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Abstract
Deep neural networks (DNN) have made impressive progress in the interpretation of image data so that it is conceivable and 
to some degree realistic to use them in safety critical applications like automated driving. From an ethical standpoint, the AI 
algorithm should take into account the vulnerability of objects or subjects on the street that ranges from “not at all”, e.g. the 
road itself, to “high vulnerability” of pedestrians. One way to take this into account is to define the cost of confusion of one 
semantic category with another and use cost-based decision rules for the interpretation of probabilities, which are the output 
of DNNs. However, it is an open problem how to define the cost structure, who should be in charge to do that, and thereby 
define what AI-algorithms will actually “see”. As one possible answer, we follow a participatory approach and set up an 
online survey to ask the public to define the cost structure. We present the survey design and the data acquired along with 
an evaluation that also distinguishes between perspective (car passenger vs. external traffic participant) and gender. Using 
simulation based F-tests, we find highly significant differences between the groups. These differences have consequences 
on the reliable detection of pedestrians in a safety critical distance to the self-driving car. We discuss the ethical problems 
that are related to this approach and also discuss the problems emerging from human–machine interaction through the sur-
vey from a psychological point of view. Finally, we include comments from industry leaders in the field of AI safety on the 
applicability of survey based elements in the design of AI functionalities in automated driving.

Keywords AI-based perception · Computer vision · Automated driving · Safety aware interpretation of probabilities · 
Cost-based decision rules · Participatory approach to ethics by design · Practical ethics · Human machine interaction
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1 Introduction

When human beings and robots interact in public space, 
robots should take the ethical values of humans into 
account. As robots are programmed, this requires antici-
pation of situations where robots could be in conflict with 
those values and also anticipation of the decision space for 
such a situation. Ultimately, an algorithmic approach to 
find and execute a compliant decision is needed. This par-
ticularly applies to the case of automated driving, where 
wrong decisions of the robotic car could be harmful or 
even deadly to humans. Approaching what has been said 
above, software engineers encounter various problems: 

1. In the stage of programming, software engineers might 
not be listened to when they raise ethical concerns and 
possible consequences that certain technical settings 
imply. Ethical problems also might be completely dis-
regarded. In light of existing safety by design procedures 
in industry, this could be seen as an organizational task 
to enable software designers to develop ethics by design 
[1].

2. There is no unique ethical system the software developer 
could refer to. Neither the existing normative theories of 
ethics need to come to the same decision [2–4] nor is it 
clear who should apply any of these ethical systems: the 
software engineer, the software company, a philosopher 
with a PhD degree in ethics, bodies of technical stand-
ardization, politicians, judges, or the public? Also the 
relevance of representation [5] and regional variations 
in ethical decision making [6] might play a central role.

3. Whoever makes the decision requires an understanding 
of the technical matters that determine that decision. 
What communication strategies could enable, e.g. citi-
zens to come to a qualified decision?

4. The perception of a robot and its representation of the 
world fundamentally differs from human perception. 
Due to this circumstance, the application of ethical sys-
tems developed by and for humans is not straightfor-
ward. For instance, the technical perception of a robotic 
car is usually based on deep neural networks (DNN) that 
interpret various sensors based on probabilities [7].

Concerning this last point (4), from a technical point 
of view, DNNs in computer vision output probabilities 
given high resolution images. Coming to conclusions 
on the basis of probabilities itself involves ethical deci-
sions, since the consequences of, e.g. the confusion of a 
pedestrian with the street could be deadly, whereas the 
opposite confusion would trigger an unnecessary emer-
gency braking. The perception of the street scene derived 
from the predicted probabilities therefore changes if the 

cost of confusion is determined in different ways [7, 8]. In 
particular, different configuration of confusion costs that 
prioritize the safety of the passengers of the self-driving 
car over the safety of other external road users may lead 
to significant changes in perception.

Just leaving confusion costs aside and just choosing the 
class with the highest probability using the maximum a 
posteriori probability principle, also known as the Bayes 
decision rule, does not avoid the ethical problem, since this 
amounts to costs of confusion treating any type of confusion 
the same. Such a cost structure deviates from common ethi-
cal intuition. Nevertheless, this “robotistic” decision rule is 
standard in present artificial intelligence (AI) technologies, 
which gives a good illustration to the first point of disre-
garded ethical problems mentioned above. In particular, this 
problem is not explicitly mentioned in any of the recom-
mendations of ethics commissions in autonomous driving on 
German [9], European [10], or international level [11, 12].

Elaborating further on [7], where the ethical problem of 
decision rules is described and the decision space is pre-
sented, in this article we discuss a participatory approach 
to determine costs of confusions. Between June 2019 and 
November 2020, in total 520 participants entered 5045 pro-
posals in our online survey as to how severe confusions of 
random instances adhering to one semantic category (e.g. 
human) with other semantic categories (e.g. road) should 
be judged. The presented instances are extracted from the 
popular computer vision dataset called Cityscapes [13], 
which is commonly used to train an AI for the perception 
of street scenes. With our survey, we present an approach 
to use the public’s opinion to determine what an AI system 
will see. In this article, we experiment with this specific 
solution strategy to problem point (2) and we also position 
this approach in the field of the ethics of AI, where partici-
patory approaches are recognized as a crucial ingredient for 
developing trustworthy technologies.

As a further contribution to the second point, we use 
personal information provided by the survey participants 
to conduct significance tests for the difference of confu-
sion costs between groups, similar to [6]. More precisely, 
we employ statistical tests to compare the variation within 
groups to the variation between groups by means of simula-
tion based F-tests that are tailored to the data structure of 
confusion costs. The different confusion cost structures lead 
to differences in the consequences with regard to human 
instances in safety critical zones in front of a self-driving 
car. These are evaluated using software developed in [14]. 
This allows us to explore the extent to which the judgment of 
different groups of people and also the “robotistic” view can 
potentially lead to consequences with ethical significance. 
In general, however, direct statistical assessment of safety 
of AI systems in automated driving is known to be difficult 
in practice [15].
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Concerning point (3), we put the online survey in the per-
spective of current research on human-machine-interaction 
(HMI) by evaluating the feedback of the survey participants. 
We also involve industry leaders who give a comment on 
how our conducted participatory approach can contribute 
to an actual industrial solution.

Our article does not intend to deliver any solution to the 
problem of defining confusion costs. In particular, we do 
not recommend or disrecommend to use the confusion cost 
matrices obtained from our survey. Rather we construct 
and confront interdisciplinary perspectives on a problem 
of practical ethics, which emerges from the application of 
AI in safety critical applications, and investigate potential 
tensions as well as concordance between those. We aim at 
presenting opportunities and limitations of using the public’s 
opinion to determine the perception of an AI applied in auto-
mated driving. It should also be clear that in this work we 
only investigate one AI perception modality, namely camera 
based semantic segmentation. Autonomous vehicles, how-
ever, are complex systems with various levels of redundancy 
within and across sensor modalities, including camera, radar, 
lidar, and ultrasonic detectors. It is beyond the scope of this 
work to evaluate the consequences of different choices of 
the cost structure of confusions on the level of such complex 
systems.

We provide an overview of the structure of this article in 
Fig. 1. This work is organized as follows: In Sect. 2 we give 
a mathematical definition of cost-based decision rules and 
thereby define the space of alternatives. In the subsequent 
Sect. 3 we present our survey-based approach and the sur-
vey design. Section 4 presents statistical evidence for the 
difference between certain groups of people as well as the 
robotistic view, and also evaluates to what extent these dif-
ferences are safety-relevant. Section 5 considers the relevant 
HMI aspects of the survey and explores the difficulties that 
emerge from just asking the people from the people’s per-
spective. Section 6 places this article’s approach in the field 
of ethical discussions on the application of AI, with special 
emphasis on automated driving. Similarities and dissimi-
larities to the infamous trolley problem are discussed and 
the applicability of existing ethical guidelines are probed. 

Section 7 discusses the usefulness and the feasibility of par-
ticipation based approaches from an industrial point of view 
and relates such approaches to ethical, legal and technical 
regulatory frameworks.

2  Cost‑based decision rules in deep learning 
for computer vision

The introduction of deep learning, a sub field of machine 
learning, has enabled advances in many applications of arti-
ficial intelligence (AI) that have been considered intractable 
before, such as computer vision. Computer vision (CV) can 
be described as the task that deals with enabling machines 
to gain an high-level understanding of scenes from digital 
image data. This includes the detection and localization of 
objects by means of images captured by cameras, which 
essentially determines what an AI can “see”. The nowadays 
established CV pipelines are all based on deep learning and 
organized around deep neural networks (DNNs). Employing 
such a type of model contains several gateways by which 
ethical difficulties may enter. This includes for instance 
the distribution of object classes in the training data, class 
weights in the training objectives, or the decision rules 
incorporated in DNNs to obtain final class predictions. In 
this section, we elaborate on how ethical problems enter 
through the latter gateway relating to the concept of deci-
sion rules.

2.1  Mathematical formulation of cost‑based 
decision rules and connection to standard 
decision principle

From a technical point of view, DNNs are typically used as 
statistical models to estimate a probability that a given input 
belongs to a certain object category. More formally, let us 
denote the input by x. In computer vision this could, e.g. 
be an entire image or even only a single pixel of an image, 
depending on the type of problem. Further, let us denote 
the object category corresponding to the input by y. Here, 
N ∈ ℕ denotes the number of different classes, which is a 

Fig. 1  The perception of 
an artificial intelligent (AI) 
system depends on a confusion 
cost matrix, which is in turn 
determined by various factors. 
The sections, in which we will 
discuss the different factors, are 
given in this figure
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design parameter chosen before creating datasets, and thus 
also before training DNNs to recognize objects in images. In 
this regard, we train DNNs to estimate p(y|x) , which can be 
understood as the probability for a given input x having class 
affiliation y. Given the probabilistic output of DNNs over all 
potential classes, the final class prediction is then usually 
obtained by selecting the class that is assigned the highest 
probability. This approach is also commonly referred to as 
maximum a-posteriori probability (MAP) principle or Bayes 
decision rule [8, 16], which yields the final class prediction

From decision theory, the Bayes decision rule is known to 
be merely one example of the more general concept of cost-
based decision rules. The latter decision principle selects the 
class that is associated with the lowest expected costs with 
respect to a classification mistake. To this end, a quantifica-
tion of the costs of confusion between classes is required. 
In more detail, given the cost of confusion c(k, y) ∈ ℝ≥0 
between the two classes k, y ∈ {1,… ,N} , the final class 
prediction for the input x via a cost-based decision rule is 
then obtained by

where �[c(k, Y) | x] denotes the expected costs of confusion 
with respect to class k given input x, or, in other words, 
the expected costs for confusing the considered class k with 
any other possible class y ∈ {1,… ,N} . Note that the cost 
assignments can also be expressed compactly in form of a 
confusion cost matrix (c(k, y))k,y∈{1,…,N} of size N × N , which 
will be the subject of discussion in the following sections. 
For a simplified example illustrating the process of decision 
making by means of cost-based decision rules, we refer to 

(1)ŷBayes(x) ∶= argmax
k∈{1,…,N}

p(k|x) .

