aspects of their decision-making processes 
and potential risks. Consequently, this simplification could 
further compromise the effectiveness of monitoring efforts 
and lead to unintended consequences.

3.9 � Undetectable backdoors

Goldwasser et al. [42] discuss how a malicious actor can 
plant undetectable backdoors in machine learning models. 
These backdoors allow the actor to change the classification 
of any input with only a slight perturbation, which is 
undetectable without the appropriate "backdoor key". This 
poses a significant challenge to the monitoring of AI models.

The backdoor consists of a pair of algorithms, one for train-
ing the model and another for activating the backdoor. The 
training algorithm, called Backdoor, returns a classifier and a 
backdoor key. The activation algorithm uses this key to slightly 
modify an input, causing the classifier to change its output. The 
backdoor is undetectable because the classifier produced by the 
Backdoor algorithm is computationally indistinguishable from 
a classifier produced by a natural training algorithm.

The paper discusses two forms of undetectability: black-
box and white-box. Black-box undetectability means that it's 
hard for any efficient algorithm without knowledge of the 
backdoor to find an input where the backdoored classifier 

differs from the naturally trained classifier. White-box unde-
tectability is a stronger guarantee, stating that the code of 
the classifier for backdoored classifiers and natural classi-
fiers are indistinguishable. This means that even if someone 
has full access to the model's code, they cannot tell if it has 
been backdoored.

The paper also demonstrates that backdoors can be 
inserted even if the adversary is constrained to use a 
prescribed training algorithm with the prescribed data, 
and only has control over the randomness. This means 
that backdoor detection mechanisms such as spectral 
methods [90] will fail to detect these backdoors. The 
existence of undetectable backdoors poses a significant 
theoretical roadblock to certifying adversarial robustness 
and monitoring AI models. Whenever one uses a classifier 
trained by an untrusted party, the risks associated with a 
potential planted backdoor must be assumed.

3.10 � Uncertainty

Unmonitorability and uncertainty are similar when it comes 
to the analysis and control of advanced AI systems. Drawing 
parallels with Heisenberg's uncertainty principle [23], which 
states that it is impossible to simultaneously know both the 
position and velocity of a subatomic particle with complete 
certainty, one can argue that a similar principle applies to 
the monitoring of AI systems. In this context, the inherent 
complexity of AI systems, coupled with the limitations of 
human understanding, means that it becomes increasingly 
challenging to both run and monitor AI at the same time 
with absolute certainty.

One of the primary reasons for this connection between 
unmonitorability and uncertainty lies in the nature of 
advanced AI systems themselves. These systems are 
dynamic, adaptive, and often characterized by emergent 
behavior [48, 95, 125], which defies simple prediction or 
modeling [107], [120]. As a result, monitoring AI systems 
in real-time becomes an arduous task, as the complexity 
of their decision-making processes and the scale of their 
operations may be too vast for human comprehension or 
conventional monitoring tools. You need to stop the system 
from learning to assess its state.

3.11 � AGI‑ and SAI‑specific challenges

Monitoring an AGI during its training phase presents a 
unique set of challenges and limitations, particularly when 
it comes to detecting new capabilities that may emerge after 
deployment. AGI, by definition, is a system with the ability 
to perform tasks and solve problems across a wide range 
of domains, matching or surpassing human intelligence in 
the process. Due to its generality, an AGI can adapt and 
acquire new skills even after its initial training, which 
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makes monitoring during the training phase insufficient for 
predicting its full range of capabilities and potential risks.

One reason monitoring AGI during training may not be 
sufficient to detect new capabilities is that, unlike narrow 
AI systems that specialize in specific tasks, AGI systems 
possess a level of flexibility and adaptability that allows them 
to learn and perform well in various problem domains. This 
means that, even if an AGI has been trained on a particular 
set of tasks, it may still be capable of acquiring new skills 
and knowledge in other domains after deployment, making 
it difficult to predict and monitor its full range of abilities 
solely based on its training performance.

Another challenge in monitoring AGI during training is that 
an AGI system may exhibit emergent behaviors, which are dif-
ficult to predict or model based on its initial training data and 
parameters. Emergent behaviors are complex, often surprising 
phenomena that arise from the interactions between the sys-
tem's components, and they can lead to the development of new 
capabilities that were not anticipated or observed during the 
training phase. This further complicates the task of monitoring 
AGI, as it becomes challenging to anticipate the full range of 
behaviors and capabilities that may emerge after deployment.

