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Abstract
It is an established fact that the genuineness of facial micro-expression is an effectivemeans for estimating concealed emotions
(Li et al. in Micro-expression recognition under low-resolution cases. SciTePress, Science and Technology Publications,
Setúbal, 2019). Conventionally, analysis of these expressions has been performed using high resolution images which are
ideal cases. However, in a real-world scenario, capturing expressions with high resolution images may not always be possible
particularly using low-cost surveillance cameras. Faces captured using such cameras are often very tiny and of poor resolution.
Due to the loss of discriminative features these imagesmay not be ofmuch use particularly for identifying certainminute facial
details. To make these images useful, enhancing the textural information becomes essential and super-resolution algorithms
can be ideal to achieve this. In this work, we utilize algorithms based on deep learning and generative adversarial network for
transforming low-resolution micro-expression images into super-resolution images and examine their fitness particularly for
micro-expression recognition. The proposed approach is tested on simulated dataset obtained from two popular spontaneous
micro-expression datasets namely CASME II and SMIC-VIS; the experimental results demonstrate that the method achieved
favourable results with the best recognition performance recorded as 61.63%. The significance of this work is: first, it
thoroughly investigates reconstruction performance of several deep learning super-resolution algorithms on simulated low-
quality micro-expression images; second, it provides a comprehensive analysis of the results obtained employing these
reconstructed images to determine their contribution in addressing image quality issues specifically for micro-expression
recognition.
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1 Introduction

Several forms of expressions exist through which humans
generally interact and convey their emotions. Among verbal
and non-verbal expressions, evaluating non-verbal expres-
sions is significantly more challenging. Research on non-
verbal expressions involving face and facial entities is an
ongoing process for several decades. According to (Rinn
1984), facial expressions are a constant negotiation between
two neurological pathways, pyramidal and extrapyramidal
tract, which are sourced from two different section of brain.
Facial movements that are voluntary in nature are caused
by pyramidal tract whereas involuntary ones are a result
of extrapyramidal tract (Rinn 1984). In a high-stake situa-
tion when a person tries to control expression, both these
tracts get activated which creates a neural conflict leading
to a quick leakage of expressions, called micro-expressions
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(Rinn 1984). Such facial expressions are short-lived (1/25
to 1/2 s) and not easily picked by naked eyes (Liong et al.
2018). Due to extremely low muscle movement intensity,
the visibility of lines, folds, and wrinkles on the face during
muscle contraction phase become obscure but are effective in
reflecting one’s emotional state and intention. Established as
an emotion indicator, examining such expressions in humans
can play a crucial role for addressing various emotional
concerns. Some common application areas include mental
health, psychology, depression level estimation and decep-
tion detection (Ekman and Friesen 1969; Ekman 2009).
For instance, analysing micro-expressions of students in a
classroom can be beneficial for instructors to realize the
effectiveness of their teaching methods (Pei and Shan 2019).
Similarly, examining micro-expression of individuals in an
airport can help identify any security issues (Li et al. 2018).
Its application can also be extended to the medical field
where examining micro-expressions in patients can be used
for identifying pain or mental health issues (Lucey et al.
2011). Evidently, we notice that these expressions play a
vital role in our day-to-day life, thereby attracting researchers
fromdiverse fields including computer vision, fuelling devel-
opment of efficient automated micro-expression recognition
(MER) system.

The contemporary solutions that exist for solving MER
problems have considered images taken from datasets that
are produced in ideal conditions with good lighting, no inter-
ference of illumination variations, full frontal view with no
obstructions and good resolutions (∼ above 150 × 150) (Oh
et al. 2018; Takalkar et al. 2018). However, facial images
captured in real scenarios using commonly available surveil-
lance cameras may fail to produce good resolutions images
due to external factors like ill pose, meagre lighting condi-
tions, non-uniform illumination, etc.Moreover, face captured
using such cameras often appear alongside several other
objects hence are likely to take up only a limited space in
the entire image. Subsequently, such faces will be small
sized and of low resolution, i.e., 50 × 50 or below (Li et al.
2019). A significant surge in the use of surveillance cam-
eras, especially for monitoring public domains, has created
a new challenge for recognizing micro-expression collected
under shallow lighting conditions. For these cameras, more
emphasis is laid on capturing reliable recordings for longer
period which is generally achieved by making a significant
compromise on image/video resolution, thereby raising the
need for algorithms that can deal with such resolution con-
cerns (Yue et al. 2016). Super resolution (SR) is one such
medium capable of addressing resolution challenges that are
often engrained in images acquired using ordinary imaging
devices. Reconstructed images obtained using SR algorithms
are expected to have improved pixel density subsequently
offeringmore image details.Achieving good resolution using
superior hardware is not always cost effective and, therefore,

employing image processing algorithm seem more feasible
(Yue et al. 2016). The absence of discriminative facial details
in micro-expression (ME) along with faint muscle move-
ment intensity prevailing for extremely short span is already
a challenge for recognition techniques. Therefore, resolution
of suchME images can be a pivotal factor during recognition
process. Extracting informative attributes from such low-
resolution (LR) micro-expression images becomes effortful
due to further loss in the availability of salient information
which may have unfavourable influence on the performance
of overall MER systems. In general, exploring LR micro-
expression can be extremely beneficial particularly for crowd
scenarios and poorly illuminated areas.

In computer vision the need for good resolution images is
vital for algorithms to achieve reliable and superior perfor-
mance. Therefore, several experiments transforming images
from LR into SR using various deep learning (DL) and gen-
erative adversarial network (GAN) algorithms have already
been conducted with promising outcomes for macro expres-
sions (Li and Deng 2020). However, at present there exists
only one work that addresses LR facial micro-expression
recognition (Li et al. 2019). In their work, low-resolution
MEwas super resolved using a face hallucination method by
blending patch-based and pixel-based regularization but does
not explore deep learning methods. Building on this concept
in our previous work (Sharma et al. 2022) we introduced sev-
eral DL andGAN-based SR approach to dealwith LR images
containingmicro-expression and utilize them for recognition
process. Chosen SR techniques were tested on LR images
simulated from SMIC-HS database (Li et al. 2013).

Extending this concept, we further test these SR tech-
niques on LR images simulated from Chinese academy
of sciences micro-expression, CASMEII (Yan et al. 2014)
and spontaneous micro-expression database, SMIC-VIS (Li
et al. 2013) database in this work. Additionally, here we
also employ bicubic interpolation SR technique for a fair
and comprehensive comparison of these SR methods and
investigate their usefulness for micro-expression. Therefore,
the key focus of this research is to test various SR tech-
niques that commit performance boost and review their
performance for LR micro-expression images. Keeping the
previous pipeline intact, features are extracted using two spa-
tiotemporal methods, namely local binary pattern on three
orthogonal planes (LBP-TOP) (Zhao and Pietikainen 2007)
and local phase quantization on three orthogonal planes
(LPQ-TOP) (Ojansivu and Heikkilä 2008; Päivärinta et al.
2011). Corresponding sets of features obtained using these
methods are then individually fed to the support vector
machine (SVM) (Chang and Lin 2011) in various sets of
experiment.