(2)

ŷcost(x|c) ∶= argmin
k∈{1,…,N}

�[c(k, Y)|x] = argmin
k∈{1,…,N}

N∑

y=1

c(k, y)p(y|x),

Fig. 2. At this point, we want to emphasize that the final 
class prediction via cost-based decision rules is not affected 
by the absolute values but by the relative differences of con-
fusion costs. More formally, the cost-based decision remains 
unaffected by a constant non-negative factor � ∈ ℝ≥0 applied 
to the confusion costs, i.e.

Still, a question that naturally arises in this context is how to 
choose the quantities c(k, y) ∀ k, y ∈ {1,… ,N} . For exam-
ple in scenarios of automated driving, for the two classes 
“street” and “human”, how should the cost of the confu-
sion be valuated? Moreover, should the cost of confusion 
between these two classes be symmetric, e.g. is overlook-
ing humans in favor of the street as severe as the other way 
round? Common human intuition would suggest that confu-
sion costs should be different depending on the type of con-
fusion. However, it remains an open question, what values 
should explicitly be used.

As a matter of fact, however, the confusion costs are 
already implicitly defined in DNNs when employing the 
standard Bayes decision rule. Returning now to the men-
tioned statement that the Bayes decision rule is merely one 
example of a cost-based decision rule, it turns out that this 
standard decision principle incorporates constant confu-
sion costs, weighting each type of confusion equally seri-
ous. More precisely, for each type of confusion between 
two classes k and y, the Bayes decision is based on the 
cost valuation

resulting in the connection between Bayes decision rule and 
the latter cost function

(3)

ŷcost(x|c) = argmin
k∈{1,…,N}

�[c(k, Y)|x] = argmin
k∈{1,…,N}

�[𝜆c(k, Y)|x].

(4)crobot(k, y) =

{
0 if k = y

1 if k ≠ y
∀ k, y ∈ {1,… ,N} ,

0.6

0.4

0 · 0.6 + 2 · 0.4 = 0.8

1 · 0.6 + 0 · 0.4 = 0.6

minimal
costs dog

stre
et

dog

c(street, street) = 0

c(street, dog) = 2

c(dog, street) = 1

c(dog, dog) = 0

input image class prob-
abilities

confusion
costs

expected
confusion costs

decision
rule

final class
prediction

Fig. 2  Illustration of a simplified example of a cost-based decision 
rule in binary classification. Here, the task is to classify the content 
within the green box in the input image either as street (class 1) or 
dog (class 2). In this particular example it is assumed that confusing 
the class dog with the class street is twice as severe as the other way 
round, which can be realized by the confusion costs c(street, dog) = 2 

and c(dog, street) = 1 . Then, a cost-based decision rule selects the 
class that has the lowest expected confusion costs. This results in the 
class dog as final class prediction although the class probabilities are 
higher for street (60% vs. 40%). We refer to Eq. 2 for the general for-
mula for the final class prediction by means of a cost-based decision 
rule
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cf. also [7, 16]. In this way, the Bayes decision principle 
aims at minimizing the chance of any incorrect prediction, 
since there is no distinction in the type of error according to 
Eq. 4, which is equivalent to maximizing the model’s predic-
tive accuracy. We refer to this kind of decision making as 
robotistic attitude. Furthermore, as revealed in [7], the Bayes 
decision rule leads to the ethical dilemma of machine learn-
ing models in general that, on the one hand, it is not evident 
what confusion cost values should explicitly be used, but on 
the other hand, confusion cost values in conflict with com-
mon human intuition are already set implicitly by default. 
In this work, we study different confusion cost valuations in 
the context of street scenes, with the costs determined by the 
public in an online survey. While doing so, we study quali-
tative differences in the obtained cost matrices for different 
groups of survey participants.

2.2  Values and tradeoffs in cost‑based decision 
rules

Value judgments are ubiquitous in science and technology 
and have been a main issue in discussions on the ethics and 
philosophy of science and technology (e.g. [17–19]). They 
can enter at various steps of the inquiry and development 
when different epistemic and non-epistemic goals are in con-
flict, thereby leading to tradeoff situations. A specific choice 
within this tradeoff space amounts to a possible entry point 
for values. Quite frequently, these choices remain implicit or 
are not even recognized as “choices” and their correspond-
ing tradeoff space remains similarly unknown. These contin-
gencies of the process of inquiry should in morally signifi-
cant situations be the subject of reflective evaluation [19].

These tradeoff situations have already been recognized 
in the work of software engineers that use machine learning 
techniques, see, e.g. [20]. Issues regarding the opacity of the 
AI system and the potential biases present in the dataset from 
which the algorithm learns, have been central topics of discus-
sion in the ethics of AI literature [21] as well the responsible 
AI research within the information systems literature [22, 23]. 
Once these potentially ethical issues in the choice of these 
tradeoff situations have been recognized, a plethora of policy 
recommendations and ethical principles for more transpar-
ency and explainability in the design process have been sug-
gested, see, e.g. the ethics guidelines of AI High-level expert 
group of the European Commission [24] or for an overview 
[25]. As shown in [25] there seems to be a global convergence 

(5)

ŷBayes(x)
(1)
= argmax

k∈{1,…,N}

p(k|x)
(2)
= argmin

k∈{1,…,N}

N∑

y = 1

1{y≠k} p(y|x)

(3)
= argmin

k∈{1,…,N}

�
[
crobot(k, Y) | x

](4)
=ŷcost(x|crobot) ,

regarding the principles that should underlie the ethical use 
of AI, while a divergence was recognized regarding specific 
implementations of these. Thus, a detailed ethical analysis 
complementing available ethical guidelines is essential as it 
is explicitly requested in [10, p. 23].

In Sect. 2.1 the possible choices for the parameters in the 
costs of confusion in Eq. 2 provides the tradeoff space within 
which various epistemic and non-epistemic values need to be 
assessed and possibly weighed against each other. This can 
easily be illustrated by a comparison between the recall and the 
precision in the case of human classification, cf. also Fig. 3. By 
varying the costs of confusion, one may maximize the recall 
(or equivalently the sensitivity) to the point where there are 
no false negatives. This, however, goes hand in hand with 
a decrease in the precision, as the number of false positives 
similarly increases with the variation of cost values. This is 
a generic feature of any non-perfect but realistic classifier. So 
one may be able to identify all humans correctly, but only at 
the cost of identifying additionally other non-human things as 
humans. This would lead to a significant decrease in the practi-
cal usability of autonomous vehicles, as it would mistakenly 
hit the brakes too frequently. Here usability enters as a value, 
which if not satisfied would significantly diminish the usability 
of any autonomous vehicle.

In this particular context, an ethical assessment of the 
outlined tradeoff is non-trivial as there are utilitarian reasons 
for the introduction of autonomous vehicles which would 
warrant an increase in practical usability (cf. [9], although 
these are critically discussed [26, 27]), thereby making 
practical usability a requirement, which nevertheless may 
be in tension with the individual lives that are put at risk by 
decreasing the recall.

This tradeoff between the recall and precision, or, the 
identification of humans and the practical usability of the 
autonomous vehicle, respectively, illustrates just one of 
many values that may impact, if made explicit, the determi-
nation of the confusion cost matrix. Other examples would 
be fuel efficiency and speed but also issues of privacy may 
impact the tradeoff space. In this paper we are particularly 
concerned with the tradeoff between accuracy, as imple-
mented by the Bayes decision rule, cf. Eq. 5, and the pub-
lic’s opinion, as implemented in a survey-based approach 
in determining the confusion cost matrix. We will further 
elaborate on the tradeoff and consider the guidelines pro-
vided by the ethics commission [9].

3  Survey design for the valuation 
of confusion costs in street scenes

In the context of automated driving, cameras are one of 
the main components for perceiving the environment of a 
self-driving car. To this end, AI algorithms are deployed 
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in order to interpret the captured images. They classify 
objects into predefined classes based on estimated prob-
abilities that an object belongs to a certain class. As 
described in the previous Sect. 2, the AI is usually pro-
grammed to select the class that has the highest probability 
[8, 16, 28], see also Eq. 1. Hence, all types of confusion 
of classes are implicitly treated to be equally serious, cf. 
Eq. 5. However, in terms of safety this decision principle 
with constant costs of confusion is not necessarily optimal 
and ethically differs from common human intuition.

For instance, assume the case in which the AI suggests 
the class “road” and the class “human” for an object of 
interest with an estimated probability of 51% and 49%, 
respectively. In this particular case, strictly trusting the 
AI and choosing road over human because of the slightly 
higher probability could lead to fatal consequences. From 
a safety point of view, it therefore seems recommendable 
that confusions are assessed according to their type as well 
as the occurrence of possible dangers.

In this section, we present the conducted survey, in 
which we ask the survey participants to provide confusion 
costs. We aim at examining the ethical attitude of the pub-
lic in regard of safety-critical confusions in street scenes. 
Ultimately, the submitted values should help the AI to 
adapt its perception to human ethical intuition. Starting 
now with the design of the survey, we distinguish between 

two possible perspectives to view street scenarios from, 
either 

1.  passenger of the self-driving car, or

2.  external traffic participant .

We focus on these two perspectives as putting passenger first 
vs. putting other road users first has already been subject of 
intense public debate [29]. One of these two perspectives 
is randomly assigned to each participant at the start of the 
survey and last until the survey is stopped. Based on the 
perspective, potential confusions in different street scenes 
are evaluated according to the participants’ subjective sense 
of the severity of consequences. The street scenes that are 
shown during the survey are extracted from the publicly 
available Cityscapes dataset [13]. Cityscapes is a large col-
lection of images (resolution of 2048 × 1024 pixels) con-
taining diverse scenes recorded in urban street scenarios in 
50 different European cities and it is a popular computer 
vision benchmark to evaluate how well deep neural net-
works perform at interpreting complex traffic scenes. There 
are 19 object classes available in this dataset to be classi-
fied. In the field of computer vision these classes also rep-
resent the standard labeling policy in street scenes datasets. 

