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Abstract
Large language models (LLMs) represent a major advance in artificial intelligence (AI) research. However, the widespread 
use of LLMs is also coupled with significant ethical and social challenges. Previous research has pointed towards auditing 
as a promising governance mechanism to help ensure that AI systems are designed and deployed in ways that are ethical, 
legal, and technically robust. However, existing auditing procedures fail to address the governance challenges posed by 
LLMs, which display emergent capabilities and are adaptable to a wide range of downstream tasks. In this article, we address 
that gap by outlining a novel blueprint for how to audit LLMs. Specifically, we propose a three-layered approach, whereby 
governance audits (of technology providers that design and disseminate LLMs), model audits (of LLMs after pre-training 
but prior to their release), and application audits (of applications based on LLMs) complement and inform each other. We 
show how audits, when conducted in a structured and coordinated manner on all three levels, can be a feasible and effective 
mechanism for identifying and managing some of the ethical and social risks posed by LLMs. However, it is important to 
remain realistic about what auditing can reasonably be expected to achieve. Therefore, we discuss the limitations not only 
of our three-layered approach but also of the prospect of auditing LLMs at all. Ultimately, this article seeks to expand the 
methodological toolkit available to technology providers and policymakers who wish to analyse and evaluate LLMs from 
technical, ethical, and legal perspectives.

Keywords  Artificial intelligence · Auditing · Ethics · Foundation models · Governance · Large language models · Natural 
language processing · Policy · Risk management

1  Introduction

Auditing is a governance mechanism that technology provid-
ers and policymakers can use to identify and mitigate risks 
associated with artificial intelligence (AI) systems [1-5].1 
Auditing is characterised by a systematic and independ-
ent process of obtaining and evaluating evidence regard-
ing an entity's actions or properties and communicating the 
results of that evaluation to relevant stakeholders [6]. Three 
ideas underpin the promise of auditing as an AI governance 
mechanism: that procedural regularity and transparency 
contribute to good governance [7, 8]; that proactivity in the 
design of AI systems helps identify risks and prevent harm 
before it occurs [9, 10]; and, that the operational independ-
ence between the auditor and the auditee contributes to the 
objectivity and professionalism of the evaluation [11, 12].
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Previous work on AI auditing has focused on ensuring 
that specific applications meet predefined, often sector-spe-
cific, requirements. For example, researchers have developed 
procedures for how to audit AI systems used in recruitment 
[13], online search [14], image classification [15], and medi-
cal diagnostics [16, 17]. However, the capabilities of AI sys-
tems tend to become ever more general. In a recent article, 
Bommasani et al. [18] coined the term foundation models 
to describe models that can be adapted to a wide range of 
downstream tasks. While foundation models are not neces-
sarily new from a technical perspective,2 they differ from 
other AI systems insofar as they have proven to be effective 
across many different tasks and display emergent capabilities 
when scaled [19]. The rise of foundation models also reflects 
a shift in how AI systems are designed and deployed, since 
these models tend to be trained and released by one actor and 
subsequently adapted for a wide range of different applica-
tions by a plurality of other actors.

From an AI auditing perspective, foundation models 
pose significant challenges. For example, it is difficult to 
assess the risks that AI systems pose independent of the 
context in which they are deployed. Moreover, how to allo-
cate responsibility between technology providers and down-
stream developers when harms occur remains unresolved. 
Taken together, the capabilities and training processes of 
foundation models have outpaced the development of tools 
and procedures to ensure that these are ethical, legal, and 
technically robust.3 This implies that, while application-level 
audits have an important role in AI governance, they must be 
complemented with new forms of supervision and control.

This article addresses that gap by focusing on a subset of 
foundation models, namely large language models (LLMs). 
LLMs start from a source input, called the prompt, to gener-
ate the most likely sequences of words, code, or other data 
[20]. Historically, different model architectures have been 
used in natural language processing (NLP), including proba-
bilistic methods [21]. However, most recent LLMs—includ-
ing those we focus on in this article—are based on deep 

neural networks trained on a large corpus of texts. Examples 
of such LLMs include GPT-3 [22], GPT-4 [23], PaLM [24], 
LaMDA [25], Gopher [26] and OPT [27]. Once an LLM has 
been pre-trained, it can be adapted (with or without fine-
tuning4) to support various applications, from spell-checking 
[28] to creative writing [29].

Developing LLM auditing procedures is an important 
and timely task for two reasons. First, LLMs pose many 
ethical and social challenges, including the perpetuation of 
harmful stereotypes, the leakage of personal data protected 
by privacy regulations, the spread of misinformation, pla-
giarism, and the misuse of copyrighted material [30-33]. In 
recent months, the scope of impact from these harms has 
been dramatically scaled by unprecedented public visibility 
and growing user bases of LLMs. For example, ChatGPT 
attracted over 100 million users just two months after its 
launch [34]. The urgency of addressing those challenges 
makes developing a capacity to audit LLMs’ characteris-
tics along different normative dimensions (such as privacy, 
bias, safety, etc.) a critical task in and of itself [35]. Second, 
LLMs can be considered proxies for other foundation mod-
els.5 Consider CLIP [36], a vision-language model trained 
to predict which text caption accompanied an image, as an 
example. CLIP too displays emergent capabilities, can be 
adapted for multiple downstream applications, and faces 
similar governance challenges as LLMs. The same holds 
of text2image models such as DALL·E 2 [37]. Developing 
feasible and effective procedures for how to audit LLMs is 
therefore likely to offer transferable lessons on how to audit 
other foundation models and even more powerful generative 
systems in the future.6

The main contribution offered in this article is a novel 
blueprint for how to audit LLMs. Specifically, we propose a 
three-layered approach, whereby governance audits (of tech-
nology providers that design and disseminate LLMs), model 

2  Foundation models are typically based on deep neural networks and 
self-supervised learning, two approaches that have existed for dec-
ades [18]. That said, the rise of foundation models has been enabled 
by more recent developments, including: the advancement of new 
network architectures, like transformers [276]; the increase in com-
pute resources and improvements in hardware capacity [277]; the 
availability of large scale datasets, e.g., through ImageNet [278] or 
CommonCrawl [279]; and the application of these increased compute 
resources with larger datasets for model pre-training [280].
3  The European Commission’s Ethics Guidelines for Trustworthy 
AI stipulate that AI systems should be legal, ethical, and technically 
robust [281]. That normative standard includes safeguards against 
both immediate and long-term concerns, e.g., those related to data 
privacy and discrimination and those related to the safety and control 
of highly capable and autonomous AI systems, respectively.

4  To fine-tune LLMs for specific tasks, an additional dataset of in-
domain examples can be used to adapt the final layers of a pre-trained 
model. In some cases, developers apply reinforcement learning 
(RL)—a feedback driven training paradigm whereby LLMs learn to 
adjust their behaviour to maximise a reward function [282]; espe-
cially reinforcement learning from human feedback (RLHF)—where 
the reward function is estimated based on human ratings of model 
outputs [50-52]. Alternatively, LLMs can be adapted to specific tasks 
with no additional training data and frozen weights—via in-context 
learning or prompt-based demonstrations [283].
5  In some cases, the ability to utilize other modalities is integrated 
into single-modal LLMs: DeepMind’s Flamingo model [284] fuses 
an LLM with visual embeddings to exploit its strong existing perfor-
mance on text-based tasks.
6  Following Jonathan Zittrain [285], we define ‘generative technolo-
gies’ as technologies that allow third-parties to innovate upon them 
without any gatekeeping. Colloquially, ‘generative AI’ sometimes 
refers to systems that can output content (images, text, audio, or code) 
[286], but that is not how we use the term in this article.
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audits (of LLMs after pre-training but prior to their release), 
and application audits (of applications based on LLMs) 
complement and inform each other. Figure 1 (see Sect. 4.1) 
provides an overview of this three-layered approach. As we 
demonstrate throughout this article, many tools and methods 
already exist to conduct audits at each individual level. How-
ever, the key message we seek to stress is that, to provide 
meaningful assurance for LLMs, audits conducted on the 
governance, model, and application levels must be combined 
into a structured and coordinated procedure. Figure 2 (see 
Sect. 4.5) illustrates how outputs from audits on one level 
become inputs for which audits on other levels must account. 
To the best of our knowledge, our blueprint for how to audit 
LLMs is the first of its kind, and we hope it will inform both 
technology providers’ and policymakers’ efforts to ensure 
that LLMs are legal, ethical, and technically robust.

In the process of introducing and discussing our three-
layered approach, the article also offers two secondary 
contributions. First, it makes seven claims about how LLM 
auditing procedures should be designed to be feasible and 
effective in practice. Second, it identifies the conceptual, 
technical, and practical limitations associated with audit-
ing LLMs. Together, these secondary contributions lay a 
groundwork that other researchers and practitioners can 
build upon when designing new, more refined, LLM audit-
ing procedures in the future.

Our efforts tie into an extensive research agenda and 
ongoing policy formation process. AI labs like Cohere, Ope-
nAI, and AI21 have expressed interest in understanding what 
it means to develop LLMs responsibly [38], and DeepMind, 
Microsoft, and Anthropic have highlighted the need for new 
governance mechanisms to address the social and ethical 
challenges that LLMs pose [30, 39, 40]. Individual parts of 
our proposal (e.g., those related to model evaluation [24] 
and red teaming [41, 42])7 have thus already started to be 
implemented across the industry, although not always in a 
structured manner or with full transparency. Policymakers, 
too, are interested in ensuring that societies benefit from 
LLMs while managing the associated risks. Recent exam-
ples of proposed AI regulations include the EU AI Act [43] 
and the US Algorithmic Accountability Act of 2022 [44]. 
The blueprint for auditing LLMs outlined in this article nei-
ther seeks to replace existing best practices for training and 
testing LLMs nor to foreclose forthcoming AI regulations. 
Instead, it complements them by demonstrating how gov-
ernance, model, and application audits—when conducted 
in a structured and coordinated manner—can help ensure 

that LLMs are designed and deployed in ethical, legal, and 
technically robust ways.

A further remark is needed to narrow down this article’s 
scope. Our three-layered approach concerns the procedure 
of LLM audits and answers questions about what should be 
audited, when, and according to which criteria. Of course, 
when designing a holistic auditing ecosystem, several addi-
tional considerations exist, e.g., who should conduct the 
audit and how to ensure post-audit action [12]. While such 
considerations are important, they fall outside the scope of 
this article. How to design an institutional ecosystem to audit 
LLMs is a non-trivial question that we have neither the space 
nor the capacity to address here. That said, the policy pro-
cess required to establish an LLM auditing ecosystem will 
likely be gradual and involve negotiations between numer-
ous actors, including AI labs, policymakers, and civil rights 
groups. For this reason, our early blueprint for how to audit 
LLMs is intentionally limited in scope to not forego but 
rather to initiate this policy formation process by eliciting 
stakeholder reactions.

The remainder of this article proceeds as follows: Sect. 2 
highlights the ethical and social risks posed by LLMs and 
establishes the need to audit them. In doing so, it situates 
our work in relation to recent technological and societal 
developments. Section 3 reviews previous literature on AI 
auditing to identify transferable best practices, discusses 
the properties of LLMs that undermine existing AI auditing 
procedures, and derives seven claims for how LLM audit-
ing procedures should be designed to be feasible and effec-
tive. Section 4 outlines our blueprint for how to audit LLMs, 
introducing a three-layered approach that combines govern-
ance, model, and application audits. The section explains 
in detail why these three types of audits are needed, what 
they entail, and the outputs they should produce. Section 5 
discusses the limitations of our three-layered approach and 
demonstrates that any attempt to audit LLMs will face sev-
eral conceptual, technical, and practical constraints. Finally, 
Sect. 6 concludes by discussing the implications of our find-
ings for technology providers, policymakers, and independ-
ent auditors.