Themain contributions of this work are: (1) extend the use
of deep learning and GAN super-resolution models and test
them on simulated LR micro-expression images; (2) present
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exhaustive performance analysis of variousSRalgorithms for
micro-expression image reconstruction; (3) present a com-
parative analysis of performance of the overall approach on
three simulated ME databases.

The remaining content of this paper is structured as fol-
lows. In Sect. 2 we present a brief review on advancements of
methods for micro-expression analysis. Section 3 provides a
detailed description of our proposed pipeline. Experiments
conducted and results obtained using the proposed approach
on all databases employed in our work are discussed in
Sect. 4, followed by concluding remarks presented in Sect. 5.

2 Related works

We have surveyed some of the techniques that have evolved
for MER in recent years and study (Oh et al. 2018; Takalkar
et al. 2018) shows two notable pre-processing methods that
lead to significant boost in recognition accuracy for micro-
expressions are videomagnification and interpolation (Wang
et al. 2017; Li et al. 2018; Peng et al. 2019; Sharma et al.
2021). In one of the early works using magnification pro-
cess, researchers have achieved recognition accuracy as high
as 75.3% for micro-expressions (Wang et al. 2017). Like-
wise, temporal interpolation model (TIM) is very effective
in achieving unified frame length by up-sampling videos
containing few frames (Li et al. 2018; Peng et al. 2019).
For micro-feature extraction the most widely used tech-
nique is LBP-TOP and was employed for baseline evaluation
of MER on CASME II dataset (Yan et al. 2014). Another
histogram-based method LPQ-TOP has also been explored
for micro-expression by (Zong et al. 2019; Sharma et al.
2019, 2021). Apart from these, two gradient-based meth-
ods popular for solving MER problems include histogram
of oriented gradient on three orthogonal planes (HOG-TOP)
and histogram of image gradient orientation on three orthog-
onal planes (HIGO-TOP). Both these methods have been
extensively examined by (Li et al. 2018) along with video
magnification. The HIGO method augmented with magnifi-
cation was able to achieve a remarkable recognition rate of
78.14% on CASME II dataset. Optical flow-based approach
named bi-weighted oriented optical flow (Bi-WOOF) was
proposed in (Liong et al. 2018) to extract optical features
of micro-expressions from a single apex frame, which is
believed to possess the most discriminative features in com-
parison to other frames. The method was tested on the
CASME II and SMIC datasets and produced results com-
parable with other methods with accuracy of 61% and 62%,
respectively. A region of interest-based main direction mean
optical flow (MDMO) method was proposed in (Liu et al.
2016) for MER. The method was immune from the influence

of translation, rotation, and illumination variance. Exper-
imental results demonstrated that this method performed
better than baseline LBP-TOP.

Moving beyond these techniques, attempts have also been
made to apply deep learning-based approaches into MER
framework. One of the earliest works that attempted to
utilize the deep learning (DL) concept for MER was by
(Patel et al. 2016). To apply transfer learning, a convolu-
tional neural network (CNN)modelwas trained on ImageNet
facial expression dataset, then transferred the appropriate
features for further processing. CNN was explored further
in (Takalkar and Xu 2017) along with data augmentation
to generate exhaustive data for training purposes. Authors
from (Gan et al. 2019) also utilized CNN with optical flow
method which employed an apex frame and an onset frame
to derive optical flow features which were then sent to a
CNN model. To deal with the low volume of data in ME
databases, (Liong et al. 2020) employed GAN to generate
fake micro-expression images. The results obtained implied
that GAN technique employed in their framework was able
to realize optical flow changes on both vertical and horizontal
directions. Themethodwas able to obtain recognition perfor-
mance comparable with existing state-of-the-art techniques.
These works clearly suggest utilization of DL approaches for
micro-expression-based experiments, with plenty of scope
for further exploration.

Studies indicate micro-expression analysis have achieved
immense success in recent years (Oh et al. 2018; Takalkar
et al. 2018). However, they have attempted to recognize
micro-expressions from datasets containing images with
good resolution, approximately above 100 × 100. There-
fore, they fail to take a real-world scenario into account
where, poor lighting conditions can severely affect image
resolutions and quality. The very first work that studied the
effect of resolution for micro-expression was by Merghani
et al. (2018). The original images taken from CASMEII
database were downscaled to 75%, 50% and 25%. Perfor-
mance of three feature extraction techniques were tested
on these downscaled images. At the lowest downscale level
3DHOG technique performed the best whereas at high res-
olution (HR), the LBP-TOP method seemed to perform
much better. At half the resolution histogram of optical flow
orientation (HOOF) method gave the best performance in
comparison to other two techniques. The work successfully
realized the effects of resolution for micro-expression but did
not consider the influence of image quality for such expres-
sions. To have more relevance with real-life applications,
(Li et al. 2019) proposed using deteriorated ME images that
was both blurred and down sampled. Three levels for LR
were considered, i.e., 16 × 16, 32 × 32 and 64 × 64. These
LRmicro-expression images were then super-resolved using
patch-based and pixel-based face hallucination techniques
and was the first work to perform MER using deteriorated
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image quality. The LR micro-expression recognition was
performed for three spontaneousmicro-expression databases
SMIC (HS and subHS) and CASME II. Fast LBP-TOP was
used for extracting the features and SVM was employed for
classifying them. The results indicated that employing sig-
nificantly LR images at 16 × 16 level makes it extremely
difficult to achieve decent recognition results. Their approach
worked comparatively better on SMIC-subHS with less mis-
classification reported than other two databases. Employing
SMIC-HS database images at 16 × 16, a drastic improve-
ment on the recognition results was reported particularly for
positive label. In contrast, substantially higher misclassifica-
tion results were reported for CASMEII database. Another
observation made for this database was that most of its data
were misclassified into “others” category. When recogni-
tion accuracy obtained for SR images were compared with
their corresponding LR images a significant improvement
was noticed for all the three databases at all chosen resolu-
tion. By analysing the overall reconstruction performance,
observed through structural similarity index (SSIM), it was
clear that the method produced best reconstruction results
for SMIC-HS database followed by CASMEII and SMIC-
subHS at 64 × 64 level. Same trend was observed for other
two levels also. However, observing the peak signal to noise
ratio (PSNR) suggested that reconstruction performance on
SMIC-subHS was better than on CASMEII database at both
64 × 64 and 32 × 32 level. Though reconstruction values
obtained for SMIC-subHS database was slightly less com-
pared to other databases, yet it successfully produced best
recognition results recorded at 74.65%which is much higher
than that obtained for SMIC-HS and CASMEII database at
52.44% and 48.18%, respectively. Lower volume of data
samples, slightly balanced along with fewer class categories
in SMIC-subHSmight haveworked in its favour thereby pro-
ducing better recognition results in comparison.