Fig. 3  Illustration of the clas-
sification performance metrics 
recall and precision. a The 
recall is the fraction of the 
amount of overlap between 
target and prediction divided by 
the amount of the target, while 
the precision is the fraction of 
the amount of overlap between 
target and prediction divided by 
the amount of the prediction. b 
The sensitivity of predictions 
can be adjusted by varying 
thresholds (or implicitly by 
varying confusion costs), which 
subsequently increases the 
amount of predictions. In this 
way the recall can be maxi-
mized, however to the detriment 
of decreasing the precision, 
illustrating the tradeoff between 
these two classification perfor-
mance metrics

recall =

target
prediction

target
prediction

precision =

target
prediction

target
prediction

(a) computation of the classification performance metrics recall and precision

recall = 0.25 = 25%
precision = 1.00 = 100%

recall = 0.50 = 50%
precision = 0.50 = 50%

recall = 1.00 = 100%
precision = 0.44 = 44%

(b) tradeoff between recall and precision
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Obviously other (and finer) class definitions are also pos-
sible. For the sake of reducing the complexity of the survey 
and the amount of data needed for statistical analysis we 
consider class aggregates as follows. For the survey we dis-
tinguish between six (coarser) object categories, which are 
namely (1) driveable, (2) nondriveable, (3) static, (4) info, 
(5) human, and (6) dynamic, see also Fig. 4 for an overview. 

In each of the street scene images displayed in the survey, 
one instance corresponding to exactly one of the six outlined 
classes is highlighted, see Fig. 5a for an example. Given this 
displayed image, the task of the survey participants is to 
assess a potential confusion with an instance from another 
class, see Fig. 5b for an illustration of the interface from the 
survey. With a confusion between car and bus (a confusion 
between two objects within the same object category) being 
a reference mistake, the survey participants should assess 
how severe it is if the highlighted instance is incorrectly 
assigned to one of the remaining five classes. In other words, 
the severity of overlooking the highlighted object must be 
valuated. One can choose out of 10 (nearly harmless), 100 
(fairly harmless) up to 1 M (fatal) times more severe than the 
reference mistake, or 1 (marginal) if the confusion is as seri-
ous as the reference mistake. Thus, in total there are seven 
available levels of severity to choose from. With respect to 
the same class, naturally no confusion costs should incur, 
therefore the cost value is fixed to 0. Note that the exponen-
tial scale of confusion costs is due to the particular archi-
tecture of deep neural networks, which have shown gradual 
changes in their outputs only with confusion costs of this 
exponential magnitude, cf. [7].

The exponential scale might be another technical diffi-
culty that is connected to the definition of cost structures 
for deep neural networks. By asking the survey participants 
to explicitly define the cost values without any intermediate 
translation steps, we aim at investigating whether a deeper 
understanding of the technical matters is required for this 
task.

For an in-depth analysis of the survey data, the partici-
pants are additionally asked to voluntarily provide the fol-
lowing personal information on:

• gender,
• age,
• graduation,
• field of work or study,
• whether they own a driver’s license,
• and how they usually commute .

A summary of these attributes is provided in Sect. 1. Besides 
the perspective, such meta data can also be used in order 
to form groups and analyze the collected survey data for 
statistical relationships, which will be subject of discussion 
in what follows.

4  Evaluation methodology for confusion 
costs and numerical results

At the time of writing 520 people have participated in the 
survey, answering 5045 questions in total. Given this col-
lected data, we inspect for differences in the confusion costs 

road1: drivable

sidewalk
terrain2: nondrivable

building
wall
fence
pole
vegetation

3: static

traffic light
traffic sign4: info

person
rider5: human

car
truck
bus
train
motorcycle
bicycle

6: dynamic

Fig. 4  Class aggregates of Cityscapes object classes that are used in the survey. Note that the class “sky” is omitted in the survey since the non-
detection of the sky does not cause hazardous street scenarios

Fig. 5  Illustration of the inter-
face in the survey to submit 
confusion costs
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valuation in this section. To this end, we form groups of cost 
valuations by restricting the survey data by means of the 
assigned perspective and gender of the survey participants. 
These two characteristics form sufficiently large data subsets 
of roughly the same size:

• passenger: 2744 answers,
• external: 2301 answers,
• female: 2444 answers,
• male: 2523 answers,

Allowing for comparing them statistically for differences. 
Note that the groups passenger and external denote the per-
spectives corresponding to a passenger of the self-driving 
car and an external traffic participant, respectively, cf. 
Sect. 3. Moreover, we also note that three out of 520 par-
ticipants stated their gender as other, which is an insufficient 
amount of data and would not constitute a representative 
sample to test for statistical significance. This is why they 
are omitted in the following statistical comparison of con-
fusion cost values between groups but later included in the 
comparison of all survey participants against the robotistic 
confusion cost valuation in Sect. 4.2.

4.1  Comparison of confusion cost values provided 
by different groups of the survey data

The average confusion cost values of the outlined groups are 
displayed in the form of cost matrices in Fig. 6. Comparing 
the matrices provided by the assigned perspective, i.e. pas-
senger of the self-driving car vs. external traffic participant, 
we observe that the cost valuations are in a similar range. 
Some noteworthy exceptions are related to predictions of 
the class “drivable”. More precisely, the confusion of either 
“human” or “dynamic” in favor of “drivable” is valuated 
considerably more severe by the group external (costs of 
105.51 and 104.71 vs. 104.74 and 103.97 , respectively). Focusing 
now only on the class “human”, confusions involving this 
vulnerable class are generally assigned higher costs by the 

group external as well. The corresponding column in the 
respective matrices (which represents the submitted cost 
values when a human instance is highlighted in the image 
displayed in the survey) let us conclude that by means of the 
submitted values, the group external tends towards a more 
human sensitive cost assignment than the group passenger.

Similar observations can be made when comparing the 
cost matrices provided by gender, i.e. female vs. male. Here, 
the cost values of the group female show to be higher in 
general for most types of confusion. In light of the absolute 
values, this is most significant for the confusion “driveable” 
as prediction and “human” as true target class label with cost 
values 105.65 and 104.60 , respectively. Focusing again only 
on the class “human”, confusions involving this vulnerable 
class are also assigned clearly higher costs by the group 
female. In fact, with respect to the class “human”, none of 
the cost valuations provided by the group male exceed those 
of the group female. This let us conclude that by means of 
the submitted values, the group female tends towards a more 
human sensitive cost assignment than the group male.

This leads to another finding that is related to the trade-
off between recall and precision. As already introduced in 
Sect. 2.2, recall can be maximized by increasing the predic-
tion sensitivity, but possibly sacrificing precision. In light 
of confusion cost matrices, the prediction sensitivity with 
respect to one class can be varied by the cost values within 
the corresponding column. This consequently counteracts 
with the cost values in the row of the considered class in 
the confusion matrix, which in turn controls the predictive 
precision. We have already concluded that both the groups 
external and female show to have a more human sensitive 
cost assignment than the groups passenger and male, respec-
tively. This might be still valid given the submitted cost val-
ues and the design of the survey, in which the participants 
explicitly provided cost values for the severity of overlook-
ing humans, cf. Sect. 3.

However, from a technical point of view, this does not 
necessarily imply better recall with respect to human clas-
sification via cost-based decision rules. In this context, it is 

Fig. 6  Average confusion cost 
matrices determined by different 
groups formed by the assigned 
perspective and gender of the 
survey participants, namely 
these groups are passenger ( ̄C

P
 ), 

external ( ̄C
E
 ), female ( ̄C

F
 ), and 

male ( ̄C
M

 ), cf. also Sect. 4. The 
matrices are read as follows: 
e.g. for the fifth entry in the first 
row, how serious is the confu-
sion if the model predicts the 
class driveable but the actual 
true class label is human?

“d
riv
ab
le”

“n
on
dr
iva
ble
”

“s
ta
tic
”

“in
fo”

“h
um
an
”

“d
yn
am
ic”

“drivable”
“nondrivable”
“static”
“info”
“human”
“dynamic”

C̄P =

0 104.12 103.97 103.75 104.74 103.97

103.90 0 102.70 103.18 103.42 103.30

103.34 102.50 0 102.70 103.51 103.07

102.96 102.96 102.76 0 103.51 103.13

103.72 103.00 103.05 103.41 0 103.18

103.41 103.17 103.05 103.41 103.18 0

C̄E =

0 104.42 104.36 104.00 105.51 104.71

103.71 0 102.72 103.06 103.99 103.40

103.70 102.13 0 102.41 103.56 103.46

102.97 102.46 102.79 0 103.70 103.08

104.03 103.04 103.16 103.40 0 103.50

103.77 102.84 103.14 103.34 103.14 0

true target class label in columns

pr
ed
ic
ti
on

in
ro
w
s

C̄F =

0 104.45 104.25 104.23 105.65 104.47

104.03 0 102.72 103.32 104.06 103.79

103.83 102.26 0 102.48 103.65 103.36

103.29 102.92 102.81 0 103.84 103.41

104.14 103.09 103.28 103.54 0 103.44

104.03 103.07 103.23 103.56 103.22 0

C̄M =

0 104.33 104.03 103.58 104.60 104.17

103.74 0 102.76 102.98 103.39 103.04

103.33 102.43 0 102.64 103.48 103.15

102.74 102.54 102.76 0 103.39 102.88

103.73 103.02 103.04 103.32 0 103.24

103.30 102.98 103.03 103.24 103.17 0



1389AI and Ethics (2023) 3:1381–1405 

1 3

crucial to understand that increasing prediction sensitivity 
always refers to both increasing and decreasing confusion 
cost values. More precisely, the relative difference is critical 
according to Eq. 3. Otherwise, confusions are valuated sym-
metrically as in the robotistic cost valuation, cf. Eq. 4. Hav-
ing now another look at the average cost matrices from the 
survey data in Fig. 6, we realize that with respect to the class 
“human” the groups external and female have higher costs in 
the column as well as in the row compared to passenger and 
male, respectively. Whether such confusion costs valuation 
still translates to more human sensitive AI perception will be 
subject of the qualitative as well as consequential analysis in 
Sects. 4.3 and 4.4, respectively, after the statistical analysis 
of the survey data in the following.

4.2  Statistical evaluation of different confusion cost 
valuations

In order to study correlations between characteristics of the 
survey participants and their assessment of confusions, we 
statistically evaluate the survey data using an analysis of 
variance (ANOVA). We use this analysis technique to find 
differences in the means of data between two groups (one-
way ANOVA). As we deal with matrices (of size 6 × 6 ), 
which are not suitable for a standard F-test, we apply a mod-
ification thereof, see Sect. 1 for mathematical details. To put 
it another way, we perform a statistical test to analyze the 
degree of variability between two average cost matrices. To 
this end, the degree of variability is given by the F-statistic

The greater the F-statistic, the greater the variance of the 
confusion valuations between different groups, implying 
that the examined groups differ more significantly. After 
shuffling the data to randomly assign groups to any cost 
valuations, we determine how often the random F-statistic 

(6)F ∶=
MSB

MSW
=

between-groups variance

within-groups variance
∈ ℝ≥0 .