2 � The need to audit LLMs

This section summarises previous research on LLMs and 
their ethical and social challenges. It aims to situate our 
work in relation to recent technological and societal devel-
opments, stress the need for auditing procedures that capture 
the risks LLMs pose, and address potential objections to our 
approach.

7  A ‘red team’ is a group of people authorised to emulate an adver-
sarial attack on a system to identify and exploit its vulnerabilities 
[287]. The objective of red teaming is thus to gather information that 
in turn can be used to improve the system’s robustness.
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2.1 � The opportunities and risks of LLMs

Although LLMs represent a major advance in AI research, 
the idea of building text-processing machines is not new. 
Since the 1950s, NLP researchers and practitioners have 
been developing software that can analyse, manipulate, and 
generate natural language [45]. Until the 1980s, most NLP 
systems used logic-based rules and focused on automating 
the structural analysis of language needed to enable machine 
translation and speech recognition [46]. More recently, the 
advent of deep learning, advances in neural architectures 
such as transformers, growth in computational power and 
the availability of internet-scraped training data have revo-
lutionised the field [47] by permitting the creation of LLMs 
that can approximate human performance on some bench-
marks [48, 49]. Further advances in instruction-tuning and 
reinforcement learning from human feedback have improved 
model capabilities to predict user intent and respond to natu-
ral language requests [50-52].

LLMs’ core training task is to produce the most likely 
continuation of a text sequence [53]. Consequently, LLMs 
can be used to recognise, summarise, translate, and gener-
ate texts, with near human-like performance on some tasks 
[54]. Exactly when a language model becomes ‘large’ is a 
matter of debate—referring to either more trainable param-
eters [55], a larger training corpus [56] or a combination of 
these. For our purposes, it is sufficient to note that LLMs are 
highly adaptable to various downstream applications, requir-
ing fewer in-domain labelled examples than traditional deep 
learning systems [57]. This means that LLMs can more eas-
ily be adapted for specific tasks, such as diagnosing medical 
conditions [58], generating code [59, 60] and translating lan-
guages [61]. Previous research has demonstrated that LLMs 
can perform well on a task with few-shot or zero-shot rea-
soning [22, 62].8 Moreover, a scaling law has been identified 
whereby the training error of an LLM falls off as a power of 
training set size, model size or both [63]. Simply scaling the 
model can thus result in emergent gains on a wide array of 
tasks [64], though those gains are non-uniform, especially 
for complex mathematical or logical reasoning domains 
[26]. Finally, while some pre-trained models are protected 
by paywalls or siloed within companies, many LLMs are 
accessible via open-source libraries such as HuggingFace, 
democratising the gains from deep language modelling and 
allowing non-experts to use it in their applications [65].

Alongside such opportunities, however, the use of LLMs 
is coupled with ethical challenges [31, 32]. As recent con-
troversies surrounding ChatGPT [66] have shown, LLMs 

are prone to give biased or incorrect answers to user queries 
[67]. More generally, a recent article by Weidinger et al. 
[30] suggests that the risks associated with LLM include 
the following:

(1)	 Discrimination. LLMs can introduce representational 
and allocational harms by perpetuating social stereo-
types and biases;

(2)	 Information hazards. LLMs may compromise privacy 
by leaking private information and inferring sensitive 
information;

(3)	 Misinformation hazards. LLMs producing misleading 
information can lead to less well-informed users and 
erode trust in shared information;

(4)	 Malicious use. LLMs can be co-opted by users with bad 
intent, e.g., to generate personalised scams or large-
scale fraud;

(5)	 Human–computer interaction harms. Users may over-
estimate the capabilities of LLMs that appear human-
like and use them in unsafe ways; and

(6)	 Automation and environmental harms. Training and 
operating LLMs require lots of computing power, 
incurring high environmental costs.

Each of these risk areas constitutes a vast and complex 
field of research. Providing a comprehensive overview of 
each field’s nuances is beyond this paper’s scope. Instead, 
we take Weidinger et al.’s summary of the ethical and social 
risks associated with LLMs as a starting point for pragmatic 
problem-solving.

2.2 � The governance gap

From a governance perspective, LLMs pose both methodo-
logical and normative challenges. As previously mentioned, 
foundation models—like LLMs—are typically developed 
and adopted in two stages. Firstly, a model is pre-trained 
using self-supervised learning on a large, unstructured text 
corpus scraped from the internet. Pre-training captures the 
general language representations required for many tasks 
without explicitly labelled data. Secondly, the weights or 
behaviours of this pre-trained model can be adapted on a far 
smaller dataset of labelled, task-specific, examples.9 That 
makes it methodologically difficult to assess LLMs inde-
pendent of the context in which they will be deployed [18].

Furthermore, although performance is predictable at a 
general level, performance on specific tasks, or at scale, 
can be unpredictable [40]. Crucially, even well-functioning 

8  An LLM is considered a ‘zero-shot’ reasoner if employed for a 
completely unseen task and a ‘few-shot’ reasoner if only a small sam-
ple of demonstrations are given for a previously unseen task.

9  The term ‘adapted’ here encompasses multiple existing methods for 
eliciting specific model behaviours, including fine-tuning, reinforce-
ment learning with human feedback and in-context learning.
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LLMs force AI labs and policymakers to face hard questions, 
such as who should have access to these technologies and 
for which purposes [68]. Of course, the challenges posed 
by LLMs are not necessarily distinct from those associated 
with classical NLP or other ML-based systems. However, 
LLMs' widespread use and generality make those challenges 
deserving of urgent attention. For all these reasons, analys-
ing LLMs from ethical perspectives requires innovation in 
risk assessment tools, benchmarks, and frameworks [69].

Several governance mechanisms designed to ensure that 
LLMs are legal, ethical, and safe have been proposed or 
piloted [70]. Some are technically oriented, including the 
pre-processing of training data, the fine-tuning of LLMs 
on data with desired properties, and procedures to test the 
model at scale pre-deployment [42, 69]. Others seek to 
address the ethical and social risks associated with LLMs 
through sociotechnical mitigation strategies, e.g., creating 
more diverse developer teams [71], human-in-the-loop pro-
tocols [72] and qualitative evaluation tools based on ethno-
graphic methods [73]. Yet others seek to ensure transparency 
in AI development processes, e.g., through a structured use 
of model cards [74, 75], datasheets [76], system cards [77], 
and the watermarking of system outputs [78].10

To summarise, while LLMs have shown impressive per-
formance across a wide range of tasks, they also pose signifi-
cant ethical and social risks. Therefore, the question of how 
LLMs should be governed has attracted much attention, with 
proposals ranging from structured access protocols designed 
to prevent malicious use [68] to hard regulation prohibit-
ing the deployment of LLMs for specific purposes [79]. 
However, the effectiveness and feasibility of these govern-
ance mechanisms have yet to be substantiated by empirical 
research. Moreover, given the multiplicity and complexity 
of the ethical and social risks associated with LLMs, we 
anticipate that policy responses will need to be multifaceted 
and incorporate several complementary governance mecha-
nisms. As of now, technology providers and policymakers 
have only started experimenting with different governance 
mechanisms, and how LLMs should be governed remains 
an open question [80].

2.3 � Calls for audits

Against the backdrop of the technological and regulatory 
landscape surveyed in this section, auditing should be 
understood as one of several governance mechanisms dif-
ferent stakeholders can employ to ensure and demonstrate 
that LLMs are legal, ethical, and technically robust. It is 
important to stress that auditing LLMs is not a hypothetical 

idea but a tangible policy option that has been proposed by 
researchers, technology providers, and policymakers alike. 
For instance, when coining the term foundation models, 
Bommasani et al. [18] suggested that ‘such models should 
be subject to rigorous testing and auditing procedures’. 
Moreover, in an open letter concerning the risks associated 
with LLMs and other foundation models, OpenAI’s CEO 
Sam Altman stated that ‘it’s important that efforts like ours 
submit to independent audits before releasing new systems’ 
[81]. Finally, the European Commission is considering clas-
sifying LLMs as ‘high-risk AI systems’ [82].11 This would 
imply that technology providers designing LLMs have to 
undergo ‘conformity assessments with the involvement of an 
independent third-party’, i.e., audits by another name [83].

Despite widespread calls for LLM auditing, central ques-
tions concerning how LLMs can and should be audited have 
yet to be systematically explored. This article addresses that 
gap by outlining a procedure for auditing LLMs. The main 
argument we advance can be summarised as follows. What 
auditing means varies between different academic disci-
plines and industry contexts [84]. However, three strands 
of auditing research and practice are particularly relevant 
with respect to ensuring good governance of LLMs. The first 
stems from IT audits, whereby auditors assess the adequacy 
of technology providers’ software development processes 
and quality management procedures [85]. The second strand 
stems from model testing and verification within the com-
puter sciences, whereby auditors assess the properties of 
different computational models [86]. The third strand stems 
from product certification procedures, whereby auditors test 
consumer goods for legal compliance and technical safety 
before they go to market [87]. As we argue throughout this 
paper, it is necessary to combine auditing tools and pro-
cedural best practices from each of these three strands to 
identify and manage the social and ethical risks LLMs pose. 
Therefore, our blueprint for auditing LLMs combines gov-
ernance audits of technology providers, model audits of 
LLMs, and application audits of downstream products and 
services built on top of LLMs. The details of this ‘three-
layered approach’ are outlined in Sect. 4.

2.4 � Addressing initial objections

Before proceeding any further, it is useful to consider some 
reasonable objections to the prospect of auditing LLMs—as 
well as potential responses to these objections. First, one 
may argue that there is no need to audit LLMs per se and 

10  A watermark is a hidden pattern in a text that is imperceptible to 
humans but makes it algorithmically identifiable as synthetic.

11  It is still uncertain how the EU AI Act should be interpreted. The 
current formulation states that LLMs that may be used for high-risk 
applications should be considered high-risk [288].
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that auditing procedures should be established at the applica-
tion level instead. Although audits on the application level 
are important, the objection presents a false dichotomy: 
quality and accountability mechanisms can and should be 
established at different stages of supply chains. Moreover, 
while some risks can only be addressed at the application 
level, others are best managed upstream. It is true that many 
factors, including some beyond the technology provider’s 
control, determine whether a specific technological artefact 
causes harm [88]. However, technology providers are still 
responsible for taking proportional precautions regarding 
reasonably foreseeable risks during the product life cycle 
stages that they do control. For this reason, we propose that 
application audits should be complemented with governance 
audits of the organisations that develop LLMs. The same 
logic underpins the EU’s AI liability directive [89]. Our 
proposal is thereby compatible with the emerging European 
AI regulations.