3 The overall proposed pipeline

To build a system capable of recognizing micro-expressions
captured under low or poor lighting conditions we have
embedded DL and GAN-based image SRmodule along with
other components as depicted in Fig. 1. The entire pipeline
can be divided into various blocks namely, image degrada-
tion, micro-expression reconstruction, micro-facial feature
extraction and feature classification. An overview of each of
these modules are presented in this section.

3.1 Image degradation

The principal factor that determines the quality of any image
is spatial resolution and is represented by the total pixel count
per unit area in a given image. Our pipeline is designed

to address quality issues in micro-expression images but at
present there is an absence of LRmicro-expression database.
Therefore, by applying degradation on existing databases,
i.e., CASMEII and SMIC-VIS we simulate the required LR
databases. To achieve this, we introduce noise and reduce
image size by applying downscaling and Gaussian blurring
on the HR images contained in these databases. The degra-
dation applied is expressed as (Li et al. 2019):

X � DBY + x . (1)

Here, Y and X represent HR input image and its cor-
responding LR image. Blurring is denoted by B, while D
denotes down sampling and x is noise from external factors.
By applying this model, the images obtained in the simulated
database are of reduced quality. This reduction in image qual-
ity affects the discriminative attributes of micro-expression
due to loss of image details. Figure 2a, c, e represent HR
images taken from CASME II, SMIC-HS and SMIC-VIS
databases, respectively. Corresponding LR images obtained
by applying degradation on these HR images are depicted in
Fig. 2b, d, f, respectively. Subtle expressions illustrated in
Fig. 2a, c, e are more obvious compared with the expres-
sions on the degraded images presented in Fig. 2b, d, f.
Evidently, we can notice loss of image details in the low-
quality images generated by the degradation model. This
degradation is applied to all the image sequences for CASME
II, and SMIC-VIS to generate a new set of databases with LR
micro-expression images. These low-quality images are then
suitable for use with SR algorithms.

3.2 Micro-expression image reconstruction

Deep learning and GAN-based approaches have been
selected specifically due to their proven efficiency in deliver-
ing high end results for super-resolution tasks (Zhang et al.
2018;Wang et al. 2019; Rakotonirina and Rasoanaivo 2020).
Taking inspiration from these works, we explored five dif-
ferent DL or GAN-based SR algorithms in our previous
work (Sharma et al. 2022) to recovermicro-expression image
details lost due to poor image quality and reduced size.
Thesemethods have already demonstrated their effectiveness
for SMIC-HS database, here we are extending its appli-
cation and test for two other micro-expression databases.
The three GAN-based SR approach are: (i) enhanced super-
resolution generative adversarial network (ESRGAN) (Wang
et al. 2019), (ii) further improving enhanced super-resolution
generative adversarial network (nESRGAN+) (Rakotonirina
et al. 2020), (iii) artefact cancelling generative adversarial
network model (noise-cancel) (Ledig et al., 2017; Zhang
et al. 2018). Further, two DL-based peak signal to noise ratio
(PSNR) methods (Zhang et al. 2018) known as, psnr-large,
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Fig. 1 Pipeline to reconstruct micro-expression images from low-
quality data and its recognition process.EF extracted features,ESRGAN
enhanced super-resolution generative adversarial network, FC feature
classification,LBP-TOP local binary pattern on three orthogonal planes,

LPQ-TOP local phase quantization on three orthogonal planes, LR low
resolution,MFFE micro-facial feature extraction, nESRGAN + further
improving enhanced super-resolution generative adversarial network,
RDN residual dense network, SVM support vector machine

(a) (b) (c) (d) (e)      (f)

Fig. 2 Before and after applying degradation on CASME II (a, b), SMIC-HS (c, d) (Sharma et al. 2022) and SMIC-VIS (e, f) databases

and psnr-small are also used. In addition to these five tech-
niques,we have also performed super-resolution experiments
using bicubic interpolation (Russell 1995). The objective of
applying thesemethods is to recover essential facial attributes
when given a low-quality ME image input. We compare the
quality of super-resolved images generated by these methods
and provide useful inferences.

3.2.1 Super-resolution models based on peak signal
to noise ratio

A generic architecture for generating super-resolution
images is given in Fig. 3 with its components. To generate
upscaled images using PSNR approach we have employed
psnr-small and psnr-large models, differing in terms of train-
ing, similar to our previous work (Sharma et al. 2022). To

train the network for each of these models, random batches
of image patches are selected. Extending the previous work,
we use small images patches with lower PSNR values for
psnr-small model whereas larger image patches with big-
ger PSNR values were utilized for psnr-large model during
training. Both these models use residual dense network
(RDN) (Zhang et al. 2018) with architecture as depicted in
Fig. 4. Four components of this architecture include shal-
low feature extraction, residual dense blocks, dense feature
fusion followed by up-sampling network. The network uti-
lizes Residual Dense Block (RDB) and exploits a contiguous
memory (CM) mechanism as depicted in Fig. 5. Here, every
layer of present RDB receives the state of its immediate pre-
decessor RDB and uses hierarchical features to extract both
local as well as global features (Zhang et al. 2018). Several
RDB is used to build the RDN architecture as depicted in
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Fig. 3 Basic architecture of
super-resolution network (Wang
et al. 2019)

Fig. 4 Illustration of residual
dense network (RDN) (Zhang
et al. 2018)

Fig. 5 Illustration of residual dense block (RDB) (Zhang et al. 2018)

Fig. 4. EachRDBconsists of several convolutional layers and
every convolutional layer that exists within the RDB consists
of feature maps. Feature maps also exist for every output of
RDB as well as convolutions that reside out of RDB. Further
details of architecture for both RDN and RDB can be found
in (Zhang et al. 2018).

