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Abstract 

Solving linear differential equations is a common problem in almost all fields of science and engineering. Here, we 
present a variational algorithm with shallow circuits for solving such a problem: given an N × N matrix A , an N-dimen-
sional vector b , and an initial vector x(0) , how to obtain the solution vector x(T ) at time T according to the con-
straint dx(t)/dt = Ax(t)+ b . The core idea of the algorithm is to encode the equations into a ground state problem 
of the Hamiltonian, which is solved via hybrid quantum-classical methods with high fidelities. Compared with the pre-
vious works, our algorithm requires the least qubit resources and can restore the entire evolutionary process. In 
particular, we show its application in simulating the evolution of harmonic oscillators and dynamics of non-Hermitian 
systems with PT -symmetry. Our algorithm framework provides a key technique for solving so many important prob-
lems whose essence is the solution of linear differential equations.

1 Introduction
Linear differential equations (LDEs) describe the dynam-
ics of a plethora of physical models, including classical 
as well as quantum systems. In many fields of science 
and engineering, linear differential equations are serv-
ing as key roles, such as the Schrödinger equation [1], 
the Stokes equations [2], and the Maxwell equations [3]. 

However, solving these LDEs can become a hard prob-
lem for a classical high-performance computer, especially 
when the configuration space has a large dimension, such 
as in systems of quantum mechanics and hydrodynamics.

Quantum computers have the potential to pro-
vide an exponential advantage over classical com-
puters for certain problems. Nowadays, various 
effective quantum computation protocols emerge, 
such as the circuit-based quantum computation [4], 
adiabatic quantum computation [5], and duality quan-
tum computation [6, 7]. Meanwhile, a lot of efficient 
algorithms for quantum simulation [8, 9], quantum 
search [10, 11], and algebra problems [12–14] have 
been devised and demonstrated on various quan-
tum devices [15–28]. A scalable quantum computer 
is expected to be able to obtain the solution of linear 
systems of equations [29–34] and even linear differ-
ential equations, exponentially faster than the fastest 
high-performance classical computers. In the past few 
years, some efficient quantum algorithms for solv-
ing linear differential equations have been proposed 
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[35–37], which are based on HHL algorithms or Tay-
lor expansions with linear combination of unitaries. 
They require complex operations and large number of 
qubits, making them far from current noisy interme-
diate-scale quantum (NISQ) [38] devices. In the NISQ 
era, quantum-classical hybrid algorithms utilize both 
the performance of classical computers and the intrin-
sic quantum properties of intermediate-scale quantum 
systems, leading to lower hardware requirements and 
robustness against certain noise. These variational 
algorithms have already provided efficient solutions 
for quantum chemistry [39–42], linear algebra [43, 44], 
and quantum machine learning [45–47]. Some of them 
can be applied to the problem of solving differential 
equations, whose performance may be highly reliant 
on the pre-design of ansatz [48] or sufficient qubit 
resources [49, 50] though.

In this work, we present a quantum algorithm for 
solving linear differential equations inspired by the 
quantum-classical hybrid variational methods. We 
firstly approximate the original problem using differ-
ence equations and then transform them into a lin-
ear system problem with the assistance of an auxiliary 
qubit. Then, we split the complete time interval into 
some slices, and in each slice, there is a Hamiltonian 
whose unique ground state encodes the solution to 
the linear equations. These Hamiltonian problems are 
solved with variational quantum algorithms, and their 
ground states are also the initial states for the next time 
slice. Finally, we post-process the output state at the 
end time point by taking measurement on the auxiliary 
qubit and then obtain the quantum state encoding the 
solution from the work qubits. Compared with the pre-
vious works, our algorithm requires the least number 
of qubits, and as for the gate complexity of the trained 
circuit, the dependence on the system dimension N is 
logarithmic, keeping same as the existing algorithms. 
Therefore, our algorithm is compatible with shallow 
circuits on the NISQ hardware. Moreover, the ansatz 
circuits are added and trained layerwise, such that they 
can reflect the feature of stepwise time evolution mas-
tered by differential equations.

This article is organized as follows: In Section  2, 
we provide a thorough description of our algorithm, 
including its main framework, detailed optimization 
procedure, measurement scheme, and complexity anal-
ysis. In Section 3, we test this algorithm with a general 
differential system and show the feasibility of this algo-
rithm framework under different initial conditions and 
hyperparameters. Then, we apply it to study the dynam-
ics of a harmonic oscillator and non-Hermitian systems 
with PT -symmetry in Section  4. Finally, a conclusion 
drawn from this work is given in Section 5.

2  Details of algorithm
2.1  Main framework
We firstly give a detailed description of the problem of 
concern in this work. Consider the time-varying classical 
differential equation

where x and b are N-dimensional vectors, A is an N × N  
diagonalizable matrix that has a decomposition form 
of linear combination of unitaries: A =

L
i=1 αiAi , 

where αi s are complex coefficients and Ai s are unitar-
ies that can be efficiently implemented on the quantum 
device used (such as Pauli-terms, i.e., tensor products 
of Pauli operators). We assume that L is in the order of 
O(poly logN ) , which is valid in many significant physical 
systems such as molecular systems in quantum chemis-
try and Ising models. Equation (2) gives out the initial 
condition of the evolution process dominated by Eq. (1). 
When A is invertible, this equation has an analytical 
solution at time T:

where IN denotes the N × N identity matrix. Many equa-
tions of vital physical significance are linear differential 
equations and we can convert them into the form of the sys-
tem in Eq. (1) by utilizing methods like spatial finite differ-
ence [35]. In this work, we concentrate on the construction 
of variational quantum algorithm for solving such systems.