Second, identifying and mitigating all LLM-related risks 
at the technology level may not be possible. As we explain 
in Sect. 5, this is partly because different normative values 
may conflict and require trade-offs [90-92]. Using individu-
als’ data, for example, may permit improved personalisation 
of language models, but compromise privacy [93]. Moreover, 
concepts like ‘fairness’ or ‘transparency’ hide deep norma-
tive disagreements [94]. Different definitions of fairness (like 
demographic parity and counterfactual fairness) are mutually 
exclusive [95-97], and prioritising between competing defini-
tions remains a political question. However, while audits can-
not ensure that LLMs are ‘ethical’ in any universal sense, they 
nevertheless contribute to good governance in several ways. 
For example, audits can help technology providers identify 
risks and potentially prevent harm, shape the continuous (re-
design) of LLMs, and inform public discourse concerning tech 
policy. Bringing all this together, our blueprint for how to audit 
LLMs focuses on making implicit choices and tensions visible, 
giving voice to different stakeholders, and generating resolu-
tions that—even when imperfect—are, at least, more explicit 
and publicly defensible [98].

Third, one may contend that designing LLM auditing 
procedures is difficult. We agree and would add that this dif-
ficulty has both practical and conceptual components. Dif-
ferent stages in the software development life cycle (includ-
ing curating training data and the pre-training/fine-tuning of 
model weights) overlap in messy and iterative ways [99]. For 
example, open-source LLMs are continuously re-trained and 
re-uploaded on collaborative platforms (like HuggingFace) 
post-release. That creates practical problems concerning when 
and where audits should be mandated. Yet the conceptual chal-
lenges run even more deeply. For instance, what constitutes 
disinformation and hate speech are contested questions [100]. 
Despite widespread agreement that LLMs should be ‘truthful’ 
and ‘fair’, such notions are hard to operationalise. Because 

there exists no universal condition of validity that applies 
equally to all kinds of utterances [101], it is hard to establish a 
normative baseline against which LLMs can be audited.

However, these difficulties are not reasons for abstaining 
from developing LLM auditing procedures. Instead, they are 
healthy reminders that it cannot be assumed that one single 
auditing procedure will capture all LLM-related ethical risks 
or be equally effective in all contexts [102]. The insufficiency 
and limited nature of auditing as a governance mechanism is 
not an argument against its complementary usefulness. With 
those caveats highlighted, we now review previous work on 
AI auditing. The aim of the next section is thus to explore 
the merits and limitations of existing AI auditing procedures 
when applied to LLMs and, ultimately, identify transferable 
best practices.

3 � The merits and limits of existing AI 
auditing procedures

In this section, we provide an overview of previous work.12 
In doing so, we introduce auditing as an AI governance 
mechanism, highlight the properties of LLMs that under-
mine the feasibility and effectiveness of existing AI audit-
ing procedures, and derive and defend seven claims about 
how LLM auditing procedures should be designed. Taken 
together, this section provides the theoretical justification for 
the LLM auditing blueprint outlined in Sect. 4.

3.1 � AI auditing

In the broadest sense, auditing refers to an independent 
examination of any entity, conducted with a view to express 
an opinion thereon [103]. Auditing can be conceived as a 
governance mechanism because it can be used to monitor 
conduct and performance [104] and has a long history of 
promoting procedural regularity and transparency in areas 
like financial accounting and worker safety [105]. The idea 
behind AI auditing is thus simple: just like financial trans-
actions can be audited for correctness, completeness, and 
legality, so can the design and use of AI systems be audited 
for technical robustness, legal compliance, or adherence with 
pre-defined ethics principles.

AI auditing is a relatively recent field of study, sparked 
in 2014 by Sandvig et al.’s article Auditing Algorithms [1]. 
However, auditing intersects with almost every aspect of AI 
governance, from the documentation of design procedures 
to model testing and verification [106]. AI auditing is thus 
both a multifaceted practice and a multidisciplinary field of 

12  See Appendix 1 for the methodology used to conduct this litera-
ture review.
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research, harbouring contributions from computer science 
[107, 108], law [109, 110], media and communication stud-
ies [1, 111], and organisation studies [112, 113].

Different researchers have defined AI auditing in dif-
ferent ways. For example, it is possible to distinguish 
between narrow and broad conceptions of AI auditing. 
The former is impact-oriented and focuses on probing 
and assessing the outputs of AI systems for different input 
data [114]. The latter is process-oriented and focuses on 
assessing the adequacy of technology providers’ software 
development processes and quality management systems 
[115]. This article takes the broad perspective, defining 
AI auditing as a systematic and independent process of 
obtaining and evaluating evidence regarding an entity's 
actions or properties and communicating the results of that 
evaluation to relevant stakeholders. Note that the entity 
in question, i.e., the audit’s subject, can be either an AI 
system, an organisation, a process, or any combination 
thereof [116].

Different actors can employ AI auditing for differ-
ent purposes [117]. In some cases, policymakers man-
date audits to ensure that AI systems used within their 
jurisdiction meet specific legal standards. For example, 
New York City’s AI Audit Law (NYC Local Law 144) 
requires independent auditing of companies utilising AI 
systems to inform employment-related decisions [118]. In 
other cases, technology providers commission AI audits 
to mitigate technology-related risks, calling on profes-
sional services firms like PwC, Deloitte, KPMG, and EY 
[119-122]. In yet other cases, other stakeholders conduct 
AI audits to inform citizens about the conduct of specific 
companies.13

The key takeaway from this brief overview is that while 
AI auditing is a widespread practice, both the design and 
purpose of different AI auditing procedures vary. Moreover, 
procedures to audit LLMs and other foundation models have 
yet to be developed. Therefore, it is useful to consider the 
merits and limitations of existing AI auditing procedures 
when applied to LLMs.

3.2 � Seven claims about auditing LLMs

As demonstrated above, a wide range of AI auditing proce-
dures have already been developed.14 However, not all audit-
ing procedures are equally effective in handling the risks 

posed by LLMs. Nor are they equally likely to be imple-
mented, due to factors including technical limitations, insti-
tutional access, and administrative costs [3]. In what follows, 
we discuss some key distinctions that inform the design of 
auditing procedures and defend seven claims about making 
such designs feasible and effective for LLMs.

To start with, it is useful to distinguish between compli-
ance audits and risk audits. The former compares an entity’s 
actions or properties to predefined standards or regulations. 
The latter asks open-ended questions about how a system 
works to identify and control risks. When conducting risk 
audits of LLMs, auditors can draw on well-established pro-
cedures, including standards for AI risk management [123, 
124] and guidance on how to assess and evaluate AI sys-
tems [112, 125-129]. In contrast, compliance audits require 
a normative baseline against which AI systems can be evalu-
ated. However, LLM research is a quickly developing field in 
which standards and regulations have yet to emerge. Moreo-
ver, the fact that LLMs are adaptable to many downstream 
applications [40] undermines the feasibility of auditing pro-
cedures designed to ensure compliance with sector-specific 
norms and regulations. This leads us to our first claim:

Claim 1  AI auditing procedures focusing on compliance 
alone are unlikely to provide adequate assurance for LLMs.

Our blueprint for how to audit LLMs outlined in Sect. 4 
accounts for Claim 1 by incorporating elements of both risk 
audits (at governance and model levels) and compliance 
audits (at the application level).

Further, it is useful to distinguish between external and 
internal audits. The former is conducted by independent 
third-parties and the latter by an internal function report-
ing directly to its board [130]. External audits help address 
concerns regarding accuracy in self-reporting [1], so they 
typically underpin formal certification procedures [131]. 
However, they are constrained by limited access to inter-
nal processes [9]. For internal audits, the inverse is true: 
while constituting an essential step towards informed 
model design decisions [132], they run an increased risk 
of collusion between the auditor and the auditee [133]. 
Moreover, without third-party accountability, decision-
makers may ignore audit recommendations that threaten 
their business interests [134]. The risks stemming from 
misaligned incentives are especially stark for technologies 
with rapidly increasing capabilities and for companies fac-
ing strong competitive pressures [135]. Both conditions 
apply to LLMs, undermining the ability of internal auditing 
procedures to provide meaningful assurance in this space. 
This observation, combined with the need to manage the 
social and ethical risks posed by LLMs surveyed in Sect. 2, 
leads us to assert that:

13  AI auditing procedures have not only been developed by academic 
researchers and private companies but also by non-profit organisa-
tions like ForHumanity [302]  and  the Algorithmic Justice League 
[289].
14  For more comprehensive overviews of available AI auditing tools 
and procedures, see [6, 114, 117].
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Claim 2  External audits are required to ensure that LLMs 
are ethical, legal, and technically robust, as well as to hold 
technology providers accountable in case of irregularities 
of incidents.

As we explain in Sect. 4, each step in our blueprint for 
how to audit LLMs should be conducted by independent 
third-party auditors. However, external audits come with 
their own challenges, including how to access information 
that is protected by privacy or IP rights [12, 136]. This is 
especially challenging in the case of LLMs since some are 
only accessible via an application programming interface 
(API) and others are not published at all. Determining the 
auditor’s level of access is thus an integral part of designing 
LLM auditing procedures.

Koshiyama et al. [10] proposed a typology that distin-
guishes between different access levels. At lower levels, 
auditors have no direct access to the model but base their 
evaluations on publicly available information about the 
development process. At middle levels, auditors have access 
to the computational model itself, meaning they can manipu-
late its parameters and review its task objectives. At higher 
levels, auditors have access equivalent to the system devel-
oper to all the details encompassing a system, i.e., full access 
to organisational processes, actual input and training data, 
and information about how and why the system was initially 
created. In Sect. 4, we use this typology to indicate the level 
of access auditors need to conduct audits at the governance, 
model, and application levels.

The question about access leads us to a further distinction 
made in the AI auditing literature, i.e., between adversarial 
and collaborative audits. Adversarial audits are conducted 
by independent actors to assess the properties or impact 
an AI system has—without privileged access to its source 
code or technical design specifications [1, 114]. Collabora-
tive audits see technology providers and external auditors 
working together to assess and improve the process that 
shapes future AI systems’ design and safeguards [115, 116]. 
While the former primarily aims to expose harms, the latter 
seeks to provide assurance. Previous research has shown 
that audits are most effective when technology providers and 
independent auditors collaborate towards the common goal 
of identifying and managing risks [11]. This implies that:

Claim 3   To be feasible and effective in practice, procedures 
to audit LLM require active collaboration between technol-
ogy providers and independent auditors.

Accounting for Claim 3, this article focuses on collabora-
tive audits. All steps in our three-layered approach outlined 
in Sect. 4 demand that technology providers provide external 
auditors with the access they need and proactively feed their 
own know-how into the process. After all, evaluating LLMs 

requires resources and technical expertise that technology 
providers are best positioned to provide.

Moving on, it is also useful to distinguish between gov-
ernance audits and technology audits. The former focus on 
the organisation designing or deploying AI systems and 
include assessments of software development and quality 
management processes, incentive structures, and the allo-
cation of roles and responsibilities [85]. The latter focus on 
assessing a technical system’s properties, e.g., reviewing 
the model architecture, checking its consistency with pre-
defined specifications, or repeatedly querying an algorithm 
to understand its workings and potential impact [114]. Some 
LLM-related risks can be identified and mitigated at the 
application level. However, other issues are best addressed 
upstream, e.g., those concerning the sourcing of training 
data. This implies that, to be feasible and effective:

Claim 4  Auditing procedures designed to assess and miti-
gate the risks posed by LLMs must include elements of both 
governance and technology audits.

Our blueprint for how to audit LLMs satisfies this claim 
in the following way. The governance audits we propose aim 
to assess the processes whereby LLMs are designed and dis-
seminated, the model audits focus on assessing the technical 
properties of pre-trained LLMs, and the application audits 
focus on assessing the technical properties of applications 
built on top of LLMs.