(denoted as Frandom ) is greater than the actual calculated 
F-statistic. In other words, we test the actual survey data 
against randomness. This approach is also known as boot-
strapping [30] and provides the approximated p-value

which indicates how likely two average cost matrices are 
drawn from the same distribution, i.e. how likely there is no 
difference between the examined groups with respect to their 
confusion cost valuations.

In our analysis, we test for differences when comparing 
the groups passenger of the self-driving car vs. external traf-
fic participant and female vs. male. The results of our con-
ducted statistical tests are summarized in Fig. 7. Regarding 
the evaluation of the perspective the p value is p = 0.52% , 
while regarding the gender p = 0.00% . Such small p values 
indicate that there is significant evidence for statistical dif-
ferences between the average cost matrices associated with 
the examined groups. This is particularly significant when 
comparing the groups female vs. male since in our analysis 
there has not been a single randomly simulated F-statistic 
that exceeds the actual calculated F-statistic. Based on the 
findings of these statistical tests, we conclude that the char-
acteristics related to the assigned perspective as well as the 
gender of the survey participants both likely have an impact 
on their respective confusion costs valuation.

However, the evaluation methodology in this subsection 
does not provide information regarding by what amount and 
for which specific type of confusion the costs differ. To this 
end, we further investigate the differences between average 
cost valuations for specific types of confusion. In particular, 
we additionally compare the average confusion cost matrix 
of all survey participants against the robotistic confusion 
costs valuation, i.e. constant costs for each possible type 

(7)
p ∶=

#{Frandom > F}

#{Frandom}

=
number of timesFrandom > F

total number of simulatedFrandom

∈ [0, 1] ,
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Fig. 7  The distributions of simulated F-statistics, denoted by Frandom , 
when the group affiliation of cost valuations in the survey data is ran-
domly assigned. To this end, the survey dataset is shuffled 1M times 
in total. The greater the F-statistic, the greater the variance of the 

confusion cost valuations between the groups in the respective com-
parison. The red line corresponds to the actual calculated F-statistic 
according to the original, untouched survey data
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of confusion, cf. Eq. 4. The difference matrices are given 
in Fig. 8. The previously conducted statistical tests might 
suggest that the difference in the confusion cost valuation 
between different groups of survey participants tend to be 
significant, but we observe that the difference between all 
survey participants as unit and the robotistic cost valuation 
is even more drastic. The total sum of entries in the corre-
sponding difference matrix yields 14.40 compared to 4.02 
and 3.69 for the perspective and gender, respectively. This 
result let us conclude that the subjective sense of the survey 
participants with respect to confusion costs in the context 
of street scenes clearly disagrees with the robotistic confu-
sion costs valuation, and thus with the Bayes decision rule, 
which is used by default in any machine learning model, cf. 
Sect. 2.1.

4.3  Qualitative evaluation of different confusion 
cost matrices

In this subsection, we investigate the actual changes in AI 
perception of street scenes obtained by using the confusion 
cost matrices from the survey, cf. Fig. 6. We test the qual-
ity of AI perception by integrating the given confusion cost 
matrices into the cost-based decision rule within a deep 
neural network (DNN) for semantic segmentation, cf. Eq. 2. 
In this context, semantic segmentation can be described as 
pixel-wise image classification task, i.e. assigning an object 
category to each single pixel of an input image, and thus 
providing the finest level of detection and localization of 
objects in scenes. As underlying semantic segmentation 
DNN we employ the state-of-the-art DeepLabV3+ model 
with WideResNet38 backbone trained by Nvidia [31].

We report numerical semantic segmentation perfor-
mance results in Table 1. As expected, using the Bayes 
decision rule yields the best overall segmentation perfor-
mance. The commonly used performance metric mean 
IoU drops by 8.4 percent points when using the confusion 
costs from the survey. Among the examined survey groups, 
the group external achieves the best score with 82.3%. 
Restricting the evaluation on human classification only, 
the Bayes decision rule still performs best, but by smaller 
margin of 1.4 percent points over the cost valuations of all 
survey participants. Among the survey groups, the group 
female achieves the best score with 82.9%. Noteworthy, all 
groups improve recall over the Bayes decision rule by up 
to 2.8 percent points for the group passenger.

For visual inspection, we provide exemplary semantic 
segmentation masks for one scene of the Cityscapes data-
set [13] in Fig. 9. In general, we realize that all semantic 
segmentation masks look similar in large parts. In particu-
lar with respect to human classification, differences in the 
outputs are barely visible. The small changes compared 
to the standard Bayes decision rule include slightly larger 
segment predictions for the class human, which is a conse-
quence of the increased sensitivity towards human predic-
tions already discussed in Sect. 4.1. Between the examined 
survey groups the visual differences in the semantic seg-
mentation masks are marginal, particularly in regard to 
safety relevant classes such as “road”, “info” and “human”, 
which let us conclude that the cost matrices provided by 
the survey participants do not significantly impact the 
semantic segmentation quality via deep neural networks.

Fig. 8  Value-wise differences 
of confusion costs assessment 
between different groups. Here, 
Δ denotes the difference matrix 
of confusion cost values for the 
comparisons of the groups a 
passenger of the self-driving car 
vs. external traffic participant, 
b female vs. male, and c all 
survey participants vs. robotistic 
cost valuation / Bayes decision 
rule. Furthermore, Σ denotes the 
sum of entries in the differ-
ence matrices of the respective 
comparisons
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4.4  Consequential evaluation of different confusion 
cost matrices

For the consequential evaluation of different cost matrices, 
we use the safety-aware evaluation tool for the perception of 
street scenes introduced in [14], which focuses on the detec-
tion of human instances in safety-critical areas ahead of the 

self-driving car. We again test the confusion cost matrices 
from the survey data on the Cityscapes validation dataset 
[13], which provides 500 street scene images with human 
instances as well as their associated distance to the self-
driving car. Furthermore, we compare two groups of survey 
participants against each other as well as the single groups 
against the robotistic cost valuation/Bayes decision rule.

Table 1  Semantic segmentation performance on the Cityscapes validation data when incorporating different costs of confusion provided by dif-
ferent groups

The most commonly used performance metric for this computer vision task is the mean IoU, which is the class-wise intersection over union 
(IoU) averaged over all available classes. For further insights, particularly with respect to performance tradeoffs (cf. Sect. 2.2), we additionally 
include the metrics recall as well precision (cf. Fig. 3), and also restrict the evaluation to the human class only. Note that the values in this table 
denote percentages (%). For all performance metrics higher values indicate better semantic segmentation performance with 100% being the score 
of a perfect classifier. Bold numbers indicate the best performance in the respective metric

Survey group \ performance metric Mean IoU Mean recall Mean precision Human IoU Human recall Human 
preci-
sion

Passenger of the self-driving car 82.3 94.7 85.9 79.9 94.6 85.0
External traffic participant 81.1 93.9 85.1 82.8 93.7 86.2
Female survey participants 80.9 94.1 84.8 82.9 94.0 86.0
Male survey participants 82.0 94.6 85.8 82.7 94.2 85.6
All survey participants 81.6 94.4 85.3 82.7 94.3 85.5
Robot/Bayes decision rule 90.0 95.2 94.0 84.1 91.8 88.2

Fig. 9  Changes in AI percep-
tion of an urban street scene 
by using different confusion 
cost matrices, cf. also Fig. 6, 
in the cost-based decision rule 
integrated within a state-of-
the-art deep neural network for 
semantic segmentation. Note 
that the class “sky” is omitted in 
the survey, cf. Fig. 4, resulting 
in no predictions of the sky 
in the masks obtained by the 
survey participants
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The evaluation tool generates the bird’s-eye view illus-
trations displayed in Figs. 10 and 11, in which the complete 
area in front of the self-driving car as captured by the camera 
is illustrated. The described area is of circular form with a 
center angle of 60◦ , which is naturally given by the field of 
vision of the camera. We subdivide the area in front of the 
self-driving car into two safety-critical zones, that are (1) 
the braking distance for a speed of up to 50 km/h and (2) 
the braking distance for a speed of up to 30 km/h. Accord-
ingly, we assume braking distances of 46.5 m and 20.6 m, 
respectively, which are indicated by the shaded zones in the 
bird’s-eye view illustration.

Moreover, the crosses and dots in the plots indicate 
detectable human instances across the entire Cityscapes 
validation dataset in their relative position to the self-
driving car. In this regard, we consider a human instance 
as detected if the associated recall exceeds a threshold of 
50%1, cf. Fig. 3, otherwise we consider that human instance 
to be overlooked. The colored dots then show the results 
of applying the different confusion cost matrices obtained 

from the survey data in terms of human detection. While a 
colored dot represents a human instance that is detected only 
by the group corresponding to the respective color, a gray 
cross depicts an actual human instance in the dataset that is 
overlooked by both considered groups in the comparison.

As discussed in Sect. 2.2, the interaction between recall 
and precision is always an interaction between two opposing 
metrics. Therefore, we additionally consider the precision 
in order to examine to what extent this metric is sacrificed 
to improve recall. In Figs. 10 and 11, the precision is illus-
trated as pie charts, which we also refer to as measure of 
practical usability of the self-driving car. In this light, a low 
precision could yield an autonomous vehicle that mistakenly 
brakes all the time, since the underlying AI incorrectly iden-
tifies human instances all the time, and thus resulting in an 
impractical application of AI in automated driving. Via these 
just described visualizations, we aim at presenting different 
safety related consequences of AI perception with respect to 
human classification in a comprehensible and compact way. 
Besides, we report numerical results in Table 2.