According to the Euler method [51], Eq. (1) can be approx-
imately expressed as the following difference equation

where �t denotes a tiny time step. This conversion holds 
no matter whether A is invertible or not. Therefore, the 
solution x(T ) at time T can be obtained by iteratively 
calculating this difference equation, which gives out an 
approximate solution:

Here n = T/�t is the number of time steps, which 
is a hyperparameter having fine control over the preci-
sion of the difference algorithm, and the approximation 
(A�t + IN )

k
≈ kA�t + IN is taken in the b-term. The 

approximate solution Eq. (5) is consistent with the analyti-
cal one Eq. (3) when �t is sufficiently small.

(1)
d

dt
x(t) = Ax(t)+ b,

(2)x(0) = x0,

(3)x(T ) = exp(AT )x(0)+ (exp(AT )− IN )A
−1b,

(4)�x(t) = x(t +�t)− x(t) ≈ Ax(t)�t + b�t,

(5)
x(T ) =

(

n(n− 1)

2
(A�t)2 + nA�t + IN

)

x(0)

+

(

n(n− 1)

2
A�t + nIN

)

b�t.
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In the quantum version of the differential equation 
problem, the N-dimensional unnormalized solution 
x(T ) to Eq. (1) is encoded in a normalized quantum state 
|x(T )� = x(T )/�x(T )� . In following contents, notation |v� 
denotes the corresponding normalized quantum state of 
arbitrary vector v , i.e., |v� = v/�v� . Analogous to the above 
steps, our algorithm determines the approximate solution 
by iteratively solving a quantum difference equation. Firstly, 
we can rewrite Eq. (4) in a linear form

where M is a 2N × 2N  invertible upper triangular 
matrix. We encode the linear system Eq. (8) into a Hamil-
tonian [43, 44, 52]

where P⊥

t = (I2N − |y(t)��y(t)|) is the Hermitian opera-
tor that projects states into the subspace perpendicular 
to y(t) , satisfying the idempotent relationship P⊥2

t = P
⊥

t  . 

(6)M =

(

(IN + A�t)−1
− (IN + A�t)−1�t

0 IN

)

,

(7)y(t +�t) =

(

x(t +�t)
b

)

, y(t) =

(

x(t)
b

)

,

(8)My(t +�t) = y(t),

(9)H = M†
P
⊥

t M,

Therefore, the Hamiltonian H can be rewritten as 
H = M

†
M where M = P

⊥

t M . It is direct to prove that 
M−1

|y(t)� is the unique ground state of H, corresponding 
to zero energy.

Consequently, we can solve Eq.  (8) by utilizing a vari-
ational quantum eigensolver (VQE) [39, 40] to minimize 
the expectation value of H, which yields a state encoding 
ỹ(t +�t) , an approximation to y(t +�t) , via parameter-
ized quantum circuits. We discard the component contain-
ing b by measuring the auxiliary qubit and if getting σz = 1 , 
we can obtain the state encoding the approximate solution 
x̃ in the work qubits. Meanwhile, the input and the output 
of the linear system in Eq. (8) take the similar form, the only 
difference of which is the time they correspond to, so the 
solution ỹ(t +�t) can be reused in the next iteration to 
define the linear system, i.e., be assigned as the right hand 
side of Eq. (8). Repeat this procedure for n = T/�t times, 
and finally, we will get the quantum states encoding the 
approximated solution ỹ(T ) and hence x̃(T ) . We can also 
evaluate the expectation values of physical operators for the 
system and extract other physical information from these 
states, as demonstrated in Section  4. A schematic of the 
optimization process of the algorithm is shown in Fig. 1.

2.2  Details of optimization procedure
Without loss of generality, we can suppose that the dimen-
sion of the differential system described by Eq.  (1) is 

Fig. 1 The schematic diagram of the optimization procedure of the algorithm. In the (i + 1)-th iteration, we use the output state |y i� of the series 
of trained PQCs U (i) as the input state, and optimize the parameters in U(i+1)(θ) according to E(θ) . Once the optimization process converges, U(i+1) 
outputs the state |y i+1� , which the approximated solution |x̃((i + 1)�t)� can be extracted from and can be used as the input for the next iteration. 
Here we decompose the expression of E(θ) into experimentally obtainable values γ j and Bjk . If only the final solution but not the detailed evolution 
process is of our interest, we can compress the extended series U (i+1) to reduce the gate complexity of the final trained circuit



Page 4 of 16Xiao et al. AAPPS Bulletin           (2024) 34:12 

N = 2nq , where nq is the number of qubits used to rep-
resent the system. There are oracles Ux0 and Ub that can 
encode the N-dimensional classical vectors x0 and b into nq
-qubit quantum states respectively:

For simplicity, we set the time step �t to be constant 
during the algorithm procedure. x(tn) stands for the ana-
lytical solution at time point tn = n�t , and xn stands 
for the corresponding algorithm solution. Similarly, we 
have y(tn) = (x(tn); b) as the encoded theoretical state, 
and yn = (xn; b) as the encoded state determined by our 
algorithm.

In the initial iteration, the quantum system starts from an 
all-zero state. In order to encode y0 = (x0; b) , an auxiliary 
qubit |0�a is introduced. Applying the unitary operator

onto the auxiliary qubit followed by a 0-controlled opera-
tor Ux0 and a 1-controlled operator Ub , we can initialize 
the quantum system on the state:

which is taken as the input for our variational quantum 
eigensolver. The qubit coupled-cluster (QCC) algorithm 
proposed by I. Ryabinkin et  al. [42] is adopted here to 
build the parameterized quantum circuit (PQC), which is 
a heuristic method that can automatically choose multi-
qubit operations by ranking all Pauli-terms (which are 
called “Pauli words” in [42]) of given length according 
to the expectation value of the Hamiltonian. During the 
procedure of QCC algorithm, a parameterized circuit 
is optimized to minimize the qubit mean-field (QMF) 
energy EQMF = min�(1)��(1)

|H |�(1)
� , where |�(1)

� is the 
mean-field wavefunction:

(10)Ux0 |0� = |x0�, Ub|0� = |b�.