3.2.2 Generative adversarial network for image
super-resolution

The basic architecture of general adversarial network (GAN)
comprises of the generator, discriminator, and loss func-
tion which was initially developed by (Goodfellow et al.
2014). Broadening its application, it has been experimented
for image super-resolution too (Wang et al. 2019). The
basic architecture of GAN-based SR is depicted in Fig. 3
which consists of feed forward CNN generator network. The
noise-cancel, ESRGAN and nESRGAN+models utilize this
basic SR architecture with appropriate modifications. For

Fig. 6 Residual in residual dense block (RRDB) (Wang et al. 2019)

instance, in noise-cancel the basic block is built using RDB
(Fig. 5), whereas ESRGAN uses residual-in-residual dense
block (RRDB) (Fig. 6) and nESRGAN + uses residual-in-
residual dense residual block (RRDRB) (Fig. 7) with residual
learning.

The noise-cancel model utilizes GAN architecture where
the basic blocks use the same RDB design as given in Fig. 5,
within the RDN architecture illustrated in Fig. 4. Therefore,
the RDN and RDB architecture is same as that employed in
the PSNRmodel, but both are trained differently. For training
this noise-cancel model, distinct sets of training are under-
taken employing multiple sets of data. The approach utilizes
VGG feature loss as well as adversarial loss and attempts to
eliminate the noise.
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Fig. 7 nESREGAN + architecture employed for super-resolution
(Rakotonirina et al. 2020)

The next two SR method employed in our work based
on GAN is ESRGAN (Wang et al. 2019) and nESR-
GAN + (Rakotonirina and Rasoanaivo 2020). ESRGAN
utilizes residual-in-residual dense network (RRDN) archi-
tecture built using residual-in-residual blocks (RRDB) as
illustrated in Fig. 6. Here, several RRDBs are employed,
where each of these RRDBs are built using several RDB.
Further, each RDB consists of several convolutional layers
and every convolutional layer that exists within the RDB
consists of feature maps same as that discussed in Sect. 3.2.1
and utilizes residual scaling denoted by β. The nESRGAN
+ uses further denser network by employing dense blocks
with RRDRB arrangement, i.e., an extra layer of residual
learning is augmented compared to ESRGAN architecture.
These residuals are added at an interval of every two layers.
An overview of this further improved design is illustrated in
Fig. 7. Moreover, Gaussian noise is also injected after each
residual in this architecture. Details regarding architecture of
ESRGAN can be found in (Wang et al. 2019) and for nESR-
GAN + in (Rakotonirina and Rasoanaivo 2020).

3.2.3 Bicubic interpolation

The bicubic interpolationmethod is employed in this work to
generate super-resolution images. By applying a third order
polynomial function this method ensures that within four
corner points the required surface can be fitted. It utilizes
the value of intensity at these four points in addition to the
derivatives along three directions, i.e., diagonal, vertical and
horizontal. The interpolated area is represented using Eq. (2)

(Russell 1995):

fi (x , y) �
3∑

j�0

3∑

j�0

ai j x
i y j . (2)

Here, fi (x , y) denotes the interpolated area for the point
(x , y) and ai j denotes the coefficients. Sixteen coefficients
are computed in total among them four are computed from the
intensity values at four corners. From the diagonal derivates
four other coefficients are computed. Lastly, from the hori-
zontal and vertical directions utilizing their spatial derivative
information eight coefficients are computed. These sixteen
coefficients are also commonly known as neighbours.

3.3 Feature extraction and classification

Throughout the experiments performed in this work we have
used twodifferent feature extraction techniques namelyLBP-
TOP and LPQ-TOP at different instances. Successful use of
both these extraction techniques for micro-expression has
already been demonstrated by various research (Yan et al.
2014; Li et al. 2018; Sharma et al. 2019, 2021; Zong et al.
2019); hence we choose to employ these two techniques in
our experiments. TheLBP-TOPmethod extract features from
image sequences along three planes that are orthogonal in
nature commonly referred to as XY, XT and YT. It utilizes
information from a set of neighbouring pixels to compute
the desired binary pattern for each of these planes, then gen-
erates a histogram to represent the features. By including
XT and YT planes it helps in representing temporal vari-
ations of its subjects. On the other hand, LPQ-TOP uses
short term Fourier transform (STFT) to describe the texture
arrangements in an image (Ojansivu et al. 2008; Päivärinta
et al. 2011). Like previous extraction technique, this method
also takes the three orthogonal planes into consideration
and stacks them into a histogram. By incorporating the time
domain in both themethods the dynamic variationswithin the
image sequences are also captured, thus effectively picking
up minute changes wherever present. Both these methods
use histogram to describe the features extracted from the
image sequences which are ultimately reduced to a single
feature vector for each instance. These feature vectors are
further given to classification technique to train and test their
model, SVM is chosen in this work to achieve this. To keep
the extraction and classification procedure simple we have
chosen these respective methods. Using this classification
technique, for SMIC databases the samples are to be clas-
sified as positive, negative and surprise while for CASMEII
they are to be classified as happy, surprise, disgust, repression
and others.
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4 Experiments, results and analysis

The details of experiments performed along with parame-
ters used is presented in this section. Results obtained by
employing the proposed pipeline on CASMEII and SMIC-
VIS is presented alongwith the results for SMIC-HS fromour
earlier work (Sharma et al. 2022). A comprehensive perfor-
mance analysis of the reconstruction algorithms and overall
recognition pipeline on all three databases is discussed here.

4.1 Database preparation

An overview of three databases used in our work is presented
in Table 1. CASMEII database contains greater number of
samples as well as class distribution. However, data distri-
bution is not even, for instance expression classified with
“other” label is 99 whereas for “surprise” it is only 25. By
carefully observing the table we can see that both SMIC-HS
and SMIC-VIS database have more uniform distribution of
data than CASMEII, but SMIC-VIS contains comparatively
lesser data. From the specifications presented in this table we
can clearly see that facial resolution for all three databases
vary. Therefore, tomaintain uniformity across all datasets we
set all HR images to 128 × 128 following the work by (Li
et al. 2019).Wealso simulate newsets of databases consisting
of LR images using image degradation model described in
Sect. 3.1. These HR 128× 128 image sequences for all three
databases will be referred to as HR128 in our work. A down
sampling factor of two and four is applied on these HR128
images to obtain down scaled sets of image sequences at 64
× 64 and 32× 32 to be referred as LR64 and LR32. Instance
of LR images obtained at these two resolutions for three
databases is presented in Fig. 8. Super-resolution method is
then applied to these LR images to recover facial details and
obtain improved image sequences. Tomaintain uniform final
resolution and have fair comparisons, all resultant images are
set to a standard size of 128 × 128. SR resolution images
obtained from LR64 will be referred to as SR64, whereas
those obtained from LR32 will be referred to as SR32 in our
work.