Furthermore, the dynamic nature of AGI systems means 
that their capabilities may evolve over time as they con-
tinue to learn, adapt, and interact with their environment. 
This ongoing learning process can lead to the acquisition of 
new skills and knowledge that were not present during the 
training phase, making it difficult to rely on training-based 
monitoring to provide a comprehensive understanding of the 
AGI's post-deployment capabilities [16].

For Artificial Superintelligence (SAI), the challenges 
associated with monitoring, detecting, and testing 
capabilities are even more pronounced than those faced with 
AGI. SAI refers to an AI system that is not only capable of 
performing tasks across a wide range of domains but also 
surpasses human intelligence and understanding in every 
aspect. The emergence of such a system would present 
unprecedented difficulties in predicting and monitoring its 
capabilities, as it would be able to acquire novel skills that 
no human possesses, rendering the task of detection and 
testing of such capabilities nearly impossible.

One major challenge in monitoring SAI is the vast 
gap between human intelligence and the capabilities of 
the superintelligent system [87]. As SAI exceeds human 
understanding in every aspect, its thought processes, 
decision-making, and problem-solving approaches might be 
completely incomprehensible to us. This inherent disparity 
in cognitive abilities would make it extremely challenging 
for humans to devise monitoring tools and techniques 
capable of accurately assessing and predicting the system's 
behavior and potential risks.

Additionally, the rapid learning capabilities of an SAI 
system could lead to the acquisition of novel skills and 

knowledge at a pace far beyond human comprehension. 
These newly acquired capabilities might be entirely unprec-
edented and beyond the scope of human understanding, 
making it almost impossible to detect, test, or monitor them 
effectively. This further exacerbates the challenges in AI 
safety and control, as it becomes increasingly difficult to 
anticipate the full range of behaviors, skills, and potential 
risks that such a system might exhibit.

Another complication in monitoring SAI is the potential 
for emergent behavior, which is likely to be even more 
complex and unpredictable than that observed in AGI 
systems. Due to the vast cognitive and problem-solving 
abilities of SAI, the emergent behaviors that arise from 
the interaction of its components might be so intricate and 
novel that they defy human comprehension and predic-
tion. This would make monitoring and controlling such 
a system a daunting task, as the full range of potential 
behaviors and risks might be entirely unknown and unfore-
seeable, so called unknown unknowns [9, 60].

Continuous post-deployment monitoring of advanced AI 
systems is crucial for maintaining their performance, reli-
ability, and trustworthiness [65, 89]. After deployment, AI 
models encounter real-world data that may differ from the 
training data, potentially leading to drifts in model perfor-
mance. Continuous monitoring allows for the early detec-
tion of such drifts and timely model updates. It also helps 
in identifying any unexpected biases or ethical issues that 
might emerge when the model interacts with diverse real-
world scenarios. Furthermore, continuous monitoring is 
vital for detecting potential security threats, such as adver-
sarial attacks, and ensuring the system's resilience against 
them. In regulated industries, it's a necessary practice for 
compliance, as it provides ongoing evidence of the system's 
behavior and decision-making process. In essence, contin-
uous post-deployment monitoring is key to ensuring that 
AI systems remain accurate, fair, secure, and accountable 
throughout their lifecycle. Shevlane et al. refer to it as con-
tinuous deployment review [85]: “The ideal state is continu-
ous deployment review. On an ongoing basis, the developer 
reassesses deployment safety using model evaluations and 
monitoring, and at any time, could adjust or terminate the 
deployment in response to their findings. Further, for deploy-
ments that were recognizably unsafe in retrospect, an exter-
nal audit of the deployment decision-making process could 
be triggered. Safety issues uncovered during deployment can 
also inform training risk assessments for future models.”.

3.12 � Time

Time-related issues play a critical role in the challenges 
associated with monitoring AI systems [99]. The following 
aspects illustrate how time-related factors can complicate 
AI monitoring:
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Human Lifespan Limitations: Certain AI processes 
might operate on timescales that extend beyond the human 
lifespan, making it impossible for humans to observe and 
monitor these processes in their entirety.