(11)U =





�x0�√
�x0�2+�b�2

�b�
√

�x0�2+�b�2

�b�
√

�x0�2+�b�2
−

�x0�√
�x0�2+�b�2





(12)

1
√

�x0�2 + �b�2
(�x0�|0�a|x0� + �b�|1�a|b�)

=
1

√

�x0�2 + �b�2
y(0) = |y(0)�,

(13)|�(1)
� =

nq+1
∏

i=1

UR(�
(1)
i )|y0�,

(14)

UR(�
(1)
i ) =

(

cos
(

θ
(1)
i /2

)

eiφ
(1)
i sin

(

θ
(1)
i /2

)

sin
(

θ
(1)
i /2

)

e−iφ
(1)
i cos

(

θ
(1)
i /2

)

)

,

(15)�(1)
= (θ

(1)
1 ,φ

(1)
1 , · · · , θ

(1)
nq+1,φ

(1)
nq+1).

Then, the similarity-transformed energy function

is minimized over all possible τ values. Since this step can 
be computationally expensive, E[τ ;Pk ] is expanded near 
τ = 0 , and gradients dE[τ ;Pk]/dτ

∣

∣

τ=0
 and d2E[τ ;Pk]/dτ 2

∣

∣

τ=0
 

are evaluated in order to rank all 
∑lp

i=1 C
i
nq+13

i
= O(n

lp
q ) 

Pauli-terms that act on no more than lp qubits and yield 
non-trivial multi-qubit entanglers. Here Cm

n = n!/[(n −m)!m!] 
is the combination number of picking m elements from a 
set containing n elements. This step is called “Pauli rank-
ing.” We use the top p terms of ranking to construct the 
parameterized Pauli entanglers U (1)

P (τ (1)) =
∏p

j=1
e
−iτjPj/2 , and 

they will be appended into our parameterized quantum 
circuit to produce the QCC parameterized state 
|�(τ (1),�(1))� = U

(1)
P (τ (1))|�(1)

� . {lp, p} are hyperparam-
eters of the algorithm. The ground state of H and corre-
sponding eigen-energy are obtained by minimizing

Once Eq.  (17) is optimized to zero, the parameter-
ized quantum circuit outputs |y1� = U (1)(τ (1),�(1))|y0� , 
which approximates to |y(�t)� as expounded before. 
Now we fix the parameters (τ (1),�(1)) and use this out-
put state of the initial iteration as the input state of the 
second iteration.

Therefore, with the time evolution in each small time 
step being approximated by our method, the output 
state after the k-th time step is

which provides a good approximation of (x(k�t); b) . For 
the final step, we measure the σz value of auxiliary qubit. 
If the output is zero, the work qubits will be on the state 
|x̃(T )� ; otherwise, the PQC will be executed until the 
measurement of the auxiliary qubit outputs zero. Note 
that the parameterized circuits in our algorithm are 
added and trained step by step, which corresponds to tiny 
time steps of evolution in the difference method. We will 
show below that the combination of the layerwise opti-
mization process and the difference approximation can 
reduce the requirement of qubit resources and restore 
the entire evolutionary process.

2.3  Measurement scheme
In this part, we give a discussion about how to perform 
the measurements in the optimization process. For a 
PQC scheme U(θ) with θ denoting the parameters to be 

(16)E[τ ;Pk ] = min
�(1)

��(1)
|eiτPk/2He−iτPk/2|�(1)

�

(17)E(τ (1),�(1)) = ��(τ (1),�(1))|H |�(τ (1),�(1))�.

(18)

|yk� = U (k)(τ (k),�(k))|yk−1�

=

1
∏

i=k

U (i)(τ (i),�(i))|y0�
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optimized in a certain stage of our algorithm, which can 
be a QMF ansatz or QCC ansatz, we measure the Hamilto-
nian H to obtain its expectation value, and if gradient-based 
optimizers are employed, we need to take the gradients 
∂〈H〉/∂θ by analytically differentiating U(θ) [44] or using 
parameter shift [45, 53, 54] to update the parameters. Note 
that when the time step �t is sufficiently small, matrix M 
in Eq. (6) can be approximated as

Considering the linear decomposition of A , M can also 
be further represented by a set of (nq + 1)-qubit unitaries 
( I stands for the 2× 2 identity matrix):

When running our algorithm on real quantum 
devices, we can divide the task of evaluating E(θ) into 
many experimentally implementable measurements 
according to the following relationship

(19)M ≈

(

(IN − A�t) − (IN − A�t)�t
0 IN

)

.