4.2 Super-resolution experiments

As mentioned earlier, we have experimented using five dif-
ferent SR models to reconstruct super-resolved images. By
employing RDN architecture three sets of experiments were
performed following (Cardinale and Tran 2018), where two
approaches are based on PSNR and third is GAN based. In
first approach, the RDN network was trained on large image
patches with large PSNR value, to be addressed as psnr-
large. Each residual block in the architecture consisted of
six convolution layers. The network was built using a total
of 20 residual blocks, each with 64 output filters and another

64 output filters inside the RDB. This model was trained to
generate super-scaled images by applying scale factor two.
Likewise, in second PSNR-based approach, the RDN net-
work was built by training the models using smaller image
patches having smaller PSNRvalues, to be addressed as psnr-
small. The model was built using three convolution layers
with ten residual blocks, the number of filters used, and scale
factor was same as that of psnr-large approach. For both these
models, image sequences of 64 × 64 were fed as input and
the model returned reconstructed image upscaled by scale
factor two to a final size of 128 × 128.

In the third approach, GAN with RDN architecture con-
sisted of six convolution layer, twenty residual blocks, 64
RDB output filters, another 64 convolution output filters
inside the RDB and scale factor of two. The model was built
by training the network with both VGG feature loss as well
as adversarial loss and is referred to as noise-cancel. In this
model different datasets were employed to perform training
at different sessions. ESRGAN is the fourth approach tested
in our work built using ten RRDB, with three RDB in each of
these RRDB. Further each of these RDB is built using four
convolution layers and inside each RDB there are 32 con-
volution output filters. Additionally, the architecture is fitted
with 32 output filters for every RDB. With learning rate at
0.004,100 decay frequency and decay factor at 0.5 the train-
ing parameters were set. The network was optimized using
Adam optimizer and leaky version of rectified linear unit was
used as activation function. The model built was capable of
upscaling images and supported scale factors two and four.
The implementation of four models mentioned above was
adapted from (Cardinale and Tran 2018).

To train the fifth model, i.e., nESRGAN + , the loss func-
tion set at 0.005, decay factor at 0.01, learning rate set to 1×
10–4 was considered. The Adam optimizer with parameters
β1 and β2 set to 0.9 and 0.999, respectively, was also used.
The model built was trained to upscale images by a scale
factor set to 4. These parameter settings for this model have
been adapted from Rakotonirina and Rasoanaivo (2020).

To summarize, two sets ofLR64databases, each simulated
fromCASME II, andSMIC-VISwere used to perform the SR
experiments at scale factor two. For each simulated instance
of LR64 databases, all four SR algorithms (i.e., psnr-small,
psnr-large, noise-cancel and ESRGAN) were employed in
four different sets of experiments to obtain four correspond-
ing sets of super-resolved images.

Similarly, another two sets of LR32 databases simulated
from CASMEII and SMIC-VIS were used to perform the
SR experiments at scale factor 4. For this case ESRGAN and
nESRGAN+modelswere employed to obtain corresponding
SR images.

Images generated by each of these methods for both
databases are presented in Figs. 9 and 10 along with
results obtained on SMIC-HS database in our previous work
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Table 1 Spontaneous micro-expression dataset used

Dataset Subjects Data
count

Classes Class label and distribution Facial
resolution

Speed
(fps)

CASMEII 26 246 5 Happy—32, Surprise—25, Disgust—63, Repression—27,
Others—99

280 × 340 200

SMIC-VIS 8 71 3 Positive—28, Negative—23, Surprise—20 130 × 160 25

SMIC-HS 16 164 3 Positive—51, Negative—70, Surprise—43 190 × 300 100

Fig. 8 Low resolution image at
64 × 64 (left) and 32 × 32
(right) obtained using image
degradation model on HR128
image sequence of a CASMEII,
b SMIC-HS (Sharma et al.
2022), and c SMIC-VIS

(a) (b)       (c)

Fig. 9 Images reconstructed
using super-resolution algorithms
a psnr-small, b psnr-large,
c noise-cancel, d ESRGAN and
e bicubic interpolation with scale
factor two for CAMSEII (top
horizontal layer), SMIC-HS
(middle horizontal layer)
(Sharma et al. 2022), SMIC-VIS
(bottom horizontal layer)

(a)                 (b) (c)   (d)      (e)

(Sharma et al. 2022). From these we can observe that images
generated by SR algorithmwith scale factor set to two is visu-
allymuch clearer than those obtained at scale factor four. The
visual perception while assessing SR and HR image quality
through human eyes may not always seem consistent hence,
image quality needs to be assessed using quality metrics for
these reconstructed images.

4.3 Image quality assessment

Two widely used methods to assess SR image quality are
structural similarity index measure (SSIM) and peak signal
to noise ratio (PSNR) (Horé and Ziou 2010; Wang et al.

2019), so we choose these methods to assess quality of the
super-resolved images obtained in the experiment. Values
obtained for PSNR (measured in decibels, dB) and SSIM
reflect the quality and rate of distortion of the reconstructed
images compared with their corresponding HR128 images.
In simple terms they estimate structural correlation between
original and input image. SSIM is based on those structures
that are typically visible in an image. Themaximumvalue for
SSIM is one which means closer the SSIM values are to one
better is the reconstructed image quality. Higher the PSNR
value better is the quality of reconstructed images. PSNR can
be estimated by comparing the reconstructed image with an
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(a) (b)                           (c)

Fig. 10 Images reconstructed using super-resolution algorithms ESR-
GAN (a), nESRGAN + (b) and bicubic interpolation (c); with scale
factor set to 4 for CASMEII (top horizontal layer), SMIC-HS (middle
horizontal layer) (Sharma et al. 2022) and SMIC-VIS (bottom horizon-
tal layer)

ideal image as follows (Horé and Ziou, 2010).

PSNR � 10log10

(
max2

MSE

)
(3)

MSE � 1

mn

m−1∑

i�0

n−1∑

j�0

(
I (i , j) − I ′(i , j)

)2 (4)

In Eq. (3), max refers tomaximum possible pixel intensity
for a given input image andMSE refers tomean squared error.
In Eq. (4) the number of rows is given by m, the number of
columns is given by n,I is the HR original image and I ′ is
the degraded image, i is the row index and j is the column
index. SSIM is estimated using the following (Horé and Ziou
2010).

SSI M( f , g) � l( f , g)c( f , g)s( f , g) (5)

Here l( f , g) estimates mean luminance closeness
between two images f and g and is known as the luminance
comparison function. Similarly, c( f , g) estimates contrast
closeness between two images and is known as the contrast
comparison function. The correlation coefficient is estimated
using the structure comparison function s( f , g) between two
images, i.e., f and g. For SSIM, positive values can range
between 0 and 1, where 0 means no correlation between two

images and value one means high correlation between two
images. These two measures, i.e., PSNR and SSIM com-
puted for various SR algorithms for all three databases will
be discussed in next section.