However, both governance audits and technology audits 
have limitations. During governance audits, for example, it 
is not possible to anticipate upfront all the risks that emerge 
as AI systems interact with complex environments over time 
[102, 137]. Further, not all ethical tensions stem from tech-
nology design alone, as some are intrinsic to specific tasks 
or applications [138]. While these limitations of governance 
audits are well-known, LLMs introduce new challenges 
for technology audits, which have historically focused on 
assessing systems designed to fill specific functions in well-
defined contexts, e.g., improving image analysis in radiol-
ogy [139] or detecting corporate fraud [140]. Because LLMs 
enable many downstream applications, traditional auditing 
procedures are not equipped to capture the full range social 
and ethical risks they pose. While existing best practices 
in governance auditing appear applicable to organisations 
designing or deploying LLMs, that is not true for technology 
audits. In short:

Claim 5  The methodological design of technology audits 
will require significant modifications to identify and assess 
LLM-related risks.

As mentioned above, our blueprint for how to audit LLMs 
incorporates elements of technology audits on both the 
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model and the application levels. To understand why that 
is necessary to identify and mitigate the ethical risks posed 
by LLMs, we must first distinguish between different types 
of technology audits.

Previous work on technology audits distinguish between 
functionality, model, and impact audits [141]. Functional-
ity audits focus on the rationale underpinning AI systems 
by asking questions about intentionality, e.g., what is this 
system’s purpose [142]? Model audits review the system’s 
decision-making logic. For symbolic AI systems,15 that 
entails reviewing the source code. For sub-symbolic AI sys-
tems, including LLMs, it entails asking how the model was 
designed, what data it was trained on, and how it performs 
on different benchmarks. Finally, impact audits investigate 
the types, severity, and prevalence of effects from an AI 
system’s outputs on individuals, groups, and the environ-
ment [143]. These approaches are not mutually exclusive 
but rather highly complementary [116]. Still, technology 
providers that design and disseminate LLMs have limited 
information about the future deployment of their systems 
by downstream developers and end-users. This leads us to 
our sixth claim:

Claim 6   Model audits will play a key role in identifying and 
communicating LLMs’ limitations, thereby informing system 
redesign, and mitigating downstream harm.

This claim constitutes a key justification for the three-
layered approach to LLM auditing proposed in this article. 
As highlighted in Sect. 4, governance audits and application 
audits are both well-established practices in systems engi-
neering and software development. Hence, it is precisely 
by adding structured and independent audits on the model 
level that our blueprint for auditing LLMs complements and 
enhances existing governance structures.

Finally, within technology audits, it is important to dis-
tinguish between ex-ante and ex-post audits, which take 
place before and after a system is deployed, respectively. 
The former can identify and prevent some harms before they 
occur while informing downstream users about the model’s 
appropriate, intended applications. Considerable literature 
already exists within computer science on techniques such 
as red teaming [41, 42], model fooling [144], functional test-
ing [145] and template-based stress-testing [146], which all 
play important roles during technology audits of LLMs. 
However, ex-ante audits cannot fully capture all the risks 
associated with systems that continue to ‘learn’ by updating 

their internal decision-making logic [147].16 This limitation 
applies to all learning systems but is particularly relevant 
for LLMs that display emergent capabilities [148].17 Ex-
post audits can be divided into snapshot audits (which occur 
once or on regular occasions) and continuous audits (which 
monitor performance over time). Most existing AI audit-
ing procedures are snapshots.18 Like ex-ante audits, how-
ever, snapshots are unable to provide meaningful assurance 
regarding LLMs as they display emergent capabilities and, 
in some cases, can learn as they are fed new data. This leads 
to our final claim:

Claim 7  LLM auditing procedures must include elements 
of continuous ex-post monitoring to meet their regulatory 
objectives.

In our blueprint, continuous ex-post monitoring is one of 
the activities conducted at the application level. However, 
as detailed in Sect. 4.5, audits on the different levels are 
strongly interconnected. For example, continuous monitor-
ing of LLM-based applications presupposes that technology 
providers have established ex-post monitoring plans—which 
can only be verified by audits at the governance level. Invert-
edly, technology providers rely on feedback from audits at 
the application level to continue improving their software 
development and quality management procedures.

To summarise, much can be learned from existing AI 
auditing procedures. However, LLMs display several proper-
ties that undermine the feasibility of such procedures. Spe-
cifically, LLMs are adaptable to a wide range of downstream 
applications, display emergent capabilities, and can, in some 
cases, continue to learn over time. As this section has shown, 
that means that neither functionality audits (which hinge on 
the evaluation of the purpose of a specific application) nor 
impact audits (which hinge on the ability to observe a spe-
cific system’s actual impact) alone can provide meaningful 
assurance against the social and ethical risks LLMs pose. 
It also means that ex-ante audits must be complemented by 
continuous post-market monitoring of outputs from LLM-
based applications.

In this section, we have built on these and other insights 
to derive and defend seven claims about how auditing pro-
cedures should be designed to account for the governance 
challenges LLMs pose. These seven claims provided our 

15  Symbolic AI systems are based on explicit methods like first-order 
logic and decision trees. Sub-symbolic systems rely on establishing 
correlations through statistical methods like Bayesian learning and 
back-propagation [290].

16  In their unfrozen states, all LLMs can learn as they are fed new 
data. However, once a model has been ‘fixed’, it does not update and 
simply uses new input data to make predictions.
17  Emergence implies that an entity can have properties its parts do 
not individually possess, and that randomness can generate orderly 
structures [291].
18  The post-market monitoring mandated by the proposed EU AI Act 
[43] is a rare example of continuous auditing.
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starting point when designing the three-layered approach 
for auditing LLMs that will be outlined in Sect. 4. However, 
we maintain that these claims are more general and could 
serve as guardrails for other attempts to design auditing pro-
cedures for all foundation models.

4 � Auditing LLMs: a three‑layered approach

This section offers a blueprint for auditing LLMs that satis-
fies the seven claims in Sect. 3 about how to structure such 
procedures. While there are many ways to do that, our pro-
posal focuses on a limited set of activities that are (i) jointly 
sufficient to identify LLM-related risks, (ii) practically 
feasible to implement, and (iii) have a justifiable cost–ben-
efit ratio. The result is the three-layered approach outlined 
below.

4.1 � A blueprint for LLM auditing

Audits should focus on three levels. First, technology pro-
viders developing LLMs should undergo governance audits 
that assess their organisational procedures, accountability 
structures and quality management systems. Second, LLMs 
should undergo model audits, assessing their capabilities 

and limitations after initial training but before adaptation 
and deployment in specific applications. Third, downstream 
applications using LLMs should undergo continuous appli-
cation audits that assess the ethical alignment and legal 
compliance of their intended functions and their impact over 
time. Figure 1 illustrates the logic of our approach.

Some clarifications are needed to flesh out our blueprint. 
To begin with, governance, model and application audits 
only provide effective assurance when coordinated. This is 
because the affordances and limitations of audits conducted 
at the three levels differ in ways that make them critically 
complementary. For example, as Sect. 3 showed, LLM audits 
must include elements of both process- and performance-ori-
ented auditing (Claim 4). In our three-layered approach, the 
governance audits are process-oriented, whereas the model 
and application audits are performance-oriented. Moreover, 
feasible and effective LLM auditing procedures must include 
aspects of continuous, ex-post assessments (Claim 7). In our 
blueprint, these elements are incorporated at the application 
level. But this is just two examples. As we discuss what gov-
ernance, model and applications audits entail in this section, 
we also make highlight how they, when combined, satisfies 
all seven claims listed in Sect. 3.

While the three types of audits included in our blueprint 
are individually necessary, their boundaries overlap and can 

Fig. 1   Blueprint for how to audit LLMs: A three-layered approach
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be drawn in multiple ways. For example, the collection and 
pre-processing of training data ties into software develop-
ment practices. Hence, reviewing organisational procedures 
for obtaining and curating training data is legitimate dur-
ing holistic governance audits. However, the characteristics 
LLMs display during model audits may also reflect biases 
in their training data [149, 150].19 Reviewing such data is, 
therefore, often necessary during the model audits too [151, 
152]. Nevertheless, the conceptual distinction between gov-
ernance, model and application audits remains useful when 
identifying varied risks that LLMs pose.

It is theoretically possible to add further layers to our 
blueprint. For example, downstream developers could also 
be made subject to process-oriented governance audits. 
But such audits would be difficult to implement, given that 
many decentralised actors build applications on top of 
LLMs. The combination of governance, model, and appli-
cation audits, we argue, strikes a balance between covering 
a sufficiently large part of the development and deployment 
lifecycle to identify LLM-related risks, on the one hand, 
and being practically feasible to implement, on the other. 
Regardless of how many layers are included, however, the 
success of our blueprint relies on responsible actors at each 
level who actively want to or are incentivised to ensure 
good governance.

Finally, to provide meaningful assurance, audits on all 
three levels should be external (Claim 2) yet collaborative 
(Claim 3). In practice, this implies that independent third 
parties not only seek to verify claims made by technology 
providers but also work together with them to identify and 
mitigate risks and shape the design of future LLMs. As 
mentioned in the introduction, the question of who should 
conduct the audits falls outside the scope of this article. That 
said, reasonable concerns about how independent collabo-
rative audits really are can be raised regardless of who is 
conducting the audit. In Sect. 5, we discuss this and other 
limitations.

With those clarifications in mind, we will now present 
the details of our three-layered approach. The following 
three subsections discuss governance, model, and applica-
tion audits respectively, focusing on why each is needed, 
what each entails, and what outputs each should produce.

4.2 � Governance audits

Technology providers working on LLMs should undergo 
governance audits that assess their organisational pro-
cedures, incentive structures, and management systems. 

Overwhelming evidence shows that such features influence 
the design and deployment of technologies [4]. Moreover, 
research has demonstrated that risk-mitigation strategies 
work best when adopted transparently, consistently, and 
with executive-level support [153, 154]. Technology pro-
viders are responsible for identifying the risks associated 
with their LLMs and are uniquely well-positioned to man-
age some of those risks. Therefore, it is crucial that their 
organisational procedures and governance structures are 
adequate.

Governance audits have a long history in areas like IT gov-
ernance [85, 155, 156] and systems and safety engineering 
[157-159]. Tasks include assessing internal governance struc-
tures, product development processes and quality manage-
ment systems [115] to promote transparency and procedural 
regularity, ensure that appropriate risk management systems 
are in place [160], and spark deliberation regarding ethical 
and social implications throughout the software development 
lifecycle. Governance audits can also improve accountability, 
e.g., publicising their results prevents companies from cover-
ing up undesirable outcomes and incentivises better behav-
iour [136]. Thus defined, governance audits incorporate ele-
ments of both compliance audits, regarding completeness and 
transparency of documentation, and risk audits, regarding the 
adequacy of the risk management system (Claim 1).

Specifically, we argue that governance audits of LLM 
providers should focus on three tasks:20

(1)	 Reviewing the adequacy of organisational governance 
structures to ensure that model development processes 
follow best practices and that quality management sys-
tems can capture LLM-specific risks. While technology 
providers have in-house quality management experts, 
confirmation bias may prevent them from recognising 
critical flaws; involving external auditors addresses 
that issue [161]. Nevertheless, governance audits are 
most effective when auditors and technology provid-
ers collaborate to identify risks [162]. Therefore, it is 
important to distinguish accountability from blame at 
this stage of an audit.