(20)
M = I ⊗ IN −

1

2
(σz + I)⊗ A�t

−
1

2
(σx + iσy)⊗ (IN − A�t)�t

(21)

=

3+4L
∑

i=1

µiMi, Mi is an (nq + 1)-qubit unitary.

where |yn+1(θ)� = U(θ)|yn� , Bij = �yn|U
†(θ)MiM jU(θ)|yn� and 

γ i = �yn|U
†(θ)Mi|yn� . Bij s and γ i s can be measured by 

the quantum circuits in Fig. 2a and b.
In the circuit for computing Bij , as shown in Fig. 2a, 

the Hadamard test [44] is employed, which requires 
one more auxiliary qubit |0�m . S = diag(1, i) is the phase 
shift gate and the flag f is either 0 or 1, determining 
whether the real part or the imaginary part of Bij is to 
be evaluated. The probability of obtaining +1 when we 
perform σz measurement on the auxiliary qubit is

(22)

E(θ) = �yn+1(θ)|M
†M|yn+1(θ)�

− �yn+1(θ)|M
†
|yn��yn|M|yn+1(θ)�

=

∑

ij

µ∗

i µj�yn|U
†(θ)MiM jU(θ)|yn�

−

∑

ij

µ∗

i µj�yn|U
†(θ)Mi|yn��yn|M jU(θ)|yn�

= µ†(B − γ γ †)µ,

(23)

Prf (σz = +1) =
1

4

[

2+ if �yn|U
†(θ)M iM jU(θ)|yn�

+ (−i)f �yn|U
†(θ)M jM iU(θ)|yn�

]

=

{

1
2

(

1+ Re{Bij}
)

, f = 0;
1
2

(

1− Im{Bij}
)

, f = 1.

Fig. 2 Quantum circuits for evaluating the values of a Bij = �yn|U
†(θ)MiMjU(θ)|yn� and b γ i = �yn|U

†(θ)Mi |yn� based on the measurement 
results of the auxiliary qubit. Here the controlled gates are applied when the auxiliary qubit is on |1�m
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Hence, we can evaluate Bij terms as

When Ai s are Pauli-terms (as well as Mis ), since Bij 
is essentially the expectation value of MiM j of state 
|yn+1(θ)� , we can construct Hermitians from MiM j and 
measure them on the quantum state directly, which does 
not require the auxiliary qubit |0�m and is detailed in 
Appendix 1.

Similarly, circuit in Fig. 2b can output the real parts and 
imaginary parts of γ i s respectively, according to

from which we have

Because of the symmetry of B , i.e., Bij = B∗

ji , in general, 
(3+ 4L)(3+ 4L+ 1)/2 = O(L2) circuits for B  and O(L) 
circuits for γ are required. Note that the measurement is 
only applied on the auxiliary qubit under σz bases, which 
is experimentally friendly.

2.4  Complexity of the algorithm
In our algorithm, two main approximations are adopted. 
One is using difference equations to reduce the original 
differential system, as in Eqs.  (6), (7), and (8). The other 
is using Eq.  (19) to avoid evaluating matrix inversion. 
Both are 2nd-order approximations, which implies that 
the local truncation error of this algorithm is O((�t)2) . 
Therefore, our algorithm is a 1st-order finite-difference 
method, i.e., the global error ǫ is O(�t) . As long as �t 
is sufficiently small, the algorithm solution will be close 
enough to the analytical result. The detailed derivations 
of local and global errors are provided in Appendices  2 
and 3. In Appendix 4, we also discuss the error resulting 
from imperfect VQE optimization.

Qubit complexity of our algorithm is log2N + 2 
according to the circuit design described previously. This 
is the least qubits complexity required in quantum LDE 
solvers, since we need at least log2N  qubits to encode 
N-dimensional vectors if there are no specific con-
straints on matrix A , e.g., A being sparse. We need one 
auxiliary qubit to encode state |y� , and another one for 
measuring elements of matrix B and vector γ to evaluate 
the expectation of Hamiltonian in Eq. (9). Similar to our 
work, Berry et al. [36] solve Eq. (1) by discretizing them, 
but the converted difference equations at different time 

(24)Re{Bij} = �σz�f=0, Im{Bij} = −�σz�f=1.

(25)

Prf (σz = +1) =
1

4

[

2+ if �yn|M iU(θ)|yn�

+ (−i)f �yn|U
†(θ)M i|yn�

]

=

{

1
2

(

1+ Re{γ i}
)

, f = 0;
1
2

(

1+ Im{γ i}
)

, f = 1,

(26)Re{γ i} = �σz�f=0, Im{γ i} = �σz�f=1.

points are encoded in a single large linear system, indi-
cating that more qubits are required for all time slices. 
Specifically, although qubit complexity of the algorithm 
is weakly affected by ǫ , which is O(log(N log(1/ǫ))) , the 
constant addition term in complexity is proportional to 
log(T‖A‖) . Therefore, given a matrix A , the number of 
qubits required by the algorithm grows as the complete 
evolution time T gets longer. Recently, a work for solving 
d-dimension Poisson equation was also proposed [49]. 
Its spirit is similar to the discretizing method in [36], but 
it utilizes variational quantum algorithms to solve the 
encoded large linear system. Analogously, the algorithm 
for solving partial differential equations in [50] discre-
tizes the variable domain with 2n grid points and 2m 
interpolation points and encodes 2n+m function values 
directly into an (n+m)-qubit state which is constructed 
from a PQC. These algorithms require more qubits for 
finer discretization and hence higher accuracy, while our 
demand for qubit resources keeps constant for ordinary 
equations of certain differential order. Xin et  al. [37] 
solve Eq.  (1) by discretizing them using Taylor expan-
sions of the analytical solution and require O(log(1/ǫ)) 
more auxiliary qubits to perform the linear combination 
of unitaries.