4.4 Reconstruction result analysis

Here, we discuss the performance of all five SR algo-
rithms based on the numerical values obtained by computing
PSNR and SSIM metrics. Every set of super-resolved image
sequence obtained were then compared with their corre-
sponding HR images to obtain PSNR and SSIM values by
utilizing Eqs. (3), (4) and (5). The average PSNR and SSIM
values computed for all reconstructed SR instances at SR64
and SR32 for all three databases are listed in Tables 2 and 3.

Observing these imagemetrics, we can say that psnr-small
model was able to generate higher quality super-resolved
images across all databases at 64 × 64 image resolu-
tion. Specifically, the best reconstruction performance was
obtained for SMIC-HS database with this model achieving
PSNR value at 37.41 dB and SSIM value at 0.9827. On CAS-
MEII database the performance of psnr-largemodel was very
close to psnr-smallmodelwith PSNR/SSIMvalues behind by
a very small value of 0.11 dB/0.001, respectively. For SMIC-
HS database the images produced by psnr-small and ESR-
GAN model were structurally very close with a difference
of 0.0001 but, psnr-small method produced 1.62 dB higher
PSNR value than ESRGAN. However, observing PSNR
value alone we can see that reconstruction performance of
psnr-small and psnr-large on SMIC-HS database is almost
equal with a difference of only 0.83 dB. Similar observation
regarding PSNR metric can be made between psnr-large and
ESRGAN model where later is lacking by a nominal value,
i.e., 0.79 dB. Examining PSNR/SSIM values, a competitive
performance between psnr-small, psnr-large and ESRGAN
models can be observed on SMIC-VIS database, where psnr-
small model is ahead by 0.55 dB/0.0029 and 1.31/0.0034,
respectively. When observing SSIM value alone for this
database, structural performance of psnr-large and ESRGAN
is almost same with later lacking by a value as small as
0.0005.

At 64 × 64 for bicubic and other reconstruction meth-
ods, inspecting PSNR values we notice that its performance
is exactly same as that of psnr-small method on CASMEII.
All other reconstruction methods have produced image with
lesser quality than bicubic method on this database. On
SMIC-HS and SMIC-VIS database the reconstruction per-
formance of both psnr-small and psnr-large are superior
to bicubic method. Though reconstruction performance of
ESRGAN is below bicubic but is still closer in compar-
ison to noise-cancel method. Examining SSIM values in
Table 3, we notice that reconstruction performance of all
the methods is inferior to bicubic method on CASMEII.
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Table 2 PSNR (dB)
SR method CASME II SMIC-HS (Sharma et al 2022) SMIC-VIS Resolution

psnr-small 34.7 37.41 36.67 64 × 64

psnr-large 34.59 36.58 36.12 64 × 64

Noise-cancel 31.06 30.38 31.15 64 × 64

ESRGAN 33.71 35.79 35.36 64 × 64

Bicubic 34.7 36.45 35.57 64 × 64

ESRGAN 27.65 29.5 28.95 32 × 32

nESRGAN + 14.83 23.08 15.73 32 × 32

Bicubic 30.83 32.3 31.64 32 × 32

Bold indicate better reconstruction values obtained in comparison to bicubic method

Table 3 SSIM
Resolution SR method CASME II SMIC-HS (Sharma et al 2022) SMIC-VIS

64 × 64 psnr-small 0.954 0.9827 0.9701

64 × 64 psnr-large 0.953 0.9789 0.9672

64 × 64 Noise-cancel 0.9261 0.9412 0.925

64 × 64 ESRGAN 0.9503 0.9826 0.9667

64 × 64 Bicubic 0.9555 0.9771 0.9616

32 × 32 ESRGAN 0.7811 0.8502 0.8189

32 × 32 nESRGAN + 0.6559 0.7601 0.7527

32 × 32 Bicubic 0.9032 0.9365 0.9111

Bold indicate better reconstruction values obtained in comparison to bicubic method

Best value obtained on this database is 0.954, which is still
0.001 below bicubic method. On SMIC-HS and SMIC-VIS
database the reconstruction performance of three methods,
i.e., psnr-small, psnr-large andESRGANare superior to bicu-
bicmethod, thus thesemethods seem to performwell on both
these databases. Clearly performance of the reconstruction
methods on CASMEII is not satisfactory in comparison to
other two databases.

Moving onto values obtained for 32 × 32 images we
can clearly see that ESRGAN is able to outperform nESR-
GAN + model across all databases. The best reconstruction
performance given by ESRGAN at this resolution is for
SMIC-HS with 29.5 dB/0.8502 metric values. The recon-
struction performance of nESRGAN + is far behind with its
best performance metrics at 23.08 dB/0.7601 for the same
database.

In overall, we can say that images reconstructed using
psnr-small, psnr-large and ESRGANmodel was almost sim-
ilar where psnr-small model was ahead by a narrow margin.
Also, all these threemodels produced comparatively superior
results compared to noise-cancel model for 64 × 64 images.
Similarly, at 32 × 32 ESRGAN produced far better results
than nESRGAN + model but overall performance was still
lower than those obtained at higher resolution of 64 × 64.
While comparing results obtained using ESRGAN at both 64

× 64 and 32× 32 levels,we can observe that themodel is able
to produce comparatively better result by employing higher
resolution images. For instance, highest performance given
by ESRGAN is 35.79 dB/0.9826 on SMIC-HS database for
64 × 64 images, however, using the same model a dip in
performance is noticed when lower resolution images (i.e.,
32 × 32) are employed with metrics value 29.5 dB/0.8502.
This clearly strengthens the common belief that the reso-
lution employed at input directly affects the reconstruction
performance of SR algorithms and same can be observed for
micro-expression images as well. Comparing reconstruction
performance using PSNR/SSIM values of all these methods
with bicubic we can notice that at this level their performance
is less superior than bicubic technique. Thus, the bicubic
method seems to perform far too well on all the databases at
this level.