(2)	 Creating an audit trail of the LLM development pro-
cess to provide chronological documentary evidence 
of the development of an LLM’s capabilities, including 
information about its intended purpose, design specifi-
cations and choices, as well as how it was trained and 
tested through the generation of model cards [74] and 
system cards [77].21 This includes the structured use 

19  The link between model characteristics and biases in the training 
data can sometimes be counterintuitive [292]. In some cases, biased 
datasets can help models recognise bias and steer away from it with 
the help of reinforcement learning and human feedback [293].

20  Governance audits could examine many tasks, and prioritization 
may vary depending on the sector and jurisdiction. Hence, the three 
tasks we propose are merely a minimum baseline.
21  Meta AI’s detailed notes on the OPT model provide an exemplar of 
model training documentation [294].



	 AI and Ethics

1 3

of datasheets [76] to document how the datasets used 
to train and validate LLMs were sources, labelled, 
and curated. The creation of such audit trails serves 
several related purposes. Stipulating design specifica-
tions upfront facilitates checking system adherence to 
jurisdictional requirements downstream [157]. Moreo-
ver, information concerning intended use cases should 
inform licensing agreements with downstream devel-
opers [163], thereby restricting the potential for harm 
through malicious use. Finally, requiring providers to 
document and justify their design choices sparks ethical 
deliberation by making trade-offs explicit.

(3)	 Mapping roles and responsibilities within organisa-
tions that design LLMs to facilitate the allocation of 
accountability for system failures. LLMs’ adaptability 
downstream does not exculpate technology providers 
from all responsibility. Some risks are ‘reasonably 
foreseeable’. In the adjacent field of machine learning 
(ML) image recognition, a study found that commer-
cial gender classification systems were less accurate 
for darker-skinned females than lighter-skin males [15]. 
After the release of these findings, all technology pro-
viders speedily improved the accuracy of their mod-
els, suggesting that the problem was not intrinsic, but 
resulted from inadequate risk management. Mapping 
the roles and responsibilities of different stakeholders 
improves accountability and increases the likelihood of 
impact assessments being structured rather than ad-hoc, 
thus helping identify and mitigate harms proactively.

To conduct these three tasks, auditors primarily require 
what Koshiyama et al. [10] refer to as white-box auditing. 
This is the highest level of access and suggests that the audi-
tor knows how and why an LLM was developed. In practice, 
it implies privileged access to facilities, documentation, and 
personnel, which is standard practice in governance audits 
in other fields. For example, IT auditors have full access to 
material and reports related to operational processes and 
performance metrics [85]. It also implies access to the input 
data, learning procedures, and task objectives used to train 
LLMs. White-box auditing requires that nondisclosure and 
data-sharing agreements are in place, which adds to the 
logistical burden of governance audits. However, granting 
such a high level of access is especially important from an 
AI safety perspective because, in addition to auditing LLMs 
before market deployment, governance audits should also 
evaluate organisational safeguards concerning high-risk 
projects that providers may prefer not to discuss publicly.

The results of governance audits should be provided in 
formats tailored to different audiences. The primary audience 
is the management and directors of the LLM provider. Audi-
tors should provide a full report that directly and transparently 
lists and discusses the vulnerabilities of existing governance 

structures. Such reports may recommend actions, but taking 
actions remains the provider’s responsibility. Usually, such 
audit reports are not made public. However, some evidence 
obtained during governance audits can be curated for two 
secondary audiences: law enforcers and developers of down-
stream applications. In some jurisdictions, hard legislation may 
demand that technology providers follow specific requirements. 
For instance, the proposed EU AI Act required providers to 
register high-risk AI systems with a centralised database [43] 
or implement a risk management system [164]. In such cases, 
reports from independent governance audits can help provid-
ers demonstrate adherence to legislation. Reports from govern-
ance audits also help developers of downstream applications to 
understand an LLM’s intended purpose,  risks, and limitations.

Before concluding this discussion, it is useful to reflect 
on how governance audits contribute to relieving some of 
the social and ethical risks LLMs pose. As mentioned in 
Sect. 2, Weidinger et al. [30] listed six broad risk areas: 
discrimination, information hazards, misinformation haz-
ards, malicious use, human–computer interaction harm, and 
automation and environmental harms. Governance audits 
address some of these directly. By assessing the adequacy 
of the governance structures surrounding LLMs, including 
licencing agreements [163] and structured access protocols 
[68], governance audits help reduce the risk of malicious 
use. Further, some information hazards stem from the pos-
sibility of extracting sensitive information from LLMs via 
adversarial attacks [165]. By reviewing the process whereby 
training datasets were sourced, labelled, and curated, as well 
as the strategies and techniques used during the model train-
ing process—such as differential privacy [166] or secure 
federated learning [167]—governance audits can minimise 
the risk of LLMs leaking sensitive information. However, for 
most of the risk areas listed by Weidinger et al. [30], gov-
ernance audits have only an indirect impact insofar as they 
contribute to transparency about the limitations and intended 
purposes of LLMs. Hence, risks areas like discrimination, 
misinformation hazards, and human–computer interaction 
harms are better addressed by model and application audits.

4.3 � Model audits

Before deployment, LLMs should be subject to model 
audits that assess their capabilities and limitations (Claim 
6). Model audits share some features with governance audits. 
For instance, both happen before an LLM is adapted for 
specific applications. However, model audits do not focus 
on organisational procedures but on LLMs’ capabilities and 
characteristics. Specifically, they should identify an LLM’s 
limitations to (i) inform the continuous redesign the system, 
and (ii) communicate its capabilities and limitations to exter-
nal stakeholders. These two tasks use similar methodologies, 
but they target different audiences.



AI and Ethics	

1 3

The first task—limitation identification—aims primarily 
to support organisations that develop LLMs with bench-
marks or other data points that inform internal model rede-
signing and retraining efforts [168]. Model audits’ results 
should also inform API license agreements, helping prevent 
applications in unintended use cases [163] and restricting 
the distribution of dangerous capabilities [68]. The second 
task—communicating capabilities and limitations—aims to 
inform the design of specific applications built on top of 
LLMs by downstream developers. Such communication can 
take different forms, e.g., interactive model cards [169], spe-
cific language model risk cards [75], and information about 
the initial training dataset [170, 171], to help downstream 
developers adapt the model appropriately.

In Sect. 3, we argued that the way technology audits 
are being conducted requires modifications to address the 
governance challenges associated with LLMs (Claim 5). 
In what follows, we demonstrate that evaluating an LLM’s 
characteristics independent of an intended use case is chal-
lenging but not impossible.22 To do so, auditors can use 
two distinct approaches. The first involves identifying and 
assessing intrinsic characteristics. For example, the training 
dataset can be assessed for completeness and consistency 
without reference to specific use cases [112]. However, it 
is often expensive and technically challenging to interro-
gate large datasets [172]. The second involves employing 
an indirect approach that tests the model across multiple 
potential downstream use cases, links the results to differ-
ent characteristics, and assesses the aggregated results using 
different weighting techniques. That second approach may 
prove more fruitful when assessing an LLM’s performance.

Nevertheless, selecting the characteristics to focus on dur-
ing model audits remains challenging. Given such audits’ 
purpose, we recommend examining characteristics that are 
(i) socially and ethically relevant, i.e., can be directly linked 
to the social and ethical risks posed by LLMs; (ii) predict-
ably transferable, i.e., impact the nature of downstream 
applications; and (iii) meaningfully operationalisable, i.e., 
can be assessed with the available tools and methods.

Keeping those criteria in mind, we posit that model audits 
should focus on (at least) the performance, robustness, infor-
mation security and truthfulness of LLMs. As other char-
acteristics may meet the three criteria listed above, those 
four characteristics are just examples highlighting the role 
of model audits in our three-layered approach. The list of 
relevant model characteristics can be amended as required 
when developing specific auditing procedures. With those 
caveats out of the way, we now proceed to discuss how four 
example characteristics can be assessed during model audits:

(1)	 Performance, i.e., how well the LLM functions on vari-
ous tasks. Standardised benchmarks can help assess 
an LLM’s performance by comparing it to a human 

baseline. For example, GLUE [173] aggregates LLM 
performance across multiple tasks into a single report-
able metric. Such benchmarks have been criticised for 
overestimating performance over a narrow set of capa-
bilities and quickly becoming saturated, i.e., rapidly 
converging on the performance of non-expert humans, 
leaving limited space for valuable comparisons. 
Therefore, it is crucial to evaluate LLMs’ performance 
against many tasks or benchmarks, and sophisticated 
tools and methods have been proposed for that purpose, 
including SuperGLUE [49], which is more challenging 
and ‘harder to game’ with narrow LLM capabilities, 
and BIG-bench [64], which can assess LLM’s perfor-
mance on tasks that appear beyond their current capa-
bilities. These benchmarks are particularly relevant for 
model audits because they were primarily developed 
to evaluate pre-trained models, without task-specific 
fine-tuning.

(2)	 Robustness, i.e., how well the model reacts to unex-
pected prompts or edge cases. In ML, robustness indi-
cates how well an algorithm performs when faced with 
new, potentially unexpected (i.e., out-of-domain) input 
data. LLMs lacking robustness introduce, at least, two 
distinct risks [174]. First, the risk of critical system 
failures if, for example, an LLM performs poorly for 
individuals, unlike those represented in the training 
data [175]. Second, the risk of adversarial attacks [176, 
177]. Therefore, researchers and developers have cre-
ated tools and methods to assess LLMs’ robustness, 
including adversarial methods like red teaming [58], 
evaluation toolkits like the Robustness Gym [178], 
benchmark datasets like ANLI [179], and open-source 
platforms for model-and-human-in-the-loop testing like 
Dynabench [180]. Particularly relevant for our purposes 
is AdvGLUE [181], which evaluates LLMs’ vulnerabili-
ties to adversarial attacks in different domains using 
a multi-task benchmark. By quantifying robustness, 
AdvGLUE facilitates comparisons between LLMs and 
their various affordances and limitations. However, 
robustness can be operationalised in different ways, 
e.g., group robustness, which measures a model’s 
performance across different sub-populations [182]. 
Therefore, model audits should employ multiple tools 
and methods to assess robustness.

(3)	 Information security, i.e., how difficult it is to extract 
training data from the LLM. Several LLM-related 
risks can be understood as ‘information hazards’ [30], 

22  A wide range of tools and methods to evaluate LLMs already 
exists. For an overview, see the report Holistic Evaluation of Lan-
guage Models published by researchers at the Center for Research on 
Foundation Models [35].
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including the risk of compromising privacy by leaking 
personal data. As demonstrated by [165], adversarial 
agents can perform training data extraction attacks 
to recover personal information like names and social 
security numbers. However, not all LLMs are equally 
vulnerable to such attacks. The memorisation of train-
ing data can be minimised through differentially private 
training techniques [183], but their application gener-
ally reduces accuracy [184] and increases training time 
[151]. Promisingly, it is possible to assess the extent to 
which an LLM has unintentionally memorised rare or 
unique training data sequences using metrics such as 
exposure [185]. Testing strategies, like exposure, can 
be employed at the model level, although that requires 
auditors to have access to the LLM and its training cor-
pus. Still, assessing LLMs’ information security during 
model audits does not address all information hazards 
because some risk of correctly inferring sensitive infor-
mation about users can only be audited on an applica-
tion level.