Once all n = T/�t ∼ O(1/ǫ) iterations are accom-
plished, the resulting circuit will be a series of PQC 
blocks:

where θ (k) = (τ (k),�(k)) . With reference to the structure 
of our ansatz, we can conclude that the gate complexity 
of the finally trained circuit U is O( 1

ǫ
nq) = O( 1

ǫ
logN ) , 

which has the same logarithmic dependence on the sys-
tem dimension N as existing algorithms. However, the 
dependence on ǫ is not optimal. We owe this to the bal-
ance between space complexity and time complexity of 
our LDE algorithms. Besides, U can restore the complete 
dynamical process of system evolution: we can extract 
the sub-circuits of i ∼ j slices in U for arbitrary i,  j, and 
the yielded sub-series 

∏i
k=j U

(k) reflects the evolution 
of y(t) during time interval [i�t, j�t] . Moreover, if only 
the final solution |y(T )� but not the detailed evolution 
process is of our interest, we can check the length of U (i) 
before each time step, and if there are more than ng gates, 
circuit optimization technologies in [55] can be employed 
to compress them into ng gates. Therefore, in the final cir-
cuit U (n) the number of quantum gates will also be lim-
ited in O(ng ) . Here ng is a hyperparameter that should be 
determined with the compress fidelity guaranteed.

(27)U = U
(n),

(28)U
(k)

= U (k)(θ (k))U (k−1)
=

1
∏

i=k

U (i)(θ (i)),
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An estimation of the number of queries to quan-
tum gates during the entire training process is provided 
in Appendix 5. It is worth noting that in order to make 
approximation (19) effective, �t must be restricted by 
�(�tA)2� ≪ ��tA� . Therefore, we can select a �t satis-
fying �t ≪ 1/�A� , where ‖A‖ is the 2-norm of A.

3  Example models
We apply our algorithm to several linear differential 
equations to show how well it can solve classical systems 
dominated by equations as Eq.  (1). We first consider an 
ordinary complex matrix

with initial conditions

We set the time interval as �t = 0.1 and the number of 
time steps as n = 100 , to get the solution at T = 10 . At 
the end of i-th time step, we simulate the optimized PQC 
U (i) and evaluate the overlap at t = i�t by

Here |xalg(i�t)� = |xi� is the output state of U (i) , 
and |xana(i�t)� = |x(i�t)� is the normalized analyti-
cal solution. Meanwhile, overlaps between the out-
put state of PQC and the final analytical solution 
f
alg
i :=|�xana(T )|xalg(i�t)�| and overlaps between the 

analytical solution at current time and the final ana-
lytical solution f anai :=|�xana(T )|xana(i�t)�| are also cal-
culated. These metrics are also called fidelities, time 
evolution of which are shown in Fig. 3. From the curve 
of fi (red dashed line), we can see that our algorithm 
can effectively simulate the evolution of linear differ-
ential equations, keeping the instantaneous overlaps 
between the algorithm states and the corresponding 
analytical solutions higher than 98%. High instantane-
ous overlaps mean that our algorithm can keep high 
fidelities during the whole evolution process (i.e., in all 
intermediate time slices of [0, T]), while the high final 
value of overlap f algi  indicates that the algorithm can 
obtain the ideal final result. Meanwhile, by compar-
ing the complete curves of f algi  and f anai  in Fig. 3 (deep 
blue solid line and light blue dashed line respectively), 
we can conclude that our algorithm can keep consist-
ent with the analytical metric values during the whole 
evolution process.

Moreover, in order to demonstrate the applicabil-
ity of our algorithm under different initial conditions, 

(29)A =

(

−0.015− 0.028i − 0.963− 0.928i
0.105+ 0.251i − 0.085− 0.795i

)

(30)|x0� =

(

0
i

)

, |b� =
1
√

2

(

1
1

)

.

(31)fi:=|�xalg(i�t)|xana(i�t)�|.
we keep the definition of A as Eq. (29) and simulate the 
algorithm to solve equations with |x0� and |b� being

where α = nπ/5, β = mπ/5, n,m ∈ {0, 1, · · · , 5} . We 
set the target time T = 5 and the time step �t = 0.1 . By 
varying the values of n and m, we calculate the differ-
ence between the final overlap |�x(T )|xN �| and the ideal 
expectation, as shown in Fig. 4. The average value of final 
errors over all initial conditions is less than 0.0014, which 
means that the feasibility of our algorithm can still be 
maintained under different initial conditions.

Also, for the purpose of studying the algorithm per-
formance under different values of time step �t , the 
most important hyperparameter, we keep the condi-
tions in Eq.  (29) and Eq.  (30) unchanged, while we set 
the evolution time T = 10 , and tune �t from 0.05 to 
0.95. For each �t , we calculate the averaged fidelity at 
i-th step by

(32)|x0� = cos
α

2
|0� + sin

α

2
|1�,

(33)|b� = cos
β

2
|0� + sin

β

2
|1�,

(34)Fi;�t =
1

i

i
∑

j=0

|�x(T = j�t)|xj�|,

Fig. 3 Time evolution of fidelities (i.e., overlaps) for linear differential 
system defined by Eqs. (29) and (30). Here |xalg(t)� and |xana(t)� stand 
for the solution given out by the PQC in our algorithm (abbr. “alg”) 
and the analytical solution (abbr. “ana”) at time t respectively. The 
element values of the state vectors at the beginning of evolution 
(t = �t = 0.1) and at the end of evolution (t = T = 10) are displayed 
in the lower-left and upper-right subfigures, where xi(i = 0, 1) 
is the i-th element of |x�
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which characterizes the overall precision of our algorithm 
during the whole training process. With discrete Fi;�t 
data collected, three-dimensional interpolation based on 
multi-quadric radial basis function is performed, gener-
ating an interpolation function F(T ,�t) in the domain 
[0, 10]T × [0.05, 0.95]�t , which is plotted as the surface 
in Fig. 5. It is clear that if evolution time T or time step 
�t takes small value, our algorithm can produce solu-
tion state at high fidelity. As �t increases, the fidelities 
decline faster in the training process, which can be con-
cluded from the slope towards large T-large �t direction 
in Fig. 5. In general, we can define an algorithm-effective 
area in parameter space satisfying 0 < T�t < δ , where δ 
is a fidelity-related parameter and a smaller value of T�t 
can lead to a better optimization result.