We have seen in Sect. 4.3 that different confusion cost valu-
ations result in only marginal visual differences in the semantic 
segmentation masks. However, the consequential evaluation 
in this subsections reveals that the different confusion cost 

Fig. 10  Consequential compari-
sons between the cost assign-
ments of the groups passenger, 
external, and robot with respect 
to the detection of humans. 
On the diagonal, the pie charts 
indicate the precision of 
human predictions as measure 
of practical usability for the 
respective cost assignments. 
The graphs on the off diagonal 
display the perceivable area 
ahead of the self-driving vehicle 
from a bird’s eye perspective. 
Here, gray crosses show human 
instances that are overlooked by 
both considered groups in the 
comparison, whereas colored 
dots show human instances that 
are detected only by the group 
corresponding to the respective 
color

TP = 85.01% FP = 14.99%
total: 15,892,502 pixels

TP = 88.18% FP = 11.82%
total: 14,873,059 pixels

TP = 86.20% FP = 13.80%
total: 15,506,832 pixels

ro
bo

t
ex
te
rn
al

pa
ss
en
ge
r

robot externalpassenger

1 Disclaimer: Note that the outlined score is also commonly referred 
to as detection threshold and it is commonly set to 50% in the field 
of computer vision. However, using any other detection threshold 
between 0% and 100% is obviously also possible.
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valuations from the survey yield sufficient changes in AI per-
ception such that the number of overlooked human instances in 
safety-critical distances to the self-driving car may differ. We 
observe that the groups passenger of the self-driving car and 
male survey participants provide more human sensitive predic-
tions compared to the groups external traffic participant and 
female survey participants. The number of overlooked human 
instances differ by up to 73 within the braking distance for 
50 km/h and up to 5 within the braking distance for 30 km/h. 
More significantly, all the examined groups produce more 
human sensitive predictions than the robotistic cost valuation/
Bayes decision rule. With respect to the group passenger of 
the self-driving car, the standard Bayes decision rule overlooks 
211 and 13 human instances within the braking distance for 50 
km/h and 30 km/h, respectively. As already seen in Table 1, the 

reduction of overlooked human instances, i.e. gain in recall, is 
accompanied by a sacrifice of 3.2 percent points in precision. 
The latter loss could still be considered “acceptable‘’, particu-
larly in light of preventing life-threatening street scenarios.

5  Reflection and limitation of the survey 
from a psychological point of view

In the development of responsibly designed AI technology, 
active participation and involvement of users and stake-
holders take on a new significance. This is especially true 
if the AI technology is expected to make decisions or act 
in accordance with human values and not purely based on 
probabilities, as it is the case in automated driving [32], 

Fig. 11  Consequential compari-
sons between the cost assign-
ments of the groups female, 
male, and robot with respect 
to the detection of humans. 
On the diagonal, the pie charts 
indicate the precision of 
human predictions as measure 
of practical usability for the 
respective cost assignments. 
The graphs on the off diagonal 
display the perceivable area 
ahead of the self-driving vehicle 
from a bird’s eye perspective. 
Here, gray crosses show human 
instances that are overlooked by 
both considered groups in the 
comparison, whereas colored 
dots show human instances that 
are detected only by the group 
corresponding to the respective 
color

TP = 85.97% FP = 14.03%
total: 15,607,196 pixels

TP = 88.18% FP = 11.82%
total: 14,873,059 pixels

TP = 85.55% FP = 14.45%
total: 15,731,106 pixels
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Table 2  The amount of overlooked human instances in the Cityscapes validation dataset when using the confusion cost valuations provided by 
the different groups of survey participants as well as the Bayes decision rule

Safety-critical zones Total Number of overlooked human instances per group of survey participants

Passenger External Female Male Robot / Bayes

At speed 50 km/h 2394 534 (13.5%) 607 (15.4%) 599 (15.2%) 550 (13.9%) 745 (18.9%)
At speed 30 km/h 817 77 (9.4%) 82 (10.0%) 81 (9.9%) 79 (9.7%) 90 (11.0%)
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cf. also Sect. 2.1. Then, it is not solely a matter of achiev-
ing acceptance of the new technology among human users 
but also a matter of AI technology learning from users, 
their values and ways of thinking (cf. for limitations of 
this approach Sect. 6.3). With the survey conducted in the 
present study, we aim at gaining insights for the develop-
ment of AI perception in the field of automated driving 
by exploring human judgments concerning the costs of 
potential confusions between object classes.

In traffic psychology, surveys are an established method 
for uncovering humans’ insights, e.g. into their evalua-
tion and usage strategies of driver assistance systems 
[33]. Besides the obvious advantages of this method, 
self-reports also bear some limitations that must be con-
sidered when interpreting the results. In the following, we 
critically reflect on possible limitations of our conducted 
survey on different but strongly interacting dimensions 
(survey and person) in light of the survey participants’ 
feedback. To this end, we asked participants at the end of 
the survey to rate the degree of perceived difficulty in com-
pleting it (“How complicated did you find the survey?”, 
1 = very simple, 2 = fairly easy, 3 = challenging, 4 = 
complicated, 5 = extremely complicated). On average, par-
ticipants experienced the survey as challenging (mean = 
3.04, standard deviation = 0.88, number of participants = 
412). In addition, participants had the opportunity to leave 
feedback on the survey as free text. The following reflec-
tion on the survey builds upon these responses (which we 
have translated from German into English).

5.1  Survey‑related factors influencing the response 
behavior of survey participants

The subject of our survey was particularly complex and 
challenging. Even though automated driving is an issue 
of high current relevance, it still appears as a black box 
for most people and is surrounded by uncertainty. This 
uncertainty is associated with every innovation and results 
from a lack of knowledge about the functionality and use 
of the new technology, see, e.g. [34]. For AI technology, 
this is especially true because its underlying highly com-
plex algorithms make it impossible to entirely see through 
and comprehend the AI’s decision making processes, even 
for experts, see, e.g. [35]. Due to the limited capacity of 
human working memory [36], at any point in time, only a 
certain amount of information can be processed simultane-
ously, so that some information decays. The opaqueness 
of how an AI operates, however, counteracts the develop-
ment of trust in the technology. Particularly in the field of 
automated driving, trust in AI’s decision making is vital 
for acceptance and adoption of this technology in soci-
ety, see, e.g. [37]. Accordingly, there is an urgent need 

for increasing transparency of the underlying models in 
automated vehicles and, consequently, moving towards 
an explainable AI [38]. Yet, increased transparency ought 
not to come at the expense of AI’s decision accuracy. To 
ensure a high level of decision accuracy, AI technology 
inevitably requires the processing of large amounts of data 
far beyond the scope of human comprehension. Thus, there 
is a fundamental tension between the functioning of the 
AI being based on a vast amount of data and sophisticated 
algorithmic models on the one hand, and, on the other 
hand, the constraints of human cognition, which is usu-
ally not able to decode such complex data and models. 
This causes a dilemma when asking people to partly empa-
thize with an AI, as it was the case in our survey. When 
designing our survey, we had to find a balance between 
addressing participants in a way they could still compre-
hend and, at the same time, not obscuring, but sufficiently 
capturing the complexity inherent in the topic to obtain 
meaningful input to feed back into the AI. Thus, despite 
our best efforts, the survey inevitably involved a certain 
degree of complexity that might have caused a high cog-
nitive intrinsic load [39]. Specifically, participants in our 
study had to make responsible decisions when assessing 
how serious they think confusions between object types 
in the given traffic scenarios are. For every scenario, they 
had to consider a vast number of aspects and possible con-
sequences for each of the five confusion cases. Hence, 
participants in our study may not have been able to recog-
nize and process all relevant information sufficiently at a 
given point in time. Some participants reported this high 
level of complexity along with substantial uncertainty and 
problematized it as part of their feedback.

“There are many aspects that must be taken into 
account. It would be fatal if a person is not rec-
ognized as a person and therefore the car does not 
swerve or brake. With different static or dynamic 
objects a confusion is less serious in my opinion, 
because the car should be programmed to swerve 
in any case. Nevertheless, the issue is very difficult, 
because it is not possible to consider every aspect 
and the topic itself is very complex. It is also likely 
that in retrospect one will notice criteria that one 
spontaneously did not consider when answering the 
questions.”

“I struggled to empathize with an AI. What informa-
tion does it gain from dynamic objects? [...]”

“too many details go into a decision [...]”

Besides the challenging task and content, the special design 
and technical features of our survey may have caused an 
increased extraneous cognitive load that is mental load pro-
duced by the layout and design of the material [39]. For 
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example, some participants reported that they had issues 
determining the weighting of severity using the sliders and 
unfamiliar units of value (1–1000000 times more serious 
than the confusion car with bus). We chose this scale as it is 
coherent with the specific design of the used AI model and 
explicitly intended not concealing the actually used confu-
sion costs, like it is the case in the standard Bayes decision 
rule, cf. Eq. 5.

“For me, it was difficult to determine exactly which 
slider to move so that it matches in relation to the other 
classes. [...]”

“School grades or grading from 1 to 10 would be 
easier. As a non-specialist it is very complicated to 
understand the evaluation criteria...”

“The reference values are difficult to assess and the 
wording of questions is rather complicated”

To sum up, especially due to the complex characteristics of 
the topic and task, as well as some design features of our 
survey, some participants presumably experienced increased 
intrinsic and extrinsic cognitive load while completing our 
survey. Consequently, if extraneous and intrinsic cogni-
tive loads were too high, this may have exceeded the lim-
ited working memory capacity, so that sufficient cognitive 
resources that would have been necessary to master the task 
may not have been available [39]. In other words, some par-
ticipants may have been more concerned with understanding 
the complex scenario and task as well as with becoming 
familiar with the interface and features of the survey, than 
with collecting, combining, and weighting relevant informa-
tion to finally make a sound decision of how serious they 
judge the confusion between classes. As a consequence, to 
save cognitive resources, participants, who experienced such 
cognitive overload, may have used less elaborate judgment 
heuristics, which could risk resulting in poor decision mak-
ing [40].

The extent to which the potentially challenging aforemen-
tioned features of the survey may have affected participants’ 
responses might be mediated by personal characteristics and 
remains an open issue for further investigation. More recom-
mendations are discussed in Sect. 8.2.

5.2  Personal characteristics influencing 
the response behavior of survey participants

Various personal characteristics could have determined to 
what extent the specific features of the survey might have 
affected participants’ response behavior. For instance, the 
degree of intrinsic cognitive load essentially depends on 
whether participants were already familiar with the topics of 
automated driving or AI in general, and whether they could 
have drawn on theoretical or even practical experiences. If 

this has been the case, participants more likely have per-
ceived the survey as less complex and with less uncertainty 
due to their existing knowledge than participants who were 
entirely new to the topic. This is also evident from some 
feedback reports, in which participants with little or no prior 
knowledge described their difficulties while completing the 
questionnaire.

“Despite a short introduction to the topic, I think it is 
too complicated for non-experts. A simplification [...] 
might be necessary.”

“The different perspectives are very technical, more 
practical explanation [would be helpful] for people 
who really have no idea at all (like me)”

Accordingly, we assume that the more experience and 
knowledge someone had about AI and automated driving in 
general, as well as about scenarios like those presented in 
our survey more specifically, the easier it was to cope with 
the decision problem of evaluating the severity of confu-
sions. Participants with relevant experience and prior knowl-
edge likely required less cognitive resources to understand 
the task and become familiar with the scenarios, allowing 
them to devote more cognitive resources to the actual deci-
sion making process. This would also imply that there might 
have been some kind of training effect over the course of 
evaluating the scenarios while completing our survey. This 
assumption stands in line with some of the participants’ 
feedback responses.