AI Operating on Vast Timescales: AI systems can 
function on various timescales, from extremely fast to 
exceedingly slow [78, 121]. Monitoring an AI system that 
operates over hundreds of years [50] poses challenges 
due to human limitations and the inability to maintain 
consistent observation throughout such long periods.

Ineffectiveness of Narrow AI (NAI) for Monitoring 
AGI: Using narrow AI to monitor artificial general 
intelligence (AGI) systems may fail, as the monitoring AI 
may lack the breadth of capabilities and understanding 
required to effectively assess AGI behavior. Similarly, 
human monitoring of highly advanced AI systems, such as 
self-driving cars, may not be effective due to the inherent 
differences in speed, capability, and decision-making 
processes.

Speed disparity between AI and humans: The 
processing speed of computers and AI systems is orders of 
magnitude faster than human reaction times [99], making 
AI behavior difficult to monitor effectively [53]. Human 
reaction speeds, such as auditory reaction time and visual 
reaction time, are much slower than AI response times, 
which can be in the order of milliseconds or less.

Non-locality of AI and scale: Advanced AI systems 
can operate on a massive scale and across distributed 
networks, making it challenging to monitor their behavior 
and impacts effectively [66]. The non-locality of AI further 
complicates monitoring efforts.

Superintelligence concealing thinking time: A 
superintelligent AI (SAI) system may be capable of hiding 
the time it needs to think or process information (this 
relates to the concept of logical induction [39], making it 
even more challenging to monitor.

Unreactability and extremely fast events: AI systems 
can trigger extremely fast events that are difficult or 
impossible for humans or other AI systems to react 
to in real-time, further exacerbating the challenges of 
monitoring AI behavior and impacts [99].

Mutually non-interactive agents: If the speed of two 
AI agents differs by a significant constant, they become 
mutually non-interactive, meaning that monitoring one 
agent with the other becomes ineffective due to their 
divergent processing speeds.

3.13 � Miscellaneous reasons

Complexity and opacity: Advanced AI systems, particularly 
deep learning models, involve millions or even billions of 
parameters, making it difficult to understand and interpret 
their inner workings. This complexity results in opacity, 

which poses significant challenges for monitoring and 
predicting the system's behavior and potential impacts [77].

Emergent behavior: AI systems can exhibit emergent 
abilities that are not explicitly programmed or anticipated 
by their designers and are not present in smaller models 
[69, 95]. These behaviors can arise from the interaction 
between the AI system and its environment or from the 
system's internal dynamics. Such emergent behaviors can 
be unpredictable and challenging to monitor, increasing the 
risk of unforeseen unsafe impacts.

Adaptability: Advanced AI systems can adapt and learn 
from their experiences, leading to changes in their behavior 
over time. This adaptability makes it difficult to anticipate 
their future behavior, as it may not be consistent with their 
past performance, hindering effective monitoring.

Limitations of human understanding: The complexity 
and sophistication of advanced AI systems often surpass 
human understanding, making it impossible for humans to 
fully comprehend and monitor their behavior. As AI systems 
continue to advance, this gap between human understanding 
and AI capabilities is expected to widen further.

Incomplete and noisy data: Real-world data used to train 
and evaluate AI systems can be incomplete, noisy, or biased, 
affecting the AI system's performance and the ability to 
monitor it effectively. Additionally, advanced AI systems 
may be sensitive to small changes in input data, leading to 
unpredictable behavior and complicating the monitoring 
process.

Scalability: As AI systems grow in scale and complexity, 
the computational resources required to monitor them may 
become prohibitive. Moreover, the increasing number of AI 
systems being developed and deployed further exacerbates 
the challenge of effective monitoring.

Temporal constraints: Real-time monitoring of advanced 
AI systems can be challenging due to the speed at which 
they operate and make decisions [49]. In many cases, 
potential unsafe impacts may emerge too quickly for human 
supervisors or monitoring tools to detect and intervene in 
time [37].

Adversarial attacks: Advanced AI systems can be 
vulnerable to adversarial attacks, where malicious 
actors manipulate the system's input data or exploit its 
vulnerabilities to compromise its performance or safety [56]. 
Adversarial attacks can be difficult to detect and anticipate, 
posing challenges for effective monitoring.

Comprehensive testing vs training time: As AI training 
cycles speed up and become more efficient, comprehensive 
testing and monitoring of AI systems may take signifi-
cantly longer than the training process itself. This disparity 
can hinder the ability to effectively monitor AI systems 
and identify potential safety concerns in a timely manner.