4  Applications
Above we have discussed the algorithm with an ordinary 
complex matrix from the perspective of mathematics and 
demonstrate the feasibility of our scheme under different 
parameter conditions. In this section, we apply our algo-
rithm to the dynamical simulation of different real physi-
cal processes.

4.1  One‑dimensional harmonic oscillator
The first physical model is the one-dimensional harmonic 
oscillator, whose displacement x(t) is governed by a sec-
ond order differential equation:

(35)







dotx + ω2x = 0,
x(0) = x0,
ẋ(0) = x′0,

where the intrinsic frequency ω only depends on the sys-
tem. This equation can be converted into first order dif-
ferential equations by introducing variable substitution 
x1 = x, x2 = ẋ . Therefore we have:

We define a vector x(t) = (x1(t), x2(t))
T , and write it 

in the form of Eq. (1) and Eq. (2) as

which has an analytical solution:

We tested our algorithm for ω = 1.5 , and the initial 
conditions are x(0) = (0, 1)T, b = 0 , which corresponds 
to the motion of a one-dimensional harmonic oscilla-
tor initially located at the coordinate origin with unit 
velocity. We set the time step �t = 0.1 . Our algorithm 
produces vectors highly consistent with analytical solu-
tions. Note that the algorithm vectors are normalized, 
and the normalization factor c(t) can be determined by

(36)











ẋ2 + ω2x1 = 0,
ẋ1 = x2,
x1(0) = x0,
x2(0) = x′0.

(37)ẋ =

(

0 1

−ω2 0

)

x, x(0) =

(

x0
x′0

)

,

(38)x(t) =

(

x0 cosωt +
x′0
ω
sinωt

−ωx0 sinωt + x′0 cosωt

)

.

(39)c(t) =
√

x2(t)+ ẋ2(t)

Fig. 4 The errors of the final optimization results under different 
initial conditions of the differential system defined by Eq. (29)

Fig. 5 Time averaged fidelities in training processes for different �t . 
The target differential system is defined by Eqs. (29) and (30). Yellow 
dots are the original Fi;�t data points. The three dimensional surface 
represents the interpolation function F(T ,�t) . The square contour 
figure in the T-�t plane is the projection of F(T ,�t) surface
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where E0 = (ẋ2(t)+ ω2x2(t))/2 ≡ (x′20 + ω2x20)/2 is the 
constant total energy if we assume the oscillator has unit 
mass, r(t) = |x2(t)/x1(t)|

2
= |x̄2(t)/x̄1(t)|

2 is the ratio of 
the probabilities for the work qubit at different states, and 
x̄i(t) = xi(t)/c(t) (i = 1, 2) . Therefore, the kinetic energy 
and the potential energy are evaluated as

and their evolution with time is shown in Fig.  6, which 
displays a behavior of sine functions with period ∼ 2π/3 
as expected in theory. It can be seen that the error of 
energy accumulates with time, which is a natural result 
of finite difference method according to the discussion in 
Section 2.4 and Appendix 3.

Such an example for solving second order differen-
tial equation shows that our algorithm can be applied 
to find solutions to those higher-order differential 
equations by converting them into first-order linear 
differential equations.

(40)=







�

2E0

�

1+r(t)
ω2+r(t)

�

, x1(t) �= 0;
√
2E0 x1(t) = 0,

(41)Ep =
1

2
ω2c2(t)|x̄1(t)|

2, Ek =
1

2
c2(t)|x̄2(t)|

2,

4.2  Non‑Hermitian systems
In this part, we discuss the application of our algorithm to 
the dynamical simulation of non-Hermitian systems with 
PT -symmetry. In 1998, Bender found that Hamiltonians 
satisfying joint parity (spatial reflection) symmetry P and 
time reversal symmetry T  , instead of Hermiticity, can still 
have real eigenvalues. When the Hamiltonian commutes 
with the joint PT  operator, it is classified as a PT -sym-
metric Hamiltonian. If eigenstates of the PT -symmetric 
Hamiltonian are also the eigenstates of PT  operator, PT

-symmetry is unbroken, while the symmetry is broken con-
versely [56]. The transition between these two phases in 
parameter space happens at so-called exceptional points or 
branch points [56, 57]. There are many novel physical phe-
nomena shown up in this kind of systems, such as the viola-
tion of no-signaling principle [58], the symmetry breaking 
transition [59], PT -symmetric quantum walk, and char-
acters of exceptional point [60]. Especially, it is shown that 
the entanglement can be restored by a local PT -symmetric 
operation [61–63], which can not be observed in the tradi-
tional Hermitian quantum mechanics.

We consider a coupled two-mode system (coupling 
strength s) with balanced gain and loss ( �s ), which can be 
regarded as a PT -symmetric qubit with Hamiltonian:

Fig. 6 a Time evolution of potential energy and kinetic energy for the one dimensional harmonic oscillator. b The energy difference 
between analytical (abbr. “ana”) and algorithm (abbr. “alg”) results. c The element values of the final state vectors (at T = 10 ) corresponding 
to analytical evaluation and algorithm solution
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where σi (i = x, y, z) are Pauli matrices and the positive 
parameter � represents the degree of non-Hermitic-
ity in the system. The energy gap of the Hamiltonian 
ω = 2s

√

1− �2 will be real as long as � < 1 , meaning 
that the PT  symmetry is unbroken, in which cases the 
Hamiltonian keeps invariant under PT  transformation: 
(PT )HPT (PT )−1

= HPT  , where the operator P = σx 
and T  corresponds to the operation of complex conjuga-
tion. On the other hand, � > 1 will lead to a broken phase 
with a transition at exceptional point �ep = 1.

