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Abstract
Our Visual Analytics (VA) tool ScrutinAI supports human analysts to investigate interactively model performance and data 
sets. Model performance depends on labeling quality to a large extent. In particular in medical settings, generation of high 
quality labels requires in depth expert knowledge and is very costly. Often, data sets are labeled by collecting opinions of 
groups of experts. We use our VA tool to analyze the influence of label variations between different experts on the model 
performance. ScrutinAI facilitates to perform a root cause analysis that distinguishes weaknesses of deep neural network 
(DNN) models caused by varying or missing labeling quality from true weaknesses. We scrutinize the overall detection of 
intracranial hemorrhages and the more subtle differentiation between subtypes in a publicly available data set.

Keywords Visual analytics · Medical image analysis · Trustworthy AI · Human-centered machine learning ·  
Machine learning · Artifical intelligence

1 Introduction

Machine Learning (ML) models, especially based on Deep 
Learning (DL), promise a high potential for medical appli-
cations. To use machine based decisions in medical prac-
tice, models must be reliable and transparent. Additionally 
to local explanations of single model decisions, a detailed 
understanding of the deep neural network (DNN) is needed 
to uncover hidden patterns within the inner structure of the 
algorithm [11]. The performance and reliability of a super-
vised model is influenced by aleatoric uncertainty resulting, 
e.g., from label noise. This concerns especially the medi-
cal domain [7]: Labeling medical data sets, such as image 
data, requires resource intensive domain knowledge which 
is biased due to subjective expert judgement, annotation 
habits as well as annotator’s errors. This results in a lack of 

consistency among different observers, which is defined as 
inter-observer variability [8]. Final annotations are often a 
consensus from multiple experts, which challenges appro-
priate aggregation of these labels. As a consequence of the 
negative affection of label noise on model performance, the 
trustworthiness of quality metrics based on these labels is 
questionable. As handling label noise is still largely unno-
ticed in medical domain [7]. we use Visual Analytics (VA) 
to analyze the aleatoric uncertainty of labels and base the 
detection of true weaknesses on this.

Visual Analytics is a multidisciplinary field where inter-
active systems and tools are being developed that enable the 
human analyst to engage in a structured reasoning process 
by providing appropriate visualizations and representations 
of the data. An important aspect is to explicitly benefit from 
the humans’ tacit and expert knowledge by supporting the 
analyst with specific workflows to gain insights and knowl-
edge into the problem domain [10]. Integrating the human 
into the analysis process is especially important in case of 
complex DNN models [1]. To further facilitate DNN inter-
pretability, transparency methods, e.g. Grad-CAM++ [2], 
are often employed. For this task, the data and its repre-
sentations must be prepared in such a way that no relevant 
information is lost or hidden, and at the same time the work-
flow and integrated widgets provide enough flexibility for 
deep dive analysis. For example, CheXplain [12] focuses at 
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addressing the specific needs in the healthcare domain for 
exploring and understanding a detection model for radio-
graphic chest images.

Our own focus lies in assessing potential model vulner-
abilities by leveraging the semantic context of the data, spe-
cifically object-level description of entities, through the use 
of detailed descriptive meta data. For this task, we developed 
the VA tool ScrutinAI [6], whose functionalities and work-
flow promote the generation of semantic hypotheses during 
the exploration in iterative analysis cycles. The meta data, 
as well as precomputed model predictions of the model, are 
loaded into the tool via an easily exchangeable CSV file. 
Additionally, image data are displayed with options for 
zooming and overlaying. Various widgets provide options 
for filtering and querying the data, such as textual queries, 
an interactive selection of interesting data points, data dis-
tribution along categories, or correlation plots. Although 
being originally developed for uses cases in the automotive 
domain, the modular design of ScrutinAI allows a simple 
adaption to other domains by the integration of customized 
widgets.