4.5 Recognition result analysis
before super-resolution

Analysis made in this section is based on the recogni-
tion performance obtained before introducing SR algorithms
into the pipeline as depicted in Table 4. On the standard
HR128 images of SMIC-VIS database employing LPQ-TOP
approach, 8% higher recognition accuracy was achieved
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Table 4 Accuracy obtained with various instances of super-resolution algorithms

Resolution SR method
(our
approach)

Accuracy %

CASME II SMIC-HS SMIC-VIS

LBP-
TOP
(ours)

LPQ-
TOP
(ours)

Fast
LBP-TOP
(Li et al.
2019)*

LBP-TOP
(ours)
(Sharma
et al 2022)

LPQ-TOP
(ours)
(Sharma
et al, 2022)

Fast
LBP-TOP
(Li et al.
2019)*

LBP-
TOP
(ours)

LPQ-TOP
(ours)

HR128 – 48.16 47.17 48.18 50.06 52.43 50.00 53.26 61.26

SR64 psnr-small 47.74 46.37 48.18 51.45 52.43 52.44 59.62 61.63

psnr-large 47.34 46.01 50.67 52.00 56.67 61.40

Noise-
cancel

46.50 43.54 49.39 51.82 55.57 60.33

ESRGAN 47.93 45.96 51.43 52.43 56.60 61.01

Bicubic 47.74 45.56 49.87 52.43 55.23 61.40

SR32 ESRGAN 43.05 41.93 44.53 49.82 50.60 51.83 51.69 59.15

nESRGAN
+

40.04 34.67 49.24 50.00 49.40 56.73

Bicubic 44.35 42.75 49.35 51.02 52.11 60.03

LR64 – 43.05 43.14 44.94 49.2 49.39 50.00 49.40 57.26

LR32 – 43.00 41.05 44.13 44.25 48.17 46.95 45.54 41.18

Bold indicates best values obtained in our work
*Super-resolution method used is patch-based and pixel-based regularization which is different from our deep learning-based approach

compared to LBP-TOP method. Likewise, for LR64 images
the LPQ-TOP was higher by 7.86% whereas for LR32 the
LBP-TOP seemed to work well by 4.36%. Observing results
for CASMEII database we notice that for HR128 images
by employing LBP-TOP method recognition performance
was slightly better by 0.99% than LPQ-TOP. Meanwhile for
LR64 images recognition performance obtained using LBP-
TOP was leading by a small margin of 0.09% whereas for
LR32 the lead was by 1.95%. For SMIC-HS database with
HR128 images phase method was better by 2.37% than the
binary method. Similar trend was seen with LR64 at 0.19%
and 3.92% higher than binary method.

Comparing the recognition performance for all the three
databases we notice that by employing LPQ-TOP on SMIC-
VIS and SMIC-HS database produced the best recognition
accuracy for HR128 and LR64; but for CASMEII database
employing LBP-TOP method produced better recognition
performance. This recognition performance comparison at
various resolution levels employing both feature extraction
techniques on all three databases is graphically demonstrated
in Fig. 11. With a gradual decrease of resolution, dip in
recognition performance can be clearly noticed across all
databases. Thus, results obtained from this section shows
that resolution and quality of image can influence the overall
recognition process for micro-expression.
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Recognition performance 

Fig. 11 Recognition performance analysis on three databases at differ-
ent resolutions before introducing super-resolution

4.6 Recognition result analysis employing
super-resolution

In this section, we discuss the overall recognition perfor-
mance of the proposed pipeline after introducing various
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SR algorithms on all three databases, recorded in Table 4.
The discussion presented is in reference to the two databases
employed in this work along with their performance compar-
ison with SMIC-HS database.

4.6.1 Performance analysis on SMIC-VIS

Utilizing super-resolved images, the best recognition per-
formance recorded for the SMIC-VIS database is 61.63%.
This is an increase of 4.37% using the psnr-small method
reconstructed images with LPQ-TOP method at scale fac-
tor 2 compared to its corresponding LR64. The next best
recognitionwas obtained employingpsnr-largewith the same
extraction method resulting in an increase of 4.14% com-
pared with its corresponding LR64. This was followed by
ESRGAN with an increase of 3.75%. The lowest perfor-
mance was given by noise-cancel method with an increase
of 3.07%.

Employing the LBP-TOP method, the best recognition
performance was obtained at 59.62%. This is a boost of
10.22% obtained by employing psnr-small at scale factor 2
compared to its corresponding LR64. For the same extrac-
tion method when combined with the psnr-large method, the
reconstructed images produced a recognition boost of 7.27%
followed by the ESRGANmethodwith a boost of 7.2%.With
a boost of 6.17%, noise-cancel produced the lowest improve-
ment overall. Performance boost is obtained for all cases
here but is still lower compared with that obtained employ-
ing LPQ-TOP method.

Reconstructing images with a scale factor of 4 with the
ESRGAN method obtained a boost of 6.15% and 17.97%
with LBP-TOP and LPQ-TOP, respectively, whereas with
nESRGAN + the accuracy was increased by 3.86% and
15.55%, respectively.

Therefore, boost in recognition performance obtained
after employing SR algorithms at both scale factors is
undeniable for this database. This analysis of recognition
performance using the SMIC-VIS database employing vari-
ous SR and extraction methods is illustrated in Fig. 12.

4.6.2 Performance analysis on CASMEII

Using the CASMEII database, the best recognition per-
formance was obtained after introducing the SR model
was 47.93% using the ESRGAN super-resolution algorithm
along with the LBP-TOP extraction method for a scale factor
of 2. This reflects an obvious boost in recognition perfor-
mance of 4.88% comparedwith its corresponding LR64 after
employing SR. The next best performance at the same scale
factorwas givenwhen images reconstructed using psnr-small
were used with the LBP-TOPmethod, a boost of 4.69%. This
was followed by images reconstructed by psnr-large, with
4.29% boost in recognition performance. Once again, the
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Fig. 12 Recognition performance analysis on SMIC-VIS database after
introducing super-resolution

lowest performance at this scale factor was obtained using
the noise-cancel approach with a boost of 3.45%.

Employing the LPQ-TOP method for images recon-
structed using psnr-small produced the best recognition
performance of 46.37%, which is an increase of 3.23% over
its correspondingLR64 and yet it is still 1.37% lower than the
performanceobtainedusing theLBP-TOPmethod.Theboost
in recognition obtained employing this extraction method
with psnr-large is 2.83%, noise-cancel is 0.4% and ESR-
GANis 2.82%.Althoughperformanceboost is achieved in all
these cases compared with its corresponding LR64 images,
the accuracies are lower than those obtained employing
LBP-TOP approach. Therefore, for these cases recognition
obtained by using LBP-TOP seemed to perform better than
the phase method.

At scale factor four, images reconstructed with ESRGAN
method employed with LBP-TOP obtained performance
boost of 0.05% whereas with LPQ-TOP it was 0.88%.
Though a higher boost is achieved using LPQ-TOP method,
yet the overall recognition performance is still better with
LBP-TOP method for this case.

The lowest performance was obtained for nESRGAN
+ reconstructed images with recognition values recorded
below its corresponding LR32 images for both the extrac-
tion methods on this database. This analysis of performance
on CASMEII database employing various SR and extraction
methods is illustrated in Fig. 13.