Suppose that there is another qubit, which is entangled 
with the PT -symmetric qubit and they form Bell state 
(|01� + |10�)/

√

2 initially. To investigate the dynamic 
process of the two-qubit non-Hermitian system, we take 
x(t) to represent the quantum states. Comparing the evo-
lution equation of this non-Hermitian quantum system 
with Eq. (1), we can determine that

Here we take � = 1 for simplicity, and s is set to be one. 
We use our algorithm to solve the differential equations 
of state evolution and monitor the degree of entangle-
ment by concurrence [64], which is defined as

(42)HPT = s(σx + i�σz)

(43)A = −iHPT ⊗ I , x0 =
1
√

2
(0, 1, 1, 0)T, b = (0, 0, 0, 0)T.

where ρ = |x(t)��x(t)| is the density matrix of the 
two-qubit system, and µi s are the eigenvalues of 
ρ(σy ⊗ σy)ρ

∗(σy ⊗ σy) in descending order.
The numerical simulation results are shown in Fig. 7 and 

the configuration of simulation is detailed in Appendix 6. 
We can conclude that the entanglement decays exponen-
tially to zero in the symmetry-broken phase ( � = 2.0 ), 
while the entanglement oscillates with time in the unbro-
ken phase ( � = 0.5 ), indicating the entanglement restora-
tion phenomenon induced by the local PT -symmetric 
system. As for the case at � = 0.99 , the temporal period of 
concurrence becomes so long that the evolution displays 
a decay-like behavior in limited time, conforming to the 
properties of near-exceptional points. These results are 
consistent with theoretical expectations.

In this example, the evolutionary process restored by our 
algorithm reveals interesting physics that is unable to be 
observed in the traditional Hermitian quantum mechanics. 
That is the increase of entanglement during a specific time 
interval ( t ∈ [1.8, 3.0] ) in the unbroken phase of PT -sym-
metry. If we just concentrate on the initial state ( t = 0 ) 
and the final state ( t = 3.0 ), only the relative reduction in 
concurrence can be concluded, and we cannot observe the 
entanglement restoration process [61].

(44)C(ρ) = max{0,
√
µ1 −

√
µ2 −

√
µ3 −

√
µ4},

Fig. 7 a Evolution of concurrence in the two-qubit entangled system with local PT -symmetry under different degree of non-Hermiticity. b The 
errors between analytical and algorithm results
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5  Conclusion
In this work, we propose a hybrid quantum-classical 
algorithm for solving linear differential equations. The 
spirit of the algorithm is a first-order finite difference 
method, with solution vectors well encoded into quan-
tum states. For an N-dimension system, our algorithm 
only requires one auxiliary qubit and logN  qubits to 
encode the solution, and another auxiliary qubit to assist 
in measuring Hamiltonian expectations, which is optimal 
compared with the previous works. The gate complexity 
is also logarithmic in N, presenting similar dependence 
on system dimension as existing algorithms. We demon-
strate the algorithm with a general differential system and 
present its effectiveness and robustness under different 
initial conditions and hyperparameters. Furthermore, we 
apply the algorithm to the dynamical simulation of dif-
ferent physical processes, including a one-dimensional 
harmonic oscillator system and PT -symmetric non-
Hermitian systems. Our work provides a new scheme for 
solving linear differential equations with NISQ devices 

and the protocol can also be demonstrated on practical 
quantum computation platforms. It is worth mentioning 
that the qubit coupled-cluster method is employed in our 
framework as the VQE sub-program for solving ground 
state problems. However, it is still an open question to 
choose more adequate eigensolvers for specific systems 
and we leave it in future works.

Appendix 1. Another measurement scheme for Bij 
when Ai s are Pauli‑terms
When Ai s are Pauli-terms, Mi s in Eq.  (21) are Pauli-
terms as well. Note that Bij = �yn+1(θ)|MiM j|yn+1(θ)� 
is the expectation value of MiM j of quantum state 
|yn+1(θ)� . We define two operators as follows:

(45)J ij =
MiM j +M jMi

2
,

(46)K ij =
MiM j −M jMi

2i
,

which satisfy MiM j = J ij + iK ij . When Mi s are Pauli-terms, 
it is direct to derive that J ij and K ij are both Hermitian 
and hence observables. Therefore, we can measure the 
expectation values of them on state |yn+1(θ)� without 
the requirement for an auxiliary qubit as in Fig. 2a, and 
obtain Bij via �MiM j� = �J ij� + i�K ij�.

Appendix 2. Local truncation error
According to the notations in the main text, the analyti-
cal state vector in the (n+ 1)-th iteration is y(tn+1) , and 
the corresponding algorithm estimation is yn+1 . When 
evaluting the local truncation error of a certain step, we 
assume that our algorithm gives out an accurate state in 
the previous step, i.e.,  yn = y(tn) . For the analytical vec-
tor, we have

where y(tn) = (x(tn); b).
As for the algorithm vector, if we ignore the error in find-

ing the ground state of Hamiltonian, following relations 
hold:

However, approximation on matrix M is adopted in 
ground state finding according to Eq. (19). Here we denote 
the approximate matrix by M̃ . Hence, the solution of our 
algorithm should be given out by

(47)x(tn+1) = eA�txn + (eA�t
− IN)A

−1b

(48)
= [IN + A�t + O((�t)2)]xn + [�t + O((�t)2)]b,

(49)