“One does not understand some questions/situations 
until one answers the same question several times.”

“Only in the course of the survey did I get a sense 
of what I would rate stronger or weaker, because I 
couldn’t think much about the consequences before-
hand.”

Furthermore, the perceived ease of use of the web-based 
survey with its technical features probably differed between 
participants depending on their digital literacy. To be more 
specific, we expect participants with pronounced digital 
literacy to have been less distracted and overwhelmed by 
the technical features of the survey than participants with 
low digital literacy. Relying on the Technology Acceptance 
Model, perceived ease of use is one of the two key factors 
(besides perceived usefulness), which shapes an individual’s 
attitude towards a technology and therefore serves as a pre-
dictor for its adoption [41]. Accordingly, perceived ease of 
use, depending on the degree of digital literacy, could have 
determined the participants’ attitude towards our survey 
and consequently their level of engagement. The extent to 
which the subjects were engaged in their participation in 
our study certainly also depended on their general interest 
in topics such as AI and automated driving. In terms of a 
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positive selection, it should be taken into account that the 
participants who participated voluntarily in our study may 
have had a general interest in the topic. In turn, interest in 
and attitudes toward the special topics of AI and automated 
driving vary with other factors. For example, [42] pointed 
out, people’s interests for and attitudes toward self-driving 
cars significantly differ between ages. In their study, they 
found that older people have, for example, less interest and 
less confidence in automated driving than young people. 
Furthermore, gender could have had an influence on both, 
the attitude towards the tech-centric topic and interface of 
our survey as well as on the participants’ engagement and 
response behavior. For example, women, compared to men, 
tend to have higher computer anxiety and lower computer 
self-efficacy [41]

The list of factors that may have influenced participants in 
completing the questionnaire is long and cannot be discussed 
exhaustively in this paper. However, it should have become 
clear that both the specific nature of our survey and personal 
characteristics not analyzed in our study may have signifi-
cantly influenced the participants’ judgments of the severity 
of confusions between objects of different classes. Thus, the 
results of our study should be interpreted in light of these 
limitations. Nevertheless, our study provides significant 
insights for the integration of human ethical judgments in 
the development of AI technology for automated driving and 
offers several starting points for further research in this field.

6  The confusion cost matrix from an ethical 
point of view

In this Section we assess the confusion cost matrix from an 
ethical point of view. There are of course many different 
ethical concerns one may investigate, not all of which can 
be considered in this paper. The focus will be on an ethical 
analysis of the choice of the confusion cost matrix specifi-
cally. Mittelstaedt et al. map in [43] discuss the debate in the 
ethics of AI by identifying six ethical concerns. Especially 
some epistemic concerns they point to regarding the quality 
of data will not be further investigated, as we are limited by 
the predefined classes of the Cityscapes dataset, cf. Fig. 4. 
This limits the possibility to address ethical issues regard-
ing, e.g. animals or certain vulnerable groups (which are 
missing in the dataset). A more complete ethical analysis 
would need to consider these issues as well (see for instance 
[44] for how such a systematic approach would work in the 
digital health context).

The Eq. 2 in Sect. 2 provides the tradeoff space within 
which the Bayes decision rule amounts to a specific choice 
with moral significance. Its choice reflects the wish to maxi-
mize accuracy in the prediction process, cf. Eq. 5. A choice 
which prima facie seems to stand in conflict with our moral 

intuition, which, e.g. would not set the cost of confusion 
between a human and a traffic light to be symmetric, as it is 
the case in the Bayes decision rule according to Eq. 4. But 
if the cost of confusion should be distinct from the choice 
in the Bayes decision rule, what should it be? What would 
justify a decision rule that would decrease predictive accu-
racy? Any specific choice amounts to a decision about pos-
sible accidents happening or not happening. A feature that 
it shares with the infamous trolley problem [45].

We now briefly consider the role of normative theories of 
ethics and criticisms set forth against the trolley problem and 
whether they similarly apply to the the choice of a confu-
sion cost matrix. This is followed by an application of ethi-
cal guidelines to the definition of a confusion cost matrix. 
Finally, we consider the role surveys may play within an 
ethical analysis of the confusion cost matrix.

6.1  Normative ethics and the trolley problem

Note that the tradeoff space set up by the confusion cost 
matrix in Eq. 2 is where a decision has to be made and where 
a conflict arises between a symmetric confusion cost matrix 
with our moral intuition. Normative theories of ethics pro-
vide various frameworks within which these choices can 
be ethically assessed. There are inter alia ethical theories 
relying on virtues, there are rule-based or deontological 
accounts and also normative theories that determine the 
ethically “right” choice by relying on the consequences 
only [2–4]. However, since there is no agreement among 
ethicists about the “right” normative approach (see [46, p. 
676]) the value of these accounts in individual cases remains 
contested.

The ethical analysis of the confusion cost matrix relies 
on two relevant assessment stages, which may or may not 
impact the moral deliberation. First, the choice of the con-
fusion cost matrix itself, which, as indicated above, may 
amount to a morally significant choice with probabilistic 
consequences (stage 1 assessment). And second, the analysis 
of what any individual choice of the confusion cost matrix 
would actually amount to in concrete cases in terms of pos-
sible harms in non-probabilistic terms (stage 2 assessment). 
One difficulty may arise due to, e.g. possible assessments 
of stage 1 choices on the basis of, e.g. an overall reduction 
of harm of individuals, which then may be in conflict with 
individual stage 2 assessments, which may be concerned 
with the offsetting of victims—an ethically problematic 
procedure. The assessment of stage 2 is crucial for a con-
sequentialist analysis of stage 1, while for other non-con-
sequentialist normative theories the stages can be assessed 
independently. Note that the assessment of stage 2 can only 
play a role in an ex post re-evaluation of the stage 1 choice 
of the confusion cost matrix. It is the stage 2 assessment, 
however, which shares features with the trolley problem. 
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We therefore consider now briefly the trolley problem and 
discuss why issues set forth against its relevance, do not 
affect our current ethical analysis.

In brief, the traditional trolley case is concerned with a 
trolley that is heading directly towards five people that would 
die on impact. A lever would allow to switch the tracks of 
the trolley, such that it would head towards one person and 
kill that person instead. Should the lever be switched or not? 
The conceptualization of distinct conflicting moral intuitions 
regarding what the answer should be has been a much-dis-
cussed topic in moral philosophy [47–49]. However, these 
often abstract discussions are of more practical relevance 
in the context of autonomous vehicles, where these choices 
may need to be programmed in a certain way. This has led 
to an extensive debate about the right way to program the 
autonomous vehicle (see, e.g. [50–52]). However, recently 
the practical relevance of the trolley problem has been chal-
lenged in [46, 53, 54].

Following Keeling [55] we consider two objections to 
the relevance of instances of the trolley problem for auton-
omous vehicles and whether they would similarly apply 
to the determination of a confusion cost matrix. The first 
objection puts doubt on whether the autonomous vehicle 
actually encounters instances of the trolley problem and so 
objects to the relevance of moral deliberation for practical 
applications. Instances of the trolley problem like the one 
mentioned above amounts to extremely rare circumstances 
and therefore is of practical relevance or so the argument 
goes. Irrespective of whether this is the case for the trolley 
problem, this objection does not apply to the above outlined 
choice of the confusion cost matrix, as any specific choice 
of decision rule is a precondition for the application of the 
algorithm in the first place. As such the decision sets in at 
an earlier stage in the process of development. Nevertheless, 
there is a possible analogous objection. Namely, whether the 
once reasonably restricted choices for the costs of confusions 
in effect amount to statistically significant differences in the 
outcomes.

To assess this point we can now refer to the results of 
the survey in Sect. 4 and the results of the consequential-
ist analysis in Sect. 4.4. The survey points to differences in 
the choice of the cost of confusion between gender (male, 
female) and perspective (passenger, external). Nevertheless, 
the corresponding segmentation masks only display mar-
ginal differences. So even though there are differences in 
opinions regarding the decision rules, these do not, at least 
prima facie, significantly change what the AI can “see”. 
However, this prima facie irrelevance of the survey-based 
confusion matrix does not remain irrelevant once one con-
siders the full consequentialist assessment of these decision 
rules. Here it becomes apparent that the survey-based deci-
sion rules do, unsurprisingly, a better job in recognizing 

humans compared to the Bayes decision rule. So an anal-
ysis of possible variations of the decision rule do lead to 
significant differences of relevance for moral deliberation. 
Note that even if there would not have been a difference, the 
irrelevance objection would not apply, as for the determina-
tion of the decision rule, the irrelevance claim is a result 
of the assessment and not something that can be applied 
beforehand.

The second objection to instances of the trolley problem 
is the moral difference argument according to which the 
moral deliberation regarding the choice between pushing 
the lever or not, differs in a morally significant way from the 
deliberation in real world cases. In real world cases there are 
additional circumstances that would impact the moral delib-
eration of the tradeoff space. For instance the manufacturers 
may have certain obligations (e.g. protecting the safety of 
the passengers) or usually the outcomes are not known a 
priori, but may only be associated with probabilities. As has 
been argued in [46, 54], reasoning under uncertainty differs 
significantly from reasoning about known facts. This is a 
significant objection to instances of the trolley problem that 
similarly impacts the deliberation on the possible choices in 
our tradeoff space.

One may abstractly morally deliberate on certain choices 
of the confusion cost matrix, but these would be significantly 
impacted by additional information about the possible out-
comes that would be associated with these choices. While 
we did consider the consequences of specific choices of the 
confusion cost matrix in Sect. 4.4, thereby mitigating this 
objection to some extent, it remains a possibly categorical 
objection to the significance of survey results, where limi-
tations to the human capability to reason with probabilities 
and uncertainties restrict the possible value of these results. 
This is nicely illustrated by the somewhat surprising result 
of the consequentialist analysis that assigning generically 
high costs in the survey has a mitigating effect in valuing 
human lives. A consequence that probably was not foreseen 
by the survey participants aiming at a more conservative 
driving attitude.