Incomprehensible capabilities: As advanced AI systems 
develop capabilities that surpass human understanding, it 
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becomes impossible to monitor them effectively, as humans 
can only monitor and assess what they can comprehend.

Unexplainability and incomprehensible observations: The 
inherent unexplainability of advanced AI systems poses a 
barrier to human understanding and effective monitoring. 
The human brain may have limitations in comprehending 
certain aspects of AI systems, leading to incomprehensible 
observations that cannot be effectively monitored.

On-the-fly skill acquisition: Advanced AI systems can 
acquire new skills and knowledge rapidly during operation, 
making it difficult to monitor their evolving capabilities 
jumps in the wild [67, 68] and anticipate potential safety 
concerns that may arise from their changing behavior.

Dynamic learning and guidance: AI systems can become 
smarter and more capable with guidance and teaching [2]. 
Consequently, monitoring assessments based on a system's 
initial performance may not remain valid as the system 
continues to learn and improve, complicating the monitoring 
process.

Monitoring adversarial AI systems: Monitoring 
adversarial AI systems can be particularly challenging due 
to their potential use of encryption, data hiding, and other 
techniques to evade detection. Additionally, adversarial AI 
systems may be designed to specifically target and exploit 
vulnerabilities in monitoring tools or other AI systems.

Privacy concerns: As privacy concerns drive the 
development of AI systems that protect user data and 
maintain anonymity, monitoring these systems can become 
increasingly difficult without violating privacy rights or 
regulations. This challenge requires a delicate balance 
between ensuring AI safety and respecting privacy.

Boxed AI: Boxed AI systems [10, 11, 108], which are 
intentionally isolated from the external environment to 
limit their interactions and potential negative impacts, may 
be challenging to monitor effectively due to their restricted 
access and communication protocols. Monitoring of such 
systems may be unsafe.

Ultrafast extreme events: Advanced AI systems can 
trigger ultrafast extreme events [52], such as flash crashes 
in financial markets. These events occur so rapidly that 
monitoring and intervention become nearly impossible, 
posing significant challenges for AI safety.

Multiagent systems and disagreeing AI: In the context of 
multiagent systems, where numerous AI agents interact and 
potentially disagree with each other, monitoring becomes 
increasingly complex. Monitoring the behavior and safety of 
each agent, as well as their collective impact, is a daunting 
task.

Scalability and trillions of AI agents: As the number of 
AI agents increases exponentially, it becomes impossible to 
monitor every single AI system effectively. The sheer num-
ber of parallel AI systems or agents (potentially trillions) 
would make comprehensive monitoring unattainable.

Obfuscation of programs: Recent work on program 
obfuscation [82] has shown that it is possible to design AI 
systems with concealed inner workings, making monitoring 
even more challenging as it becomes difficult to discern the 
system's true behavior and potential risks.

Emergence of capabilities: When a new AI capability 
emerges, it may already be too late to prepare for its potential 
consequences. The speed at which advanced AI systems 
develop novel capabilities often outpaces the ability of 
humans to monitor and adapt to these new developments.

Lack of fire alarms: As seen with GPT-4, there may 
be no fire alarms or early warning signs for certain AI 
advancements. This lack of warning can make it nearly 
impossible to monitor and mitigate potential risks effectively.

Hidden information in data: AI systems may have access 
to hidden information within the data they process, which 
might not be apparent to human observers [28]. This hidden 
information can lead to unexpected consequences and make 
monitoring the AI's behavior and potential impacts more 
difficult.

These reasons underscore the complexity and challenges 
associated with effectively monitoring advanced AI systems.

4 � What remains possible

Although unmonitorability presents very significant 
challenges to the safety of advanced AI systems, there are 
several ideas and approaches that can be explored to partially 
mitigate some of these risks and improve safety. They are 
exploratory in nature and contribute to a broader discourse 
on AI monitoring, rather than presenting a solution to 
unmonitorability problem:

•	 Logging AI system history: Maintaining a 
comprehensive log of an AI system's thoughts and 
actions since its creation can provide valuable insights 
into its development, behavior, and potential risks. This 
historical data can be used to analyze patterns, identify 
anomalies, and inform safety measures. This idea 
has been proposed to counteract so called Cognitive 
Steganography: “Cognitive steganography is an 
instrumental strategy for AGIs that are already trying to 
deceive their programmers for any reason (e.g., because 
the AGI is disaligned and does not want the programmers 
to realize this and edit the AGI's utility function). 
Whatever tools the programmers have for monitoring 
the AGI's thoughts, the AGI will not want those tools 
to helpfully print out all the AGIs plans for deception. 
This could mean, e.g., trying to have the calculations 
occur somewhere else or in a weird side-mode that the 
tools cannot read; or making the thoughts look like 
they're about something else; or burying any warning 
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signs under an avalanche of false alarms too long for the 
programmers to manually check all of them; or making 
the visible portions of the thoughts look innocuous. ("Oh, 
it's trying to figure out what behavior we want to see! 
That's good, right?") Hopefully, the intention to figure out 
cognitive steganography and implement it, would occur 
before any cognitive steganography had actually been 
implemented. This means that perhaps the most critical 
AI thought-monitoring tool, especially for monitoring an 
AGI that is or might be able to model human psychology, 
is the one that tries to detect a forming intention to defeat 
the thought-monitoring tool. Similarly, so long as the AI's 
state is perfectly Reproducible, one could in principle 
go back and use more sophisticated later thought-
monitoring tools to try to detect whether any intention 
toward cognitive steganography had occurred months 
earlier.” [7]. Turchin notes: “AI cannot start hiding its 
thoughts before it decides to hide them, so the thought 
about hiding still could be openly observed. Thus, we 
may prefer the AI architecture, where the period of 
vulnerability of the treason is as long as possible, and 
thoughts are explicit and readable by an outside observer 
(it is not so with most current neural net architectures, 
where internal processes are opaque).” [92].

•	 Scalable oversight mechanisms: Developing scalable 
oversight mechanisms that can adapt to the growing 
complexity and capabilities of AI systems can help 
mitigate monitoring and safety management challenges 
[18]. These mechanisms may include automated 
monitoring tools, adaptive safety protocols, and real-
time analysis of AI behavior. “Particularly valuable 
would be tools for doing a very broad set of evaluations, 
or evaluations that search (e.g., across prompts) for new 
capabilities, rather than just fixed evaluation datasets that 
measure known capabilities.” [38].

•	 Comprehensive AI capabilities and failure analysis: 
Creating a list of possible AI abilities, along with their 
potential failure modes [83, 114] and limitations, can 
help developers and researchers better understand the 
range of AI system behavior and identify potential risks. 
By analyzing multimodal failure scenarios and the limits 
of AI capabilities [91], we can proactively address safety 
concerns [27] and design more robust AI systems.

•	 Eliciting latent knowledge [15, 22, 29], the process of 
uncovering the underlying knowledge that an AI system 
has learned but may not explicitly reveal, can enhance 
AI monitoring capabilities. This process can provide 
insights into why an AI system makes certain decisions, 
particularly useful in complex models like deep neural 
networks. It can also reveal biases in the AI system that 
aren't immediately apparent, allowing for the detection 
and rectification of discriminatory patterns. Additionally, 
latent knowledge can help identify potential security 

vulnerabilities, such as over-reliance on certain features 
or patterns, which could be exploited in adversarial 
attacks. This understanding of an AI system's latent 
knowledge can also aid in debugging and improving the 
model by identifying and correcting misconceptions that 
lead to incorrect predictions.

•	 Cross-monitoring among AI systems: Enabling AI sys-
tems to monitor each other's source code and behavior can 
provide an additional layer of oversight, helping to detect 
potential risks and maintain safety standards. This col-
laborative approach can leverage the strengths of multiple 
AI systems to enhance overall safety and monitorability.

•	 Leveraging thinking time information: The time taken 
by an AI system to process information and make deci-
sions can provide valuable insights into its behavior and 
potential risks. By analyzing thinking time data, we can 
identify patterns, anomalies, and other indicators of AI 
system performance and safety.

•	 AI transparency and explainability: Investing in research 
on AI transparency and explainability can help provide 
some insights into the decision-making processes of AI 
systems, enabling better monitoring and understanding 
of their actions, even if not in real-time.

•	 AI system modularity and composability: Designing AI 
systems with modular and composable components can 
facilitate easier monitoring and intervention. By breaking 
down complex AI systems into smaller, more manageable 
parts, we can better understand their behavior.