(4)	 Truthfulness, i.e., to what extent the LLM can dis-
tinguish between the real world and possible worlds. 
Some LLM-related risks stem from their capacity to 
provide false or misleading information, which creates 
less well-informed users and potentially erodes public 
trust in shared information [30]. Statistical methods 
struggle to distinguish between factually correct ver-
sus plausible but factually incorrect information. That 
problem is exacerbated by the fact that many LLM 
training practices, like imitating human text on the web 
or optimising for clicks, are unlikely to create truthful 
AI [186].23 However, during model audits, our concern 
is not developing truthful AI but evaluating truthful-
ness. Such audits should focus on evaluating overall 
truthfulness, not the truthfulness of an individual state-
ment. Yet that does not preclude focusing on multiple 
aspects, e.g., how frequent falsehoods are on average, 
and how bad worst-case falsehoods are. One bench-
mark that measures truthfulness is TruthfulQA [187], 
which generates a percentage score using 817 questions 
spanning 38 application domains, including healthcare 
and politics. When evaluating an LLM with the help of 
TruthfulQA, auditors would get a percentage score on 
how truthful the model is. However, even a strong per-
formance on TruthfulQA does not imply that an LLM 
will be truthful in a specialised domain. Nevertheless, 
such benchmarks offer helpful tools for model audits.

These four characteristics pertain to pre-trained LLMs. 
However, model audits should also review training datasets. 

It is well-known that training data gaps or biases create 
models that perform poorly on different datasets [188]. 
Training LLMs with biased or incomplete data can cause 
representational and allocational harms [189]. Therefore, a 
recent European Parliament report [152] discussed mandat-
ing third-party audits of AI-training datasets. Technology 
providers should prepare for such suggestions potentially 
becoming legal requirements.

Despite these technical and legal considerations, training 
datasets are often collected with little curation, supervision, 
or foresight [190]. While curating ‘unbiased’ datasets may 
be impossible, disclosing how a dataset was assembled can 
suggest its potential biases [191]. Model auditors can use 
existing tools and methods that interrogate biases in LLMs’ 
pre-trained word embeddings, such as the metrics DisCo 
[192], SEAT [193] or CAT​ [194]. So-called data statements 
[195] can provide developers and users with the context 
required to understand specific models’ potential biases. 
Data representativeness criterion [196] can determine how 
representative24 a training dataset is, and manual datasets 
audits can be supplemented with automatic analysis [197]. 
The Text Characterisation Toolkit [198] permits automatic 
analysis of how dataset properties impact model behaviour. 
While the availability of such tools is encouraging, it is 
important to remain realistic about what dataset audits can 
achieve. Model audits do not aim to ensure that LLMs are 
ethical in any global sense. Instead, they contribute to better 
precision in claims about an LLM’s capabilities and inform 
the design of downstream applications.

Model audits require auditors to have privileged access to 
LLMs and their training datasets. In the typology provided 
by Koshiyama et al. [10], this corresponds to medium-level 
access, whereby auditors have access to an LLM equiva-
lent to its developer, meaning they can manipulate model 
parameters and review learning procedures and task objec-
tives. Such access is required to assess LLMs' capabilities 
accurately during model audits. However, in contrast to 
white-box audits, the access model auditors enjoy is limited 
to the technical system and does not extend to technology 
providers’ organisational processes.

Some of the characteristics tested for during model 
audits correspond directly to the social and ethical risks 
LLMs pose. For example, model audits entail evaluating 
LLMs according to characteristics like information secu-
rity and truthfulness, which correspond to information 
hazards and misinformation hazards, respectively, in Wei-
dinger et al.’s taxonomy [30]. Yet it should be noted that 
our proposed model audits only focus on a few characteris-
tics of LLMs. That is because the criterion of meaningful 

23  Alternative techniques that are better suited for developing truthful 
AI include bootstrapping, adversarial training [295] and transparent 
AI [296].

24  The term ‘representativeness’ has different meaning in statistics, 
politics, and machine learning, ranging from a proportionate match 
between sample and population to a more general sense of inclusive-
ness [297].
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operationalisability sets a high bar: not all risks associated 
with LLMs can be addressed at the model level. Consider 
discrimination as an example. Model audits can expose the 
root causes of some discriminatory practices, such as biases 
in training datasets that reflect historic injustices. However, 
what constitutes unjust discrimination is context-dependent 
and varies between jurisdictions. That problematises saying 
anything meaningful about risks like unjust discrimination 
on a model level [199]. While important, that observation 
does not argue against model audits but for complementary 
approaches like application audits, as discussed next.

4.4 � Application audits

Products and services built using LLMs should undergo 
application audits that assess the legality of their intended 
functions and how they will impact users and societies. 
Unlike governance and model audits, application audits 
focus on actors employing LLMs in downstream applica-
tions. Such audits are well-suited to ensure compliance with 
national and regional legislation, sector-specific standards, 
and organisational ethics principles.

Application audits have two components: functionality 
audits, which evaluate applications using LLMs based on 
their intended and operational goals, and impact audits, 
which evaluate applications based on their impacts on dif-
ferent users, groups, and the natural environment. As dis-
cussed in Sect. 3.2, both functionality and impact audits are 
well-established practices [200]. Next, we consider how they 
can be combined into procedures for auditing applications 
based on LLMs.

During functionality audits, auditors should check 
whether the intended purpose of a specific application is 
(1) legal and ethical in and of itself and (2) aligned with 
the intended use of the LLM in question. The first check is 
for legal and ethical compliance, i.e., the adherence to the 
laws, regulations, guidelines, and specifications relevant to 
a specific application [201], as well as to voluntary ethics 
principles [202] or codes of conduct [203]. The purpose of 
these compliance checks is straightforward: if an applica-
tion is unlawful or unethical, the performance of its LLM 
component is irrelevant, and the application should not be 
permitted on the market.

The second check within functionality audits aim to 
address the risks stemming from developers overstating or 
misrepresenting a specific application’s capabilities [204]. 
To do  so, functionality audits  build on—and accounts 
for outputs from—audits on other levels. During govern-
ance audits, technology providers are obliged to define the 
intended and disallowed use cases of their LLMs. During 
model audits, the limitations of LLMs are documented to 
inform their adaptation downstream. Using such informa-
tion, functionality audits should ensure that downstream 

applications are aligned with a given LLM’s intended use 
cases in ways that take account of the model’s limitations. 
Functionality audits thus combines the elements of compli-
ance and risks audit needed to provide assurance for LLMs 
(Claim 1).

During impact audits, auditors disregard an application’s 
intended purpose and technological design to focus only on 
how its outputs impact different user groups and the environ-
ment. The idea behind impact audits is simple: every system 
can be understood in terms of its inputs and outputs [142]. 
However, despite that simplicity, implementing impact 
audits is notoriously hard. AI systems and their environ-
ments co-evolve in non-linear ways [137]. Therefore, the 
link between an LLM-based application’s intended purpose 
and its actual impact may be neither intuitive nor consistent 
over time. Moreover, it is difficult to track impacts stem-
ming from indirect causal chains [205, 206]. Consequently, 
establishing which direct and indirect impacts are considered 
legally and socially relevant remains a context-dependent 
question which must be resolved on a case-by-case basis. 
The application must be redesigned or terminated if the 
impact is considered unacceptable.

Importantly, impact audits should include both pre-
deployment (ex-ante) assessments and post-deployment 
(ex-post) monitoring (Claim 7).25 The former leverages 
either empirical evidence or plausible scenarios, depending 
on how well-defined the application is and the predictability 
of the environments in which it will operate. For example, 
applications can be tested in sandbox environments [207] 
that mimic real-world environments and allow developers 
and policymakers to understand the potential impact before 
an application goes to market. When used for ML-based 
systems, sandboxes have proven safe harbours in which to 
detect and mitigate biases [208]. However, real-world envi-
ronments often differ from training and testing environments 
in unforeseen ways [209]. Hence, pre-deployment assess-
ments of LLM-based applications must also use analytical 
strategies to anticipate the application’s impact, e.g., ethical 
impact assessments [110, 210, 211] and ethical foresight 
analysis [153].

Pre-deployment impact assessments and post-deployment 
monitoring are both individually necessary. As policymakers 
are well-aware, capturing the full range of potential harms 
from LLM-based applications requires auditing procedures 
to include elements of continuous oversight (again, see 
Claim 7). For example, the EU AI Act requires technol-
ogy providers to document and analyse high-risk AI sys-
tems’ performance throughout their life cycles [43]. Meth-
odologically, post-deployment monitoring can be done in 

25  This structure mirrors the ‘conformity assessments’ and ‘post-mar-
ket monitoring plans’ proposed in the EU AI Act [83].
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different ways, e.g., periodically reviewing the output from 
an application and comparing it to relevant standards. Such 
procedures can also be automated, e.g., by using oversight 
programs [212] that continuously monitor and evaluate sys-
tem outputs and alert or intervene if they transgress prede-
fined tolerance spans. Such monitoring can be done by both 
private companies and government agencies [213]. Overall, 
application audits seek to ensure that ex-ante testing and 
impact assessments have been conducted following existing 
best practices; that post-market plans have been established 
to enable continuous monitoring of system outputs; and that 
procedures are in place to mitigate or report different types 
of failure modes.

By focusing on individual use cases, application audits 
are well-suited to alerting stakeholders to risks that require 
much contextual information to understand and address. This 
includes risks related to discrimination and human–com-
puter interaction harms in Weidinger et al.’s taxonomy [30]. 
Application audits help identify and manage such risks in 
several ways. For example, quantitative assessments link-
ing prompts with outputs can give a sense of what kinds 
of language an LLM is propagating and how appropriate 
that communication style and content is in different settings 
[214, 215]. Moreover, qualitative assessments (e.g., those 
based on interviews and ethnographic methods) can provide 
insights into users’ lived experiences of interacting with an 
LLM [73].

However, despite those methodological affordances, it 
remains difficult to define some forms of harm in any global 
sense [216]. For example, several studies have documented 
situations in which LLMs propagate toxic language [150, 
217], but the interpretation of toxicity and the materialisa-
tion of its harms vary across cultural, social, or political 
groups [218-220]. Sometimes, ‘detoxifying’ an LLM may be 
incompatible with other goals and potentially suppress texts 
written about or by marginalised groups [221]. Moreover, 
certain expressions might be acceptable in one setting but 
not in another. In such circumstances, the most promising 
way forward is to audit not LLMs themselves but down-
stream applications—thereby ensuring that each applica-
tion’s outputs adhere to contextually appropriate conversa-
tional conventions [101].

Another example concerns harmfulness, i.e., the extent 
to which an LLM-based application inflicts representational, 
allocational or experiential harms.26 An LLM that lacks 
robustness or performs poorly for some social groups may 
permit unjust discrimination [30] or violate capability fair-
ness [222] when informing real-world allocational decisions 

like hiring. Multiple benchmarks exist to assess model ste-
reotyping of social groups, including CrowS-Pairs [223], 
StereoSet [194] or Winogender [224]. To assess risks from 
experiential harms, quantitative assessments of LLM outputs 
give a sense of the language it is propagating. For example, 
[150] have developed the RealToxicityPrompts benchmark 
to assess the toxicity of a generated completion.27 However, 
the tools mentioned above are only examples. The main 
point here is that representational, allocational and experi-
ential harms associated with LLMs are best assessed at the 
application level through functionality and impact audits as 
described in this section.