�x(tn+1)� = �x(tn)�

[

1+
1

2�x(tn)�2

(

x†(tn)(Ax(tn)+ b)+ h.c.
)

�t + O((�t)2)

]

,

�y(tn+1)� =

√

�x(tn+1)�2 + �b�2

= �y(tn)�

{

1+
1

2�y(tn)�2

[

x†(tn)(Ax(tn)+ b)+ h.c.
]

�t + O((�t)2)

}

,

(50)|y(tn+1)� =
1

�y(tn+1)�

(

x(tn+1)

b

)

,

(51)xn+1 = (IN + A�t)xn +�tb,

(52)�xn+1� ∼ �x(tn+1)� (2nd order),

(53)�yn+1� ∼ �y(tn+1)� (2nd order),

(54)

|yn+1� =
1

�yn+1�

(

xn+1

b

)

∼ |y(tn+1)� (2nd order),
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(55)ỹn+1 = M̃
−1

yn = M̃
−1

(

x(tn)
b

)

(56)=

(

(IN − A�t)−1x(tn)+�tb
b

)

(57)=

(

x(tn)+ (Ax(tn)+ b)�t + O((�t)2)
b

)

(58)=

(

xn+1 + O((�t)2)
b

)

= yn+1 + O((�t)2)

(59)= y(tn+1)+ O((�t)2),

(60)|ỹn+1� =
M̃

−1
yn

�M̃
−1

yn�

(61)=
yn+1 + O((�t)2)

�yn+1 + O((�t)2)�

(62)=
yn+1 + O((�t)2)

�yn+1�
[1+ O((�t)2)]

(63)= |yn+1� + O((�t)2)

(64)= |y(tn+1)� + O((�t)2).

The error of |ỹn+1
� is a 2nd order infinitesimal of �t 

compared with |y(tn+1)� . Then, we have

From Eq.  (65), we know that the difference above is 
O((�t)2) , which indicates that

In summary, the local truncation error of our algo-
rithm is

Appendix 3. Global error
Global error describes the accumulation effect of local errors. 
Since A is diagonalizable, we assume that A = F−1�F  
where � = diag(�1, · · · , �N ) is the diagonal matrix com-
posed of the eigenvalues of A . Firstly, consider the i-th ele-
ment of x(tn+1) = eA�tx(tn)+ (eA�t

− IN)A
−1b , which 

can be expressed as a first-order Taylor series with Lagran-
gian remainder as follows (where Einstein summation con-
vention is adopted):

(65)
x̃n+1

�ỹn+1�
−

x(tn+1)

�y(tn+1)�

(66)=
1

�ỹn+1�

[

x̃n+1 − x(tn+1)
�ỹn+1�

�y(tn+1)�

]

(67)=
1

�ỹn+1�

[

x̃n+1 − x(tn+1)+ O((�t)2)
]

.

(68)x̃n+1 − x(tn+1) = O((�t)2).

(69)ln+1 = |ỹn+1� − |y(tn+1)� = O((�t)2).

(70)

x(i)(tn+1) = (F−1)ije
�j�tFjkx

k(tn)+ (F−1)ij
e�j�t

− 1

�j
Fjkbk

= (F−1)ij

[

1+ �j�t +
1

2
e�jξj(�j�t)2

]

Fjkx
(k)(tn)

+ (F−1)ij

[

�t +
1

2
e�jξj�j(�t)2

]

Fjkb
(k)

=

[

δik + (F−1�F )ik�t +
1

2
(F−1e�

′

�2F )ik(�t)2
]

x(k)(tn)

+

[

δik�t +
1

2
(F−1e�

′

�F )ik(�t)2
]

b(k)

= (IN + A�t)ikx
(k)(tn)+�tb(i)

+

[

1

2
(F−1e�

′

FA2)ik(�t)2
]

x(k)(tn)+

[

1

2
(F−1e�

′

FA)ik(�t)2
]

b(k),
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where ξi ∈ (0,�t) , �′
= diag(�1ξ1, · · · , �N ξN ) . Combining all N 

components yields

Let M1 =
1
2 (F

−1e�
′

FA2), M2 =
1
2 (F

−1e�
′

FA) , and κ 
be the condition number of F  , so

where rmax = maxi Re{�i} . Therefore,

Meanwhile, x(t) has bounded norm in the interval of 
[0, T]:

Note that the solution of our algorithm at t = (n+ 1)�t 
should be

Combining all estimations above and defining 
ǫn = x(tn)− xn , we can derive the upper bound of the global 
error at t = T (hence n+ 1 = N = T/�t ) as

Here the condition �ǫ0� = 0 is used, and factor M is a 
positive constant related to A,T , x0 and b , whose upper 
bound can be estimated using Eqs. (75), (76), and (77):

(71)x(tn+1) =

[

IN + A�t +
1

2
(F−1e�

′

FA2)(�t)2
]

x(tn)+

[

�t +
1

2
(F−1e�

′

FA)(�t)2
]

b.

(72)
�F−1e�

′

F� ≤ κ�e�
′

� = κmax
i

eξiRe{�i} ≤ κeTrmax ,

(73)�A� = �F−1�F� ≤ κ��� = κmax
i

|�i|,

(74)�M1� ≤
1

2
κeTrmax�A�2,

(75)�M2� ≤
1

2
κeTrmax�A�.

(76)�x(t)� ≤ �eAT��x0� + �(eAT − IN)A
−1

��b�

(77)≤ e�A�T�x0� +
e�A�T − 1

�A�
�b�:=M0

(78)xn+1 = [IN + A�t]xn +�tb.

(79)

�ǫn+1� ≤ �IN + A�t��ǫn� + �M1�(