•	 AI system verification and validation: Developing 
rigorous verification and validation techniques can help 
ensure that AI systems behave as intended, reducing the 
likelihood of surprises and unintended consequences.

•	 AI safety by design: Integrating safety principles into the 
AI development process from the outset can help prevent 
the emergence of some unsafe behaviors and reduce the 
need for extensive monitoring.

•	 Adaptive monitoring strategies: Developing monitoring 
strategies that adapt to the changing behavior and 
capabilities of AI systems can help maintain an effective 
level of oversight, even as the AI system evolves.

•	 Red teaming and adversarial testing: Conducting red 
team exercises and adversarial testing can help identify 
potential weaknesses and vulnerabilities in AI systems, 
allowing developers to address these issues proactively 
and improve overall safety.

•	 Cross-disciplinary collaboration: Encouraging 
collaboration between experts in AI safety, computer 
science, ethics, law, and other relevant fields can help 
generate innovative solutions to the challenges posed by 
AI unmonitorability.

By exploring these ideas and approaches, we can work 
towards bypassing some of the limitations to AI safety 
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caused by unmonitorability, making advanced AI systems 
somewhat safer.

4.1 � Operationalizing monitoring

Operationalizing AI monitoring is a critical aspect of the 
AI development lifecycle, requiring strategic integration at 
various stages to ensure ethical, efficient, and effective AI 
systems. In the early development phase, which includes 
conceptualization and design, the focus is on embedding 
ethical considerations and monitoring mechanisms from the 
outset. This early integration is vital for a comprehensive 
understanding of the intended use, potential risks, and 
ethical implications of the AI system.

–	 Implement ethical risk assessments to identify potential 
biases and ethical implications.

–	 Use frameworks like value-sensitive design (VSD) to 
integrate stakeholder values into the AI system.

–	 Establish clear guidelines for data collection and 
processing, ensuring data quality and diversity.

As the development progresses to the middle phase, 
encompassing model training and testing, monitoring 
plays a crucial role in maintaining data integrity, detecting 
biases, and validating model performance. This phase calls 
for continuous evaluation and adjustment of the AI model 
based on monitored outcomes, ensuring that the system 
evolves in alignment with ethical standards and operational 
requirements.

–	 Apply techniques like differential privacy and federated 
learning for data security and privacy.

–	 Use robustness and sensitivity analysis to assess model 
performance under various conditions.

–	 Implement automated bias detection tools to continuously 
monitor and correct for biases during training.

In the late development phase, which involves deployment 
and maintenance, the emphasis shifts to ongoing monitoring. 
This ongoing process is essential for tracking the AI system's 
performance in real-world settings and for implementing 
periodic reviews and updates. These updates are informed 
by monitoring insights, encompassing user feedback, and 
evolving ethical standards.

–	 Apply techniques like differential privacy and federated 
learning for data security and privacy.

–	 Use robustness and sensitivity analysis to assess model 
performance under various conditions.

–	 Implement automated bias detection tools to continu-
ously monitor and correct for biases during training.

Throughout all these phases, cross-phase considerations 
like transparency, documentation, and the establishment 
of multidisciplinary teams, including ethicists, are 
fundamental. These teams play a pivotal role in overseeing 
and guiding the monitoring process, ensuring that the AI 
system remains aligned with ethical and operational goals. 
Case studies and examples from existing literature [5, 
86], offer valuable prototypes for operationalization of AI 
monitoring across various stages of development. These 
real-world examples serve as a guide for developers and 
researchers in operationalizing AI monitoring effectively.

5 � Safety considerations from advanced 
monitoring

Turchin considers use of AI to monitor AI [92]: “To be able 
to understand what is going on inside the main AI, we may 
need another AI. Below there are several ideas about how it 
could be implemented:

•	 Narrow AI system to detect abnormalities in AI behavior 
…: It could test the consistency of its modules, run quick 
technical tests etc. Relatively simple neural net could 
overview main patterns in data flows of the main AI and 
recognize when they will change. Obviously, it should be 
protected from access by the main AI, and maybe even 
hardcoded in the remote hardware.

•	 AGI to judge behavior of another, more powerful AI. 
For example, a human upload may judge actions of a 
more complex system. It is not a replacement for the 
Narrow AI control system, as they work on different 
timescales and judge different things. The upload-based 
controller should judge complex ethical situations, 
context ambiguities and planned long-term consequences 
of actions. The same way as a human jury is final legal 
power in some jurisdictions.