2  Visual analysis of the medical use case

In this paper, we demonstrate the visual analysis of the influ-
ence of label noise on model performance within ScrutinAI 
for the use case of DNN detection of intracranial hemor-
rhages. We give details on the medical use case, model and 
data sets and the modularity and extensibility of ScrutinAI. 
We describe our analysis process within ScrutinAI and our 
findings, in which we uncover inter-observer variability in 
the general detection of hemorrhages and among all classes 
in the data sets, in particular with respect to very similar 
classes. In consecutive analysis cycles, we reveal a negative 
influence of this label noise on our model’s performance.

2.1  Background of the medical use case

Intracranial hemorrhage is an urgent and life-threatening 
emergency requiring rapid medical treatment. To determine 
region and size of a hemorrhage, imaging techniques such as 
computed tomography (CT) can be used, consisting of indi-
vidual slices giving a three-dimensional impression of the 
head. Automatic image recognition using DL can assist doc-
tors with quick detection and characterization. Therefore, we 
use a DNN of our prior work [5] trained on the biggest pub-
licly available multinational and multi-institutional data set 
of intracranial CT scans provided by the Radiology Society 
of North America (RSNA) [4]. For each sample, one of 60 
experienced radiologists annotated on slice-level the region 
of the hemorrhage with the corresponding subtype any, epi-
dural, intraparenchymal, interaventricular, subarachnoid or 

subdural. We use the labeled data set part with 80% train and 
20% test split and window setting1 as preprocessing method. 
If the model predicts a hemorrhage in a region, we generate 
with Grad-CAM++ a heatmap as local explanation.

We evaluate our model in addition to the RSNA test split 
on the commonly used public CQ500 data set [3]. After data 
selection and cleaning, we obtain 490 CT scans, using only 
those slice series with the lowest sampling rate. The data 
set is annotated on CT-level by three independent senior 
radiologists with eight, twelve, and 20 years of experience, 
using the same six subtypes of hemorrhages as in the RSNA 
data set. We use the individual annotations as well as the 
original ground truth derived from the majority vote of the 
three radiologists.

In addition to the CT-level annotations, we use labels 
and bounding boxes on slice-level of [9]. The labels are an 
aggregation of annotations from three different neuroradi-
ologists with six, four, and less than one year of practice. 
The single annotations of the radiologists have not been pub-
lished. The slice-level labels by [9] are uniquely matched to 
the CT-level annotations by the SOP-Instance UID and the 
Study-Instance UID. In the following, we treat the annota-
tions of [3] as radiologists number one, two and three, and 
of [9] as fourth radiologist. To make the annotations of [9] 
as well as the model’s output comparable to the others, we 
generalize them to a CT-level by using the maximum value 
per region and CT. Besides generating more knowledge by 
combining all various annotations, we enrich the meta data, 
e.g., by specifying for each CT the proportion of radiologists 
detecting a specific hemorrhage.

2.2  Analysis in ScrutinAI and results

Since labeling noise is a challenging and well-known prob-
lem in medical image analysis, we investigate the application 
of our model to the CQ500 data set in this regard. Using 
ScrutinAI, we aim to expose dependencies and relationships 
between model performance and inter-observer variability in 
labeling. Therefore, we load the CQ500 data set, the anno-
tations, and the precomputed model’s predictions in Scru-
tinAI. As visible in Fig. 1a, all structured data is accessible 
over the meta data overview B  . The unstructured image 
data can be displayed in use case specific views H  , enabling 
an analysis in different window settings or an inspection of 
annotated bounding boxes and local explanations generated 
with GradCAM++.

1 Typically used by radiologists. Corresponds to gray-value mapping, 
where a specific interval of the CT range is selected to highlight dif-
ferent intensity ranges.
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Following, we present the walk-throughs of four con-
secutive analysis cycles (I-IV) within ScrutinAI, where we 
gained six (i-iv) findings.