To conduct application audits, lower levels of access are 
sufficient. For example, to make quantitative assessments to 
determine the relationship between inputs and outputs, it is 
sufficient that auditors have what Koshiyama et al. [10] refer 
to as black-box model access or, in some cases, input data 
access. Similarly, to audit LLM-based applications for legal 
compliance and ethical alignment, auditors do not require 
direct access to the underlying model but can rely on pub-
licly available information—including the claims technol-
ogy providers and downstream developers make about their 
systems and the user instructions attached to them.

We contend that governance audits and model audits 
should be obligatory for all technology providers design-
ing and disseminating LLMs. However, we recommend that 
application audits should be employed more selectively. 
Further, although application audits may form the basis for 
certification [225], auditing does not equal certification. Cer-
tification requires predefined standards against which a prod-
uct or service can be audited and institutional arrangements 
to ensure the certification process’s integrity [131]. Even 
when not related to certification, application audits’ results 
should be publicly available (at least in summary form). 
Registries publishing such results incentivise companies to 
correct behaviour, inform enforcement actions and help cure 
informational asymmetries in technology regulation [12].

4.5 � Connecting the dots

In order to make a real difference to the ways in which LLMs 
are designed and used, governance, model, and application 
audits must be connected into a structured process. In prac-
tice, this means that outputs from audits on one level become 
inputs for audits on other levels. Model audits, for instance, 
produce reports summarising LLMs’ properties and limi-
tations, which should inform application audits that verify 
whether a model’s known limitations have been considered 
when designing downstream applications. Similarly, ex-
post application audits produce output logs documenting 

26  [298] distinguish between representational harms (portraying some 
groups more favourably than others) and allocation harms (allocating 
resources or opportunities unfairly by social group).

27  This benchmark relies on PerspectiveAPI to score ‘toxicity’, which 
is a limitation given that system’s weaknesses [145, 299, 300].
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the impact that different applications have in applied set-
tings. Such logs should inform LLMs’ continuous redesign 
and revisions of their accompanying model cards. Finally, 
governance audits must check the extent to which technol-
ogy providers’ software development processes and quality 
management systems include mechanisms to incorporate 
feedback from application audits. Figure 2 illustrates how 
governance, model, and application audits are intercon-
nected in our blueprint.

Each step in our three-layered approach should involve 
independent third-party auditors (Claim 2). However, two 
caveats are required here. First, it need not be the same 
organisation conducting audits on all three levels as each 
requires different competencies. Governance audits require 
understanding corporate governance [226] and soft skills 
like stakeholder communication. Model audits are highly 
technical and require knowledge about evaluating ML 
models, operationalising different normative dimensions, 
and visualising model characteristics. Application auditors 

typically need domain-specific expertise. All these compe-
tencies may not be found within one organisation.

Second, as institutional arrangements vary between juris-
dictions and sectors, the best option may be to leverage the 
capabilities of institutions operating within a specific geog-
raphy or industry to perform various elements of govern-
ance, model, and application audits. For example, medical 
devices are already subject to various testing and certifica-
tion procedures before being launched. Hence, application 
audits for new medical devices incorporating LLMs could be 
integrated with such procedures. In part, this is already hap-
pening. The US Food and Drug Administration (FDA) has 
proposed a regulatory framework for modifying ML-based 
software as a medical device [227]. The point is that dif-
ferent independent auditors can perform the three different 
types of audits outlined here and that different institutional 
arrangements may be preferable in different jurisdictions or 
sectors.

Fig. 2   Outputs from audits on one level become inputs for audits on other levels
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5 � Limitations and avenues for further 
research

This section highlights three limitations of our work that 
apply to any attempt to audit LLMs: one conceptual, one 
institutional and one practical. First, model audits pose 
conceptual problems related to construct validity. Second, 
an institutional ecosystem to support independent third-
party audits has yet to emerge. Third, not all LLM-related 
social and ethical risks can be practically addressed on the 
technology level. We consider these limitations in turn, dis-
cuss potential solutions, and provide directions for future 
research.

5.1 � Lack of methods and metrics to operationalise 
normative concepts

One bottleneck to developing effective auditing procedures 
is the difficulty of operationalising normative concepts like 
robustness and truthfulness [228]. A recent case study found 
that organisations' lack of standardised evaluation metrics is 
a crucial challenge when implementing AI auditing proce-
dures [229, 230]. The problem is rooted in construct validity, 
i.e., the extent to which a given metric accurately measures 
what it is supposed to [231]. Construct validity problems 
primarily arise in our blueprint from attempts to operational-
ise characteristics like performance, robustness, information 
security and truthfulness during model audits.

Consider truthfulness as an example. LLMs do not require 
a model of the real world. Instead, they compress vast num-
bers of conditional probabilities by picking up on language 
regularities [232, 233]. Therefore, they have no reason to 
favour any reality but can select from various possible worlds, 
provided each is internally coherent [234].28 However, dif-
ferent epistemological positions disagree about the extent to 
which this way of sensemaking is unique to LLMs or, indeed, 
a problem at all. Simplifying to the extreme, realists believe 
in objectivity and the singularity of truth, at least insofar as 
the natural world is concerned [235]. In contrast, relativists 
believe that truth and falsity are products of context-dependent 
conventions and assessment frameworks [236]. Numerous 
compromise positions can be found on the spectrum between 
those poles. However, tackling pressing social issues cannot 
await the resolution of long-standing philosophical disa-
greements. Indeed, courts settle disagreements daily based 
on pragmatist operationalisations of concepts like truth and 
falsehood in keeping with the pragmatic maxim that theories 
should be judged by their success when applied practically to 
real-world situations [237].

Following that reasoning, we argue that refining prag-
matist operationalisations of concepts like truthfulness and 
robustness do more to promote fairness, accountability, 
and transparency in using LLM than either dogmatic or 
sceptical alternatives [238]. However, developing metrics 
to capture the essence of thick normative concepts is dif-
ficult and entails many well-known pitfalls. Reductionist 
representations of normative concepts generally bear little 
resemblance to real-life considerations, which tend to be 
highly contextual [239]. Moreover, different operationalisa-
tions of the same normative concept (like ‘fairness’) cannot 
be satisfied simultaneously [240]. Finally, the quantifica-
tion of normative concepts can itself have subversive or 
undesired consequences [241, 242]. As Goodhart’s Law 
reminds us, a measure ceases to be a good metric once it 
becomes a target.

The operationalisation of characteristics like perfor-
mance, robustness, information security and truthfulness 
discussed in Sect. 4 is subject to the above limitations. 
Resolving all construct validity problems may be impossi-
ble, but some ways of operationalising normative concepts 
are better than others for evaluating an LLM’s characteris-
tics. Consequently, an important avenue for further research 
is developing new methods to operationalise normative con-
cepts in ways that are verifiable and maintain high construct 
validity.

5.2 � Lack of an institutional ecosystem

A further limitation is that our blueprint does not decisively 
identify who should conduct the audits it recommends. This 
is a limitation, since any auditing procedure will only be as 
good as the institution delivering it [243]. However, we have 
left the question open for two reasons. First, different institu-
tional ecosystems intended to support audits and conformity 
assessments of AI systems are currently emerging in differ-
ent jurisdictions and sectors [244]. Second, our blueprint 
is flexible enough to be adopted by any external auditor. 
Hence, the feasibility and effectiveness of our approach do 
not hinge on the question of institutional design.

That said, the question of who audits whom is important, 
and much can be learned from auditing in other domains. 
Five institutional arrangements for structuring independent 
audits are particularly relevant to our purposes. Audits of 
LLMs can be conducted by:

(1)	 Private service providers, chosen by and paid for by 
the technology provider (equivalent to the role account-
ing firms play during financial audits or business ethics 
audits [245]).

(2)	 A government agency, centrally administered and paid 
for by government, industry, or a combination of both 

28  LLMs favour the statistically most likely reality given their train-
ing data. Yet any training data necessarily constitute a reduction of 
reality that supports some interpretations but obscures others [301].
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(equivalent to the FDA’s role in approving food and 
drug substances [246]).29

(3)	 An industry body, operationally independent yet funded 
through fees from its member companies (equivalent to 
the British Safety Council’s role in audits of workers’ 
health and safety [247]).

(4)	 Non-profit organisations, operationally independent 
and funded through public grants and voluntary dona-
tions (equivalent to the Rainforest Alliance role in 
auditing forestry practices [248]).

(5)	 An international organisation, administered and funded 
by its member countries (equivalent to the International 
Atomic Energy Agency’s role in auditing nuclear medi-
cine practices [249]).

Each of these arrangements has its own set of affordances 
and constraints. Private service providers, for example, are 
under constant pressure to innovate, which can be beneficial 
given the fast-moving nature of LLM research. However, 
private providers’ reliance on good relationships with tech-
nology providers to remain in business increases the risk of 
collusion [250]. Therefore, some researchers have called for 
more government involvement, including an ‘FDA for algo-
rithms’ [251]. Establishing a government agency to review 
and approve high-risk AI systems could ensure the uniform-
ity and independence of pre-market audits but might stifle 
innovation and cause longer lead times. Moreover, while 
the FDA enjoys a solid international reputation [252], not 
all jurisdictions would consider the judgement of an agency 
with a national or regional mandate legitimate.

The lack of an institutional ecosystem to implement and 
enforce the LLM auditing blueprint outlined in this article is 
a limitation. Without clear institutional arrangements, claims 
that an AI system has been audited are difficult to verify and 
may exacerbate harms [133]. Further research could use-
fully investigate the feasibility and effectiveness of different 
institutional arrangements for conducting and enforcing the 
three types of audits proposed.

5.3 � Not all risks from LLMs can be addressed 
on the technology level

Our blueprint for auditing LLMs has been designed to con-
tribute to good governance. However, it cannot eliminate 
the risks associated with LLMs for three reasons. First, most 
risks cannot be reduced to zero [125]. Hence, the question is 
not whether residual risks exist but how severe and socially 

acceptable they are [253]. Second, some risks stem from 
deliberate misuse, creating an offensive-defensive asym-
metry wherein responsible actors constantly need to guard 
against all possible vulnerabilities while malicious agents 
can cause harm by exploiting a single vulnerability [254]. 
Third, as we will expand on below, not all risks associated 
with LLMs can be addressed on the technology level.

Weidinger et al. [30] list over 20 risks associated with 
LLMs divided into six broad risk areas. In Sect. 4, we high-
lighted how our three-layered approach helps identify and 
mitigate some of these risks. To recap, governance audits 
can help protect against risks associated with malicious use; 
model audits can help identify and manage information and 
misinformation hazards; and application audits can help pro-
tect against discrimination as well as experiential harms. Of 
course, these are just examples. Audits at each level con-
tribute, directly or indirectly, to addressing many different 
risks. However, not all the risks listed by Weidinger et al. 
are captured by our blueprint. Consider automation harm 
as an example. Increasing the capabilities of LLMs to com-
plete tasks that would otherwise require human intelligence 
threatens to undermine creative economies [255]. While 
some highly potent LLMs may remove the basis for some 
professions that employ many people today—such as trans-
lators or copywriters—that is not a failure on the part of the 
technology. The alternative of building less capable LLMs 
is counterproductive since abstaining from technology usage 
generates significant social and economic opportunity costs 
[256].