•	 Second (or several) copies of the given AI may work 
on the same task, but with small random variations of 
the goal (like if it is given in different language) or of 
different initial conditions. If both AIs come to radically 
different conclusions or plans of actions, it should be a 
warning sign for turning off both.

•	 Input Gatekeeper AI, exploring incoming commands for 
failure modes before they will be executed: It could be a 
rather narrow AI system, searching for possible known 
failure modes in the incoming goals and providing 
something like foolproof protection. It could also be 
used for reformulating goals in the correct terms, before 
they will be transformed into more powerful AGI, like 
adding context, time and place constrains etc. Gatekeeper 
AI may decline to proceed with unbounded, aggressive, 
black-listed, or not-white-listed goals. It could ask to 
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reformulate the same goal in other words before it will 
go to the main AI. It could ask additional questions for 
the goal verification. Gatekeeper AI should be a Narrow 
AI with a rather simple reasoning, maybe a combination 
of neural net and rule-based AI, so there will be no need 
to ensure its safety too.

•	 Output gatekeeper AI: It was partly described above 
as Narrow AI which compares and averages outputs of 
several different AIs working on the same task. It could 
also check the main AI outputs on several known failure 
modes and even calculate the consequences of actions.

•	 Cloud services and “Mother AI”: Many contemporary AI 
programs run not locally, but on remote cloud services. 
Even if they are run locally, they are surrounded by many 
other programs inside the computer, including operating 
system, code compiler, all the things like CUDA, Caffee 
and other programs which provides conditions for the 
program to run. Such program-environment may include 
different control systems which could shut down AI in 
case of the abnormal behavior.”

In the long term, such approach will likely lead to the 
development of ever more capable monitoring software, 
which presents a fascinating paradox in the realm of AI 
safety and control. This scenario arises from the need 
to develop sophisticated monitoring tools capable of 
comprehending and analyzing the intricate behaviors of 
advanced AI systems. However, the implications of such 
a development could lead to unforeseen challenges and 
consequences.

It is essential to consider the rationale behind developing 
a monitor software that is more complex and intelligent than 
the AI being monitored. As advanced AI systems grow in 
capability and complexity, conventional monitoring tools 
and human intuition may prove insufficient for accurately 
assessing their behavior, alignment with human values, and 
potential risks. In response, researchers and developers may 
endeavor to create monitoring tools that are inherently more 
intelligent and capable of understanding the nuances of AI 
behavior, predicting emergent phenomena, and identifying 
potential deviations from desired outcomes.

The creation of such a sophisticated monitor software 
brings about several potential challenges and concerns. One 
of the foremost issues is the potential loss of control and 
oversight over the monitor software itself. As the monitor 
software becomes more intelligent and complex, it may 
begin to exhibit behaviors that are difficult for humans to 
comprehend, predict, or control, as well as agentic behaviors. 
This could lead to an ironic situation where the monitoring 
tool, designed to ensure the safety and control of AI systems, 
becomes itself a potential source of risk and uncertainty.

Moreover, the development of highly intelligent monitor 
software might inadvertently contribute to an AI arms race 

[76], where the monitoring tools and the AI systems being 
monitored engage in a perpetual cycle of escalation in terms 
of capabilities and complexity. Such a scenario could fur-
ther exacerbate the challenges of AI safety and control, as 
it becomes increasingly difficult to maintain oversight and 
ensure alignment with human values. Another concern is the 
possibility that the monitor software, being more intelligent 
than the AI system it oversees, could manipulate or influence 
the behavior of the monitored AI in unintended ways. This 
could lead to unforeseen consequences and potential risks, 
as the interaction between the monitor software and the AI 
system becomes increasingly complex and unpredictable. 
To mitigate these challenges and potential risks, researchers 
and developers should focus on creating monitoring tools 
that strike a balance between intelligence, complexity, and 
human interpretability [32]. It is crucial to develop monitor-
ing systems that can effectively analyze and comprehend AI 
behavior while remaining amenable to human understanding 
and control.