4.6.3 Performance comparison across all databases

Observing the values presented in Table 4, we notice that
super-resolution images at a scale factor of 2,when employed
with LPQ-TOP, produced much better recognition per-
formance than the binary method using SMIC-VIS and
slightly better for SMIC-HS database. For instance, exam-
ining the best performance on all databases we see that
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Fig. 13 Recognition performance analysis on CASME II database after
introducing super-resolution

recognition is higher by 2.01% using SMIC-VIS and 0.98%
using SMIC-HS employing LPQ-TOP, compared with the
binary method. However, using the CASMEII database, the
LBP-TOP method seems to perform better than the phase
quantisation approach. For methods utilizing the RDN archi-
tecture, employing images reconstructed by the psnr-small
method seems to consistently give the best recognition per-
formance across all databases. The performance of ESRGAN
employed images was also on par with images constructed
using psnr-small with the SMIC-HS database. However,
using the SMIC-VIS database, the psnr-large model con-
structed images performed slightly better than the ESRGAN
model constructed images. The lowest performancewas con-
sistently obtained by employing images reconstructed by the
noise-cancel approach across all three databases. Therefore,
at this scale factor all three SR approaches, i.e., psnr-small,
ESRGAN and psnr-large, seem to be very competitive and
performed consistently better than noise-cancel method.

Considering a higher scale factor of 4, images recon-
structed using ESRGAN seem to consistently outperform
the improvised variant across all databases. Once again both
methods performed better on SMIC-VIS and SMIC-HS.
The lowest performance was obtained using the CASMEII
database for both SR methods.

To have a fair comparison among results obtained using
various SR methods in our work we compare them with
bicubic interpolation results. For SMIC-VIS database, SR
images reconstructed at scale factor 2 by all SR methods
using LBP-TOP seems to work fairly with recognition accu-
racies higher than those obtained using the bicubic method.
Employing LPQ-TOP on the SMIC-VIS database, the psnr-
small and psnr-large methods performed better than bicubic,
whereas the noise-cancel and ESRGAN performances were
lower than the bicubic method. At scale factor four recogni-
tion performance using images reconstructed by the bicubic

method was better which is consistent with the image quality
metrics obtained for this instance.

For the SMIC-HS database, both the psnr-small and ESR-
GAN methods were able to produce results on par with the
bicubic method at scale factor two when combined with the
LPQ-TOPmethod. Likewise, when combined with the LBP-
TOP method the images reconstructed using all SR methods
performed better than the bicubic reconstructed images with
the exception of noise-cancel which performed lower than
bicubic. At scale factor four recognition performances of
both SRmethodswere lower than bicubicmethodwhen com-
bined with LPQ-TOP.

Using the CASMEII database at scale factor two, psnr-
small and ESRGAN, when used with the LBP-TOP method
produced recognition performances better or equal to that of
the bicubic method, however, using the psnr-large and noise-
cancel approaches, recognitionwasmarginally lower than the
bicubic method. Most of the SR methods when combined
with the LPQ-TOP approach for this database performed
equal or better than the bicubic method whereas with the
LBP-TOP method only psnr-small and ESRGAN seemed to
perform better than bicubic. At scale factor four the bicubic
method was slightly better than ESRGAN-based approach
but much better than nESRGAN + based approach.

To summarize, both psnr-small and ESRGAN methods
when combined with LBP-TOP work best on CASMEII at
a scale factor of 2, whereas at a scale factor of 4 ESRGAN
worked best. Using the SMIC-HS database psnr-small and
ESRGAN, when combined with LPQ-TOP, worked the best.
Using the SMIC-VIS database psnr-small and psnr-large
combined with LPQ-TOP worked will. Therefore, most of
the SR methods were able to produce results better than the
bicubic method at a scale factor of 2 across all databases,
but at a scale factor of 4 this was only the case when using
the SMIC-HS database and ESRGAN was combined with
LBP-TOP. The overall comparison of recognition accuracy
employing different super-resolution and feature extraction
techniques on three micro-expression database is illustrated
in Fig. 14.

5 Conclusions

In this paper, we give an exhaustive performance analy-
sis of various deep learning-based SR for micro-expression
recognition. By introducing such SR algorithms into the
pipeline, MER have achieved favourable results. It com-
pares the reconstruction performance of various SR models
for ME images and also gives a comprehensive analysis
on the basis of recognition performance obtained with var-
ious combinations of SR and feature extraction methods
on three databases. Results illustrate recognition improve-
ment obtained by utilizing these SR images in almost all
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Fig. 14 Comparison of recognition accuracy employing various
instances of super-resolution and feature extraction techniques on three
micro-expression databases

the combinations of SR and extraction methods when com-
pared with their corresponding LR images. Clearly, all the
SR models employed have been able to successfully recon-
struct the facial details, though the image quality obtained is
varying. The aim of this study was to thoroughly examine if
such SR algorithms can be a good fit for low-resolution ME
images. Evidently, results obtained demonstrate that the pro-
posed pipeline works comparatively well on SMIC-HS and
SMIC-VIS than on CASMEII database. Examining the over-
all performance, these positive results are a good indicator
to ascertain the effectives of the basic model and GAN-
based SR technique for boosting facial micro-expression
imagedetails.Certainly, the classification accuracywas influ-
enced by the size and quality of image reconstructed across
all databases, and same is reflected in the results obtained.
Higher volume of data and uneven class distribution present
in CASMEII database may have been a disadvantage, thus
producing inferior recognition performance. On the other
hand, more uniform data distribution and lesser volume of
data hasworked in favour of both versions of SMIC database.
Though acquiring adequate number of ME data remains
a challenge even today yet we have managed to simulate
required data to perform these sets of experiments. Two
limitations of this work are, first we have tested only two res-
olutions for LR images, however, in future resolutions lower
than these can also be assessed. Second, data imbalance has

not been addressed as such the work can be substantiated by
incorporating a suitable approach with a greater number of
datasets in the future. The results achieved are promising and
can be extended further by evaluating more SR algorithms
with additional scale factors. This study serves as a channel
providing researchers with an insight into the application of
popular deep learning-based SR algorithms for poor quality
ME images. It can also be used as a general guideline towiden
the usage of suitable deep learning-based SR techniques for
such specific applications. Acquiring good facial resolution
with low-cost surveillance cameras may not always be real-
istic in day-to-day life especially when faces to be captured
are distant from the camera, this directly affects the quality
of facial details obtained. Therefore, to overcome resolution
issues that may exist in ME obtained in unfavourable set-
tings, utilizing such SR-based recognition approach seems a
feasible option with abundant room for growth.
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