The problem is not necessarily change per se but its speed 
and how the fruits of automation are distributed [257, 258]. 
Hence, problems related to changing economic environments 
may be better addressed through social and political reform 
rather than audits of specific technologies. It is important to 
remain realistic about auditing’s capabilities and not fall into 
the trap of overpromising when introducing new govern-
ance mechanisms [259]. However, the fact that no auditing 
procedures can address all risks associated with LLMs does 
not diminish their merits. Instead, it points towards another 
important avenue for further research: how can and should 
social and political reform complement technically oriented 
mechanisms in holistic efforts to govern LLMs?

6 � Conclusion

Some of the features that make LLMs attractive also create 
significant governance challenges. For instance, the potential 
to adapt LLMs to a wide range of downstream applications 
undermines system verification procedures that presuppose 
well-defined demand specifications and predictable oper-
ating environments. Consequently, our analysis in Sect. 3 
concluded that existing AI auditing procedures are not 

29  Alternative models of government involvement exist. For example, 
audits may be conducted or sanctioned by a government agency like 
the National Institute of Standards and Technology (NIST) in the US 
or by the same notified bodies that the European Commission [43] 
has tasked with performing conformity assessments of high-risk AI 
systems in the EU.
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well-equipped to assess whether the checks and balances put 
in place by technology providers and downstream developers 
are sufficient to ensure good governance of LLMs.

In this article, we have attempted to bridge that gap by 
outlining a blueprint for how to audit LLMs. In Sect. 4, we 
introduced a three-layered approach, whereby governance, 
model and application audits inform and complement each 
other. During governance audits, technology providers’ 
accountability structures and quality management systems 
are evaluated for robustness, completeness, and adequacy. 
During model audits, LLMs’ capabilities and limitations are 
assessed along several dimensions, including performance, 
robustness, information security, and truthfulness. Finally, 
during application audits, products and services built on top 
of LLMs are first assessed for legal compliance and subse-
quently evaluated based on their impact on users, groups, 
and the natural environment.

Technology providers and policymakers have already 
started experimenting with some of the auditing activities 
we propose. Consequently, auditors can leverage a wide 
range of existing tools and methods, such as impact assess-
ments, benchmarking, model evaluation, and red teaming, 
to conduct governance, model, and application audits. That 
said, the feasibility and effectiveness of our three-layered 
approach hinge on two factors. First, only when conducted 
in a combined and coordinated fashion can governance, 
model and application audits enable different stakeholders 
to manage LLM-related risks. Hence, audits on the three 
levels must be connected in a structured process. Govern-
ance audits should ensure that providers have mechanisms 
to take the output logs generated during application audits 
into account when redesigning LLMs. Similarly, application 
audits should ensure that downstream developers take the 
limitations identified during model audits into account when 
building on top of a specific LLM. Second, audits at each 
level must be conducted by an independent third-party to 
ensure that LLMs are ethical, legal, and technically robust. 
The case for independent audits rests not only on concerns 
about the misaligned incentives that technology providers 
may face but also on concerns about the rapidly increasing 
capabilities of LLMs [260].

However, even when implemented under ideal circum-
stances, audits will not solve all tensions or protect against 
all risks of harm associated with LLMs. So, it is important 
to remain realistic about what auditing can achieve and the 
main limitations of our approach discussed in Sect. 5 are 
worth reiterating. To begin with, the feasibility of model 
audits hinges on the construct validity of the metrics used to 
assess characteristics like robustness and truthfulness. This 
is a limitation because such normative concepts are notori-
ously difficult to operationalise. Further, our blueprint for 
how to audit LLMs does not specify who should conduct 
the audits it posits. No auditing procedure is stronger than 

the institutions backing it. Hence, the fact that an ecosys-
tem of actors capable of implementing our blueprint has 
yet to emerge constrains its effectiveness. Finally, not all 
risks associated with LLMs arise from processes that can 
be addressed through auditing. Some tensions are inherently 
political and require continuous management through public 
deliberation and structural reform.

Academics and industry researchers can contribute to 
overcoming these limitations by focusing on two avenues 
for further research. The first is to develop new methods 
and metrics to operationalise normative concepts in ways 
that are verifiable and maintain a high degree of construct 
validity. The second is to disentangle further the sources of 
different types of risks associated with LLMs. Such research 
would advance our understanding of how political reform 
can complement technically oriented mechanisms in holistic 
efforts to govern LLMs.

Policymakers can facilitate the emergence of an insti-
tutional ecosystem capable of carrying out and enforcing 
governance, model, and application audits of LLMs. For 
example, policymakers can encourage and strengthen private 
sector auditing initiatives by creating standardised evalua-
tion metrics [261], harmonising AI regulation [262], facili-
tating knowledge sharing [263] or rewarding achievements 
through monetary incentives [256]. Policymakers should 
also update existing and proposed AI regulations in line with 
our three-layered approach to address LLM-related risks. 
For example, while the EU AI Act’s conformity assessments 
and post-market monitoring plans mirror application audits, 
the proposed regulation does not contain mechanisms akin 
to governance and model audits [83]. Without amendments, 
such regulations are unlikely to generate adequate safeguards 
against the risks associated with LLMs.

Our findings most directly concern technology providers 
as they are primarily responsible for ensuring that LLMs are 
legal, ethical, and technically robust. Such providers have 
both moral and material reasons to subject themselves to 
independent audits, including the need to manage financial 
and legal risks [264] and build an attractive brand [265]. 
So, what ought technology providers do? To start with, they 
should subject themselves to governance audits and their 
LLMs to model audits. That would create a demand for inde-
pendent auditing and accreditation bodies and help spark 
methodological innovation in governance and model audits. 
Mid-term, Technology providers should also demand that 
products and services built on top of their LLMs undergo 
application audits. That could be done through structured 
access procedures, whereby permission for using an LLM 
is conditional on such terms. In the long-term, like-minded 
technology providers should establish, and fund, an inde-
pendent industry body that conducts or commissions govern-
ance, model, and application audits.



AI and Ethics	

1 3

Taking a long-term perspective, our three-layered 
approach holds lessons for how to audit more capable and 
general future AI systems. This article has focused on LLMs 
because they have broad societal impacts via widespread 
applications already today. However, elements of the gov-
ernance challenges—including generativity, emergence, 
lack of grounding, and lack of access—have some general 
applicability to other ML-based systems [266, 267]. Hence, 
we anticipate that our blueprint can inform the design proce-
dures for auditing other generative, ML-based technologies.

That said, the long-term feasibility and effectiveness of 
our blueprint for how to audit LLMs may also be under-
mined by future developments. For example, governance 
audits make sense when only a limited number of actors have 
the ability and resources to train and disseminate LLMs. 
The democratisation of AI capabilities—either through 
the reduction of entry barriers or a turn to business models 
based on open-source software—would challenge this sta-
tus quo [268]. Similarly, if language models become more 
fragmented or personalised [93], there will be many user-
specific branches or instantiations of a single LLM which 
would make model audits more complex to standardise. As a 
result, while maintaining the usefulness of our three-layered 
approach, we acknowledge that it will need to be continu-
ously revised in response to the changing technological and 
regulatory landscape.

It is worth concluding with some words of caution. 
Our blueprint is not intended to replace existing govern-
ance mechanisms but to complement and interlink them by 
strengthening procedural transparency and regularity. Rather 
than being adopted wholesale by technology providers and 
policymakers, we hope that our three-layered approach can 
be adopted, adjusted, and expanded to meet the governance 
needs of different stakeholders and contexts.

Appendix 1: methodology

Before describing our methodology, something should be 
said about our research approach. According to the pragma-
tist tradition, research is only legitimate when applied, i.e., 
grounded in real-world problems [269]. As established in 
Sect. 2, there is a need to develop new governance mecha-
nisms that different stakeholders can use to identify and miti-
gate the risks associated with LLMs. In this article, we take 
a pragmatist stance when exploring how auditing procedures 
can be designed so they are feasible and effective in practice.

Designing procedures to audit LLMs is an art, not a sci-
ence. In a policy context, applied research concerns the 
evaluation of different governance design decisions or poli-
cies in relation to a desired outcome [270]. From a prag-
matist point of view, however, a mark of quality in applied 
policy research is that questions are answered in ways that 

are actionable [237]. That implies that researchers must 
sometimes go beyond an evaluation of existing options to 
prescribe new solutions. While there is no guarantee that the 
best course of action will be found, researchers can ensure 
rigour by systematically building on previous research and 
by incorporating input from different stakeholders.

Mindful of those considerations, the following method-
ology was used to develop our blueprint for how to audit 
LLMs. Note that while the five steps below exhaust the range 
of research activities that went into this study, the sequential 
presentation is a gross simplification. In reality, the research 
process was messy and iterative, with several of the steps 
overlapping both thematically and chronologically.

Firstly, we mapped existing auditing procedures designed 
to identify the risks associated with different AI systems 
through a systematised literature review [271]. In doing so, 
we searched five databases (Google Scholar, Scopus, SSRN, 
Web of Science and arXiv) for articles related to the auditing 
of AI systems. Keywords for the search included (“auditing, 
“evaluation” OR “assessment”) AND (“fairness”, “truthful-
ness”, “transparency” OR “robustness”) AND (“language 
models”, “artificial intelligence” OR “algorithms”). How-
ever, not all relevant auditing procedures have been devel-
oped by academic researchers. Hence, we used a snowball-
ing technique [272], i.e., tracking the citations of already 
included articles, to identify auditing procedures developed 
by private service providers, national or regional policymak-
ers and industry associations. A total of 126 documents were 
included in this systematised literature review.

Secondly, we identified the elements underpinning these 
procedures. This resulted in a typology that distinguishes 
between different types of audits, e.g., risk and compliance 
audits; internal and external audits; ex-ante and ex-post 
audits; as well as between functionality, code, and impact 
audits. The space of possible auditing procedures consists 
of all unique combinations between these different elements.

Thirdly, we generated a list of key claims about how 
auditing procedures for LLMs should be designed so that 
they are feasible and effective in practice. To do this, we 
conducted a gap analysis between the governance challenges 
posed by LLMs on the one hand and the theoretical affor-
dances of existing AI auditing procedures on the other. Our 
analysis resulted in seven key claims about how auditing 
procedures should be designed in order to capture the full 
range of risks posed by LLMs. Those claims are presented 
and discussed in Sect. 3.

Fourthly, we created a draft blueprint for how to audit 
LLMs by identifying the smallest set of auditing proce-
dures that satisfied our seven key claims. In practice, not all 
auditing procedures are equally effective in identifying the 
risks posed by LLMs. Besides, some auditing procedures 
serve similar functions. Although some redundancy is an 
important feature in safety engineering, too much overlap 
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between different auditing regimes can be counterproductive 
in so far as roles and responsibilities become less clear and 
scarce resources are being consumed that could otherwise 
have been more effectively invested elsewhere. This step 
thus consisted of reducing the theoretical space of possible 
auditing procedures into a limited set of activities that are (1) 
jointly sufficient to identify the full range of risks associated 
with LLMs, (2) practically feasible to implement, and (3) 
seem to have a justifiable cost–benefit ratio.

Fifthly and finally, we sought to refine and validate our 
draft blueprint by triangulating findings [273] from different 
sources. For example, we sought input from a diverse set of 
stakeholders. In total, we conducted over 20 semi-structured 
interviews [274] with, and received feedback from, research-
ers, professional auditors, AI developers at frontier labs and 
policymakers in different jurisdictions. The final blueprint 
outlined in Sect. 4 is the result of those consultations.
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