The moral difference argument, therefore, points to the 
possibly problematic nature of the already discussed differ-
ence between the stage 1 and 2 assessments. However, the 
consequentialist analysis in Sect. 4.4 provides a tool that 
does address this problem head-on by making transparent 
the possible moral differences in the choices in the survey 
compared to an assessment of their corresponding conse-
quences. A lesson one may learn from this, is that for more 
reliable survey results, i.e. survey results which more com-
pletely capture the individuals’ choices, one may need to 
complement the determination of the cost confusion matrix 
with the respective birds-eye view pictures of the corre-
sponding consequences.
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6.2  Ethics guidelines of the ethics commission 
on automated and connected driving

In 2016 an ethics commission on automated and connected 
driving was appointed by the German federal minister of 
transport and digital infrastructure to develop ethical guide-
lines for automated and connected driving. In June 2017 
they published a report with 20 “ethical rules for automated 
and connected vehicular traffic” [9]. Since then many more 
guidelines have appeared, significantly in the European con-
text the recommendations of the “Ethics of connected and 
automated vehicles” report by an independent expert group 
implemented by the European commission (EC) [10]. We 
now consider the relevant rules and what they imply for the 
choice of the confusion cost matrix and the inclusion of a 
survey-based approach.

Ethical guidelines provide recommendations that are 
often intentionally stated at an abstract level to ensure gen-
erality, while at the same time need to be concrete enough 
to lead to actionable advice. This presents a tension that is 
not always easy to implement. For instance, rule 5 of the 
German report states that the “[a]utomated and connected 
technology should prevent accidents wherever this is prac-
tically possible”, and the design and programming of the 
vehicles “be such that they drive in a defensive and anticipa-
tory manner, posing as little risk as possible to vulnerable 
road users”. One difficulty in implementing this rule is the 
ambiguousness regarding what may be considered “practi-
cally possible” or what “as little risk as possible” mean. 
Both terms do not recognize the tradeoff situation present 
in these situations. The term “as little risk as possible” may 
suggest that it is a problem of minimization, where in fact it 
is an optimization problem, where various values and their 
respective moral considerations need to be balanced.

Being aware of this predicament, the report of the EC 
expert group recognizes, after listing the guiding ethical 
principles, that “[t]he above principles cannot be applied 
with a mechanical top-down procedure. They need to be 
specified, discussed and redefined in-context.”. They fur-
ther note that this “is why the design and development of 
CAV (connected and automated vehicle) systems should 
be supportive of and resulting from inclusive deliberation 
processes involving relevant stakeholders and the wider pub-
lic.”. That is, the concretization and implementation of any 
individual recommendation should not be the decision of 
individual scientists but include the “wider public” (as it is 
aimed with the survey-based approach in Sect. 3 and Sect. 4) 
and other stakeholders (see industry perspective in Sect. 7) 
as well as being “supportive of” the inclusive deliberation 
process (which we implement by considering the limitations 
and capabilities of the survey-based approach in Sect. 5).

The starting point of our analysis is in line with recom-
mendation 14 of the EC expert group, which requires a 

reduction of opacity in algorithmic decisions, a recommen-
dation necessitated by the fact that “algorithm-based CAV 
systems [...] may operate as “black-boxes” that do not allow 
cognitive access to how they have arrived at a particular 
output, or what input factors or a combination of input fac-
tors have contributed to the decision-making process or out-
come” [10, p. 49]. By recognizing the implicit tradeoff space 
within which the Bayes decision rule is making a morally 
significant choice one opens up the “black-box” to scrutiny. 
This has led us to the two assessment stages, which in turn 
now need to be confronted with what the other ethical rules 
and recommendations imply for them.

So let us now turn to the relevant rules and recommenda-
tions of the two guidelines regarding the assessment of the 
two stages. Rule 7 of the German report states that “within 
the constraints of what is technologically feasible, the sys-
tems must be programmed to accept damage to animals or 
property in a conflict if this means that personal injury can 
be prevented”. This statement addresses the stage 2 decision 
regarding the offsetting of various scenarios. This may be 
translatable, and therefore technologically feasible by set-
ting strong asymmetric cost functions, valuing the human 
category significantly higher than other entities. For that 
one needs to consider the relation between choices of the 
confusion cost matrix and their consequences in specific 
scenarios. Something already considered in Sect. 4.4. This, 
however, remains in conflict with the general usability of the 
autonomous vehicle (AV), cf. Sect. 2.2, and thus needs to be 
put in balance with a justification for the practical usability 
of the AV. An impracticable AV would not be introduced 
and therefore could not provide “promises to produce at 
least a diminution in harm compared with human driving, 
in other words a positive balance of risks” (rule 2). This is 
recognized as a necessary part of the justification of AVs 
in general.

In Rule 9 the ethics commission formulates a clear pro-
hibition “to offset victims against one another”. They pro-
vide two reasons for that. First, there is a simple practical 
issue mentioned in rule 8: “a decision between one human 
life and another, depend on the actual specific situation, 
incorporating “unpredictable” behavior by parties affected. 
They can thus not be clearly standardized, nor can they be 
programmed such that they are ethically unquestionable”. 
This practical reason is complemented with an underlying 
Kantian argument speaking against a pre-programmed stage 
2 decision. From a Kantian perspective an individual enjoys 
the right of moral self-determination, a right that the person 
would be robbed off in case of an externally determined 
decision, which “in extremis, [would] be able to take cor-
rect ethical decisions on the demise of the individual human 
being”. Rule 9 therefore amounts to a prohibition to base 
the confusion cost matrix on the basis of individual stage 
2 decisions.
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The ethics commission, however, continues in rule 9 by 
stating that a “[g]eneral programming to reduce the number 
of personal injuries may be justifiable”. The reason for that 
is that a general programming of this kind would be abstract 
in the sense that it does not take the life of any specific 
individual into consideration, as these are not known at this 
level, and further “the programming reduce[s] the risk to 
every single road user in equal measure” [9, p. 18]. As such 
a stage 1 decision that would only be statistically determined 
by individual stage 2 assessments would be in line with the 
recommendations of the ethics commission, as long as over-
all personal injuries would be reduced.

The report by the EC expert group takes a more gen-
eral approach regarding dilemma situations, by considering 
acceptable behavior in dilemma situations as something that 
can “organically emerge from the adherence to the princi-
ples of risk distribution stated in Recommendation 5”. Risk-
distribution in recommendation 5 allows for a differential 
behavior around a certain subset of road users in cases 
where these belong to certain vulnerable groups. A different 
behavior of the CAV regarding these vulnerable groups then 
amounts to an opportunity to redress inequalities present 
in current traffic collisions. That is, it would allow one to 
adequately account for the ethical issues involved with the 
consideration of, e.g. wheelchair users, cyclists and visually 
impaired users. This is of course only a viable option, if the 
algorithm has the capability to distinguish between these 
groups. In the case of the cost confusion matrix above, the 
corresponding categories do not distinguish between pos-
sible vulnerable groups except the distinction between the 
categories “human” and “dynamic”. At this stage the report 
again refers to the necessity to discuss the ethical and social 
acceptability “as a topic for inclusive deliberation” [10, p. 
31]. Subsuming different classes like bicycles and trailers 
into one category “dynamic” is thus a morally significant 
choice that would require further deliberation, although it 
would at the same time increase the complexity of the sur-
vey. This now leads us to the survey-based approach and its 
ethical ramifications.

6.3  Surveys, the moral machine experiment, 
and ethics

We will now briefly consider some roles the survey can play 
for the ethical analysis. One existing and influential survey-
based approach is the moral machine experiment [6], which 
is a thorough survey-based analysis of the trolley problem. 
By including more than 40 million decisions by over two 
million participants from over 200 countries it provides 
an extensive analysis about the moral intuition of people 
around the world regarding the trolley problem and its varia-
tions. It has since generated a lot of discussion and criticism, 
largely due to the framing of the trolley setups. Providing 

scenarios where one may have to choose between athletes 
vs. overweight persons or executives vs. homeless persons 
may lead to information about the corresponding people and 
their cultures but less on what the ethics of the AI should be, 
as the introduction of these distinctions in the classification 
process could already be in violation of basic human rights 
(see, e.g. [56–59] for this and other objections against the 
moral machine experiment).

Even in less problematic decision processes (e.g. deci-
sions in dilemma setups involving human vs. non-human 
entities, which would be in agreement with rule 7 of the 
German report) there are limitations to drawing conclusions 
from the moral intuition of individuals to what ought to be 
the case. This is true both in the case of more individual 
implementations of the moral intuition (possibly regionally 
restricted) as well as the identification of moral intuitions 
shared by the majority. The former may lead to a moral 
relativism while the latter may result in the corresponding 
systematic discrimination of vulnerable minority groups. 
Additionally, groups could intentionally impact negatively 
the results of a survey, not because of their moral commit-
ments but for nefarious reasons.2

Nevertheless, the regional and cultural differences 
observed by the moral machine experiment do point to a 
possible limitation of our survey result, as the participants of 
our survey are regionally restricted. It is at this point unclear 
whether the observed regional and cultural differences in the 
rather extreme scenarios of the moral machine experiment 
would similarly be visible in the more realistic setting of our 
scenarios. If these regional and cultural differences would 
significantly diverge from each other, this would point to a 
possible issue of acceptance (or lack thereof) by the people 
with respect to any one specific choice of the confusion cost 
matrix.

So what further role can surveys play in the ethical analy-
sis of tradeoff situations? To consider one of these roles let 
us briefly introduce another variant of the trolley problem, 
namely the tunnel problem [60, 61]: Imagine being the 
passenger of an autonomous vehicle approaching a tunnel, 
where all of a sudden a child mistakenly runs in front of the 
tunnel. There are two options, either one hits the child or 
one swerves to either direction colliding with the wall of 
the tunnel. So either the child dies or the passenger of the 
vehicle dies. What this problem points to is the very personal 
nature of this choice. There is again no clear ethical solu-
tion to this case and for either decision there might be good 
reasons to give.

This has led Millar [61] to suggest an analogy to the case 
of end-of-life decisions in the healthcare context. Medical 
professionals are required to seek informed consent from 

2 We would like to thank a referee for pointing us to this possibility.
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the patients and are not simply allowed to decide for the 
patient. Similarly, Millar argues, one should incorporate the 
individuality of the people involved in the decision-making 
process and it should not be the decision of the engineer 
or manufacturer of the autonomous vehicle. The EC expert 
group report does explicitly incorporate in recommenda-
tion 8 that one should “[e]nable user choice, seek informed 
consent options and develop related best practice industry 
standards”, where consent-based user agreements should 
“go beyond “take-it-or-leave-it” models of consent.” This 
together with the already mentioned necessity for inclusive 
deliberation processes involving the wider public introduces 
an important ethical role to survey-based approaches.