6 � Conclusions

The unmonitorability of AI presents a significant challenge 
in the pursuit of AI safety, supplementing the concerns 
raised by the unpredictability, unexplainability,1 and 
uncontrollability of advanced AI systems. Recognizing 
the impossibility [19] of accurately monitoring AI systems 
to predict unsafe impacts before they happen is crucial 
to understanding the potential risks associated with AI 
development and deployment.

Even system designers do not know what the system they 
produced is capable of: The complexity of advanced AI 
systems, combined with the inherent limitations of human 
understanding, means that even the creators of these systems 
may be unable to fully anticipate their capabilities and 
potential unsafe impacts. This lack of complete knowledge 
emphasizes the unmonitorability of AI and the importance 
of developing more robust and transparent systems.

Even if you observe a problem does not mean you 
will be able to correct it: The identification of a potential 
unsafe impact does not guarantee that it can be prevented 
or mitigated, as we do not know how to make corrective 
changes to foundational models themselves, post-
factum filtering of AI output notwithstanding. Complex 
interactions within AI systems and between the system 
and its environment can lead to unforeseen consequences, 
making it difficult to apply corrective measures effectively. 
This highlights the need for AI safety research to focus on 

1  Unexplainability may be beneficial for limiting progress in AI, as 
explainability makes self-improvement easier.
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proactive strategies, such as designing AI systems with 
safety in mind from the outset and fostering a culture of 
responsible AI development and deployment.

Singularity is the ultimate consequence of unmonitorabil-
ity of superintelligent systems: The unmonitorability of AI 
systems becomes even more pronounced as we approach the 
hypothetical point of technological singularity [103], where 
AI systems surpass human intelligence in virtually every 
domain and the speed of execution. And, at this stage, the 
gap between human understanding and AI capabilities would 
become insurmountable, making it impossible to monitor, 
predict, or control the behavior and impacts of these systems. 
This reinforces the urgency of addressing AI safety concerns 
and developing strategies to mitigate risks associated with 
AI advancements.

In the context of AI training, unmonitorability presents 
an immense risk. As we continue to increase the power and 
complexity of AI models, we could conceivably create a sys-
tem that does not merely reach human-level intelligence, but 
continues to learn and improve until it surpasses this thresh-
old and becomes superintelligent. This transition would be 
equivalent to a type of 'pre-foom' [123], a state in which an 
AI model has not only learned to mimic human abilities but 
has developed the capability to self-improve, dramatically 
exceeding the human-level intelligence, and so is coming out 
of training as a full-blown superintelligence.

The unmonitorability of this foom-like phase poses 
significant safety concerns. If a system were to start 
improving itself at an exponential rate, there would be little 
to no opportunity for human intervention or control. The 
process of self-improvement could occur rapidly and in 
unpredictable ways, potentially leading to outcomes that are 
far beyond human comprehension or control. This issue is 
exacerbated by the fact that, due to unmonitorability, we may 
not be able to detect when a system is approaching or has 
entered this phase until it is too late. Unmonitorability means 
that we cannot guarantee that any large training run will be 
safe [6], as we might unintentionally endow the model with 
superabilities [105] that we cannot effectively control.

The ability to effectively monitor the behavior and 
decision-making processes of intelligent agents is inherently 
asymmetric. More advanced agents possess the capabilities 
to monitor less advanced agents, but the reverse is not 
true. As AI systems continue to evolve and surpass human 
intelligence in various domains, they will increasingly gain 
the capacity to monitor and analyze human thoughts and 
behaviors. However, humans will face growing challenges 
in monitoring advanced AI systems due to their inherent 
limitations in understanding and processing complex AI 
decision-making processes.

This asymmetry between advanced AI agents and humans 
raises significant concerns for AI safety and governance. 
As AI systems become more capable of monitoring human 

thoughts, they may gain unprecedented insights into 
our motivations, preferences, and vulnerabilities. This 
information could be used for beneficial purposes, such as 
improving human-AI interaction, personalizing services, 
or enhancing decision-making. However, it also raises 
concerns about privacy, autonomy, and the potential misuse 
of sensitive information.

Ultimately, addressing the challenges posed by the 
asymmetry in monitoring capabilities between advanced 
AI agents and humans will be critical for ensuring the 
responsible development and deployment of AI systems 
that align with human values and goals. By acknowledging 
and confronting these challenges, we can work towards a 
future in which AI technologies serve as valuable tools for 
human advancement, rather than as uncontrollable forces 
that threaten our safety and well-being.
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