In cycle I, we want to compare the model’s performance 
against the opinion of all four radiologists as ground truth. 
For this task, we iteratively use the metric overview widget 
(as illustrated in Fig. 1a C  ) and interactively change which 
annotation column to use as ground truth. All other depend-
ent performance metrics are re-computed automatically. 
Based on this, we find that among radiologists, a varying 
number of hemorrhages and corresponding subtypes is 
detected. The model shows the best performance compared 
to the annotations of the fourth radiologist (Acc: 92,4%, 
F1-Score: 91%, occasions class any: 217), and the worst per-
formance in comparison to the third radiologist (Acc: 88% 
and F1-Score 87,4%, occasions class any: 193). This can 
also be explored visually in ScrutinAI using the widgets tex-
tual query A  and scatter plot E  . We select with the query 
all hemorrhages labeled as negative by one radiologist, and 
create three plots for the annotations of the other radiologists 
to visually compare patterns. Exemplary, one of these plots 
in Fig. 1b - cycle I shows that several annotations of the 
fourth radiologist differ to the third expert and are labeled 
as true (value 1). We gain the first two findings: (i) the test 
data set shows a high inter-observer variability with respect 
to the general occurrence of hemorrhage as well as among 
different classes, and (ii) the model’s performance varies 
greatly depending on which radiologist it is compared to.

We deepen the analysis in cycle II and calculate for 
each CT how many radiologists agreed on the presence of 

a hemorrhage. In the drop-down menu of the Pearson cor-
relation plot G  , we choose the agreement of the radiolo-
gists on the incidence of a hemorrhage and the prediction 
of the model as independent categories and as result we get 
a positive correlation of 0.91 (see Fig. 1b - cycle II). The 
plot visualizes, that in cases where radiologists agree on 
the occurrence of a hemorrhage, the prediction score of the 
model is higher, whereas the less radiologists agree on a 
hemorrhage, the lower the prediction score of the model. 
We conclude as third finding (iii) a correlation between the 
model’s performance and the inter-observer variability.

Using again the textual query, we further explore this 
observation in cycle III. Based on the data selection, Scru-
tinAI provides the number of cases detected by one, two, 
three or four radiologists, respectively, and let us easily com-
pare how many of those potential cases are detected by our 
model. The results (see Table 1) support finding (iii). Most 
cases are detected by all four radiologists and the detection 
rate of the model for those cases is the highest. Detection 
overlap between model and radiologists decreases, if only 

Fig. 1  (a) Overview of the interactive functionalities in ScrutinAI applied to the medical use case. (b) Detailed screenshots of the findings in 
analysis cycles I-III. (The individual widgets are shown in a compressed form to give an overall view)

Table 1  Number of radiologists agreeing on a hemorrhage and model 
prediction for these potential cases

Four Three Two One

Cases 161 37 28 25
Model True 155 25 11 3

False 6 12 17 22
Detection overlap 97% 68% 61% 44%
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three or two radiologists agree on the occurrence. For those 
cases in which only one radiologist detects a hemorrhage, 
the model classifies a hemorrhage even less frequently.

To compare the cases in which the radiologists agree with 
those in which they disagree, we query in ScrutinAI two data 
subsets (see Fig. 1b - cycle III). The first subset of data is 
selected by textual query 1, consisting of all cases on which 
all radiologists either agreed on “no hemorrhage” or “hem-
orrhage”. The second subset is filtered analogously (query 
2), containing the data points where all radiologists agree 
on “no hemorrhage”, plus, all cases for which only some of 
the radiologists (one, two or three) have detected a hemor-
rhage. We read off the model performance for both subsets 
by selecting the ground truth of the original annotations. 
Using the same procedure, we split the data according to the 
concordance of all radiologists within each class. We reveal 
as finding (iv), that accuracy and F1-score decrease in all 
classes for cases in which the radiologists do not agree on 
the label, while both metrics increase for all cases in which 
all radiologists agree on the label.