7  Participatory approach to ethics 
from the point of view of the automotive 
industry

One of the major reasons for assessing the quality of percep-
tion AI within industrial applications lies with the validation 
of safety goals. For safety-critical automotive software sys-
tems such as advanced driver assistance systems (ADAS), a 
positive risk balance is aimed at, i.e. the risk stemming from 
the usage of a system shall be less than the risk while not 
using the system. Furthermore, unreasonable risk is to be 
avoided. Here, risk is called unreasonable, if it is “unaccep-
table in a certain context according to valid societal moral 
concepts” [62]. Hence, driving notions behind arguing safety 
for ADAS compare the behavior of a system with the respec-
tive human behavior. Positive risk balance and avoidance of 
unreasonable risk are then argued by careful analysis, devel-
opment of rigor as well as quick update processes in the case 
of detected safety issues, and extensive testing.

Different standards aiming at particular aspects of 
safety for automotive software and AI therein are being 
developed, see, e.g. [63], ISO/AWI PAS 8800, and ISO/
AWI TS 5083 that are under development (at the time of 
writing this work). Next to standardization institutions, 
also legislation is putting regulatory frameworks into 
place. One such example is the EU AI act, which is cur-
rently in preparation. It involves important guidelines, 
e.g. with respect to the constitution of test sets and AI 
behavior. This involves bias-freeness, fairness as well as 
statistical representativity and diversity both in training 
and validation data. It also advises human oversight and 
assessment of the performance.

In this light, those outlined standards could represent 
some form of instructions that software engineers could 
follow when programming AI software. Therefore, on the 
one hand, standards need to take ethics guidelines devel-
oped by expert groups into consideration as described in 

Sect. 6.2. On the other hand, developing standards addi-
tionally also involves the need to understand the social 
expectation towards safe system behavior and its derived 
performance requirements on (AI-driven) perception 
systems. The approach examined within this work, cf. 
Sect. 3, presents a possible way to understand the required 
AI-based perception performance as it allows for under-
standing social expectations towards the semantic percep-
tion interpretation in a democratized way. Thereby, this 
approach may help to raise public acceptance as well as 
trust for AI-based systems for automated driving.

The findings of this work indicate a clear discrepancy 
in the results when comparing the participatory approach 
with the robotistic approach. Relevantly in terms of safety, 
the perception system resulting from the participatory 
approach clearly detects more safety critical pedestrians 
than that from the robtistic approach, while keeping the 
false positive rate at almost the same level. This points 
towards the presented approach being a possible candidate 
for the design process of systems for automated driving 
(possibly even in both stage 1 and stage 2 assessment, cf. 
Sect. 6.1).

Nonetheless, to be fully usable from an industrial point 
of view, some future work is still required: 

1.  Safety always relates to the overall system and not to 
particular sub-components like the perception. It also 
allows for inner-system resilience, e.g. unreasonably 
erroneous perception results can be mitigated by the 
trajectory planner. Hence, the desired perception behav-
ior needs to be assessed within the context of the overall 
system for deriving safety requirements.

2.  Clarity with respect to the given survey tasks has to 
be ensured. Otherwise the interpretations of the survey 
results might be misleading.

3.  Alternative evaluation schemes such as comparison to 
human perception, e.g. “What do humans see?” rather 
than “What do humans expect the robot to see?”, could 
also be taken into consideration to derive an improved 
understanding of the social expectation to perception 
performance.

8  Conclusion and outlook

8.1  Conclusions

In this work we explored a problem of practical ethics in 
the context of automated driving, namely the definition 
of the cost of confusion of different categories, such as 
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humans, dynamic objects, road, and others. As one solu-
tion strategy, we experimentally explored a participatory 
approach, i.e. we ask people to enter the values for the 
cost of confusions in an online survey. We developed sta-
tistical tests to prove that different groups of survey par-
ticipants, e.g. by gender (female vs. male) or perspective 
(passenger vs. pedestrian), differ significantly in their cost 
valuations. Moreover, we show that cost structures of all 
survey participants as unit differ even more significantly 
from the “robotistic” view, in which all confusions come 
with the same cost. We demonstrated that the different 
cost structures change the perception of an system of arti-
ficial intelligence (AI), which possibly results in individual 
human instances, within a safety critical distance relative 
to the self-driving car, to be poorly detected or even being 
entirely overlooked.

We also explored the limitations of the presented par-
ticipatory approach from three different disciplinary per-
spectives. In this way, we embed our approach in a broader 
discussion of practical ethics, investigate the psychological 
difficulties of taking such decisions on the cost structure, 
and include feedback from the automotive industry.

Whether participatory elements can become an element 
in an ethics by design approach to AI or whether it can be 
taken into consideration in regulatory frameworks for AI 
technology depends on the resolution of several issues that 
were described in this article.

Above all, further investigations are needed to better 
understand the potential role of participatory elements for 
the normative restriction of AI design approaches, let it be 
in the design step itself or in regulatory texts like technical 
norms. Here, a deeper understanding of the influence on 
the setup for participation, such as the survey design, is 
important. In particular, the difficulties for people to take 
a decision on the configuration of an AI system without 
the ability to be aware of all potential consequences needs 
further consideration.

8.2  Recommendations for future research

The survey conducted in the present study is the result of 
a weighing process between a design that is understand-
able for the participants on the one hand and still meets 
the necessary depth to sufficiently depict the confusion 
costs for the training of the AI model on the other hand. 
Maybe future studies can still further refine the question-
naire towards an increased usability without undermining 
the required level of data complexity. Special attention 
should then be paid on reducing participants’ extraneous 
cognitive load as far as possible. For instance, this could 
be achieved by avoiding unfamiliar technical features such 
as the sliders. Moreover, in future work visualizations 

should depict the respective perspective from which the 
participants are asked to assess scenarios. In the present 
study, participants assigned to the group of external traffic 
participants were not given different visualizations, i.e. 
they also view the visualizations from the perspective of 
car passengers and were only prompted by a textual cue to 
imagine being outside the car as a pedestrian. This means 
that in order to evaluate the situation from their assigned 
role, they need to perform an extra step of mental elabo-
ration, namely switching from the shown perspective to 
their assigned perspective. This is in contrast to to the 
participants in the group of car passengers, who viewed 
the visualizations from their assigned perspective.

The question whether an improved survey design 
changes the outcome of the survey merits an investiga-
tion. To fully capture the moral intuition of the involved 
participants in both the stages of decision—defining the 
cost structure and the resulting outcomes, respectively—
should be part of any future survey process, to ensure that 
the participants are aware of the consequences of indi-
vidual confusion cost determinations. Further, by making 
explicit the underlying confusion cost structure in decision 
rules, one introduces the opportunity not only to adapt and 
incorporate human ethical intuition but also go beyond it 
and improve it. Future research should consider the possi-
bility to include more differentiated classes in the analysis 
to allow, following recommendation 5 of the EC expert 
group, to rectify existing inequalities where vulnerable 
groups are involved.

Besides the analysis of deviations from the Bayes deci-
sion rule, one should also incorporate further values in the 
analysis. Any choice of the confusion cost matrix based on 
a participatory approach needs to be systematically balanced 
with other important values like usability (see Sect. 4.4 for 
a first step in that direction) and speed. Note that this is not 
a balancing of ethical decisions with non-ethical ones. As 
already mentioned, practical usability is a precondition for 
the introduction of self-driving cars in the first place, which 
in turn can lead to an overall reduction of harm and so is 
part and parcel of the moral calculus. The moral dimension 
of these often technical features is not always apparent from 
the get-go and interdisciplinary work may allow to reveal the 
moral aspects of these technical features. This kind of moral 
evaluation of technical features, the systematic comparison 
of them, and the incorporation of other value-laden features 
should be considered in future research.

In the present study, we used static traffic images to com-
pare human with robotic perceptions based on the differ-
ent confusion judgments. Building on this, future studies 
should investigate human confusion judgments under real-
life conditions in a simulation-based environment, such as, 
e.g. presented in [64]. The traffic scenarios to be evaluated 
are dynamic in nature, accordingly, a simulation-based 
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environment could help participants to put themselves in the 
complex situation, to estimate consequences of confusions 
and to make immediate decisions authentic. We therefore 
recommend complementing the insights drawn from the 
self-reported data of this study with behavioral data from a 
simulation-based environment in future research.

In general, the understanding and the shaping of rela-
tions between normative ethics, technical norms, the pub-
lic’s opinion, and design decisions for AI in safety relevant 
applications, such as automated driving, pose interesting 
challenges for the future. This equally applies to research, 
academic, and political debate.

8.3  Takeaway messages

Despite all the aforementioned conclusions, some pre-
liminary key takeaways seem possible at this early stage of 
investigation, which we now summarize: 

1. Technical standard settings for AI algorithms in some 
cases can be counter-intuitive to ethical judgments of 
humans.

2. Despite statistically significant differences between 
groups of humans with regard to their ethical judgment, 
this should not discourage from using human input in 
ethical by design approaches altogether. Humans can 
still be a rather homogeneous group in view of their 
preferences when compared to “robotistic” choices, 
which are standard settings in AI-based systems.

3. Involving humans in the design of automated decision 
making requires a careful consideration of the human-
machine interface. In this regard, the right balance 
between transparent and unfiltered AI outputs and a more 
human centered as well as easily understandable transla-
tion thereof is crucial for responsibly designing AI.

Appendix A: Modified F‑test to test 
for statistical differences between two 
confusion cost matrices

Let xl,k,j,i ∈ {0, 1, 2, 3, 4, 5, 6} denote a single entry from the 
survey data where the indices correspond to the following 
sets:

where nl,k ∈ {1, 2,… , n} denotes the number of provided 
answers from group l assessing confusions with target class 

l ∈ {1, 2} ∶ group index

k ∈ {1, 2,… , 6} ∶ true target class index

j ∈ {1, 2,… , 6} ∶ confused class index

i ∈ {1, 2,… , nl,k} ∶ provided answer index ,

k. Further, we denote the overall mean entry for the confu-
sion of target class k with class j by

and the mean entry within group l for the confusion of target 
class k with class j by

Hence, the mean sum of squared differences between groups 
is computed via

while the mean sum of squared differences within groups is 
computed via

with 60 being the degrees of freedom (the number of entries 
in the two 6 × 6 confusion cost matrices that are not fixed, 
i.e. the off main diagonal entries). Then, the F-statistic

is defined as the ratio of between groups variances to within 
groups variances. We apply a bootstrapping method in order 
to approximate a p value

with Frandom ∈ ℝ≥0 the random F-statistic (according to 
Eq. A6) after shuffling the group affiliations of the survey 
data and S ∈ ℕ the number of shuffling steps. The lower the 
p value the more likely the investigated groups’ means differ.

Appendix B: Statistics on survey participants

As described in Sect. 3, survey participants could volun-
tarily provide personal information. In this section, the 
provided meta data is summarized in Fig. 12.
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Fig. 12  Summary of the col-
lected attributes of the survey 
participants. In total 520 people 
participated in the survey. 
Note, however, that not every 
participant provided personal 
information
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