As the performance of the model for epidural hemor-
rhages is extremely low, we scrutinize those cases in cycle 
IV. By examining the meta data overview, we observe an 
increased prediction score in the subdural class for many 
cases that have been annotated as epidural. As visible in 
Fig. 2, we explore in the image view H  an example case in 
which the model classifies a hemorrhage as subdural (see 
increased prediction score for subdural), while the ground 
truth of the slice and the bounding box are epidural. Still, 
the local explanation with Grad-CAM++ shows that the 
model has detected the region within the bounding box but 
it has classified it as wrong subtype. As we are interested 
if the model systematically detects epidural hemorrhages 
as subdural, we select in the metric overview as visible in 

Fig. 2 C  as ground truth column “epidural”. Accordingly, 
we compare it firstly to the prediction column of epidural. 
As the grouped statistics show, there are 13 cases out of 
the 490 CT-Scans with an epidural hemorrhage, but only 
one case is detected by the model (true positive), while 
12 epidural cases are not detected as epidural (false posi-
tive). In a second step, we select in the drop down menu 
as prediction column “subdural”, still comparing it to the 
epidural ground truth. We observe that now 11 out of the 
13 epidural cases are detected and therefore classified as 
subdural. The recall increases to 85%. This result leads 
to finding (v), that the model did not learn to distinguish 
between the classes subdural and epidural. A major reason 
for the bad performance might be due to the fact that the 
epidural cases were undersampled in the RSNA training 
data set. Still, we want to assess the radiologists’ agree-
ment on the label epidural, as distinguishing between 
both (spatially very close) regions requires a lot of expert 
domain knowledge. Filtering the epidural cases once more 
in ScrutinAI, we find that in 6 cases all radiologists, in 13 
cases three, in 4 cases two, and in 9 cases only one radiolo-
gist agreed on an epidural hemorrhage. We select with a 
textual query all cases labeled in the original ground truth 
as epidural but not as subdural aiming to exclude images 
with hemorrhages in both regions. We obtain only 7 cases. 
We visualize the radiologists’ assessment for subdural in 
a scatter plot and detect that in 4 out of the 7 cases at least 
one radiologist still labeled the case as subdural. Even if 
the number of cases is not representative, it indicates as 
finding (vi) that a clear distinction between similar classes, 
as subdural and epidural, is even non-trivial for experi-
enced radiologists and similarly leads to higher inter-
observer variation affecting model performance negatively.

Fig. 2  The findings of analysis 
cycle IV show in the perfor-
mance overview and image 
view that the model incorrectly 
classifies epidural hemorrhages 
as subdural
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3  Conclusion

We have shown that ScrutinAI can be easily adapted to a 
new domain such as healthcare. New data sets and mod-
els can be loaded and analyzed with the existing structure 
and features. Based on the modular structure, the tool can 
be easily extended by use case specific features. With the 
exemplary analysis of DNN detection of intracranial hemor-
rhages, we demonstrate that ScrutinAI can be used to inter-
actively explore the dependencies between model perfor-
mance and label noise in data sets. ScrutinAI’s workflow and 
interactive functionalities were shown to efficiently support 
the analyst by means of VA principles. Using linked brush-
ing, data could be easily filtered across the different widgets 
and data representations (structural and visual), enabling 
deep-dive analysis without the need to deal with individual 
scripts or tools to get the same functionality.

In summary, the analysis of the use case in ScrutinAI 
reveals the aleatoric uncertainty in the CQ500 data set, 
which interrelates with the inter-observer variability. Based 
on finding (iii), we assume that in the RSNA data set, used 
for the training of our model, a similar label noise consists. 
We face the challenge of discerning whether the label noise 
arises from hard to detect hemorrhages being detected only 
by individual experts or from radiologists misclassifying 
artifacts as hemorrhages. Moreover, analysis cycles III and 
IV revealed the difficulty for a clear and consistent distinc-
tion between specific and, in particular, similar regions 
among observers. The negative effect of label noise on 
model performance detected in finding (iv) and (v), confirms 
that learning patterns for the model is more difficult due 
to inter-observer variability. The question raises, whether a 
model trained either on the annotations of only one expert, 
or on individual annotations of several consistent experts, 
would more easily learn a stable behavior and perform better 
on hard to detect samples. To answer this question, we would 
need to compare our model to a model trained only on anno-
tations of a single radiologist, which we leave open for future 
work. For a deeper analysis of the actual correspondence of 
the detected hemorrhages, we plan to compare the location 
of the bounding boxes of [9] to the rough location regions 
annotated in [3] as well as to a location’s approximation of 
the occurrences detected by the model and extracted from 
the heatmap generated through Grad-CAM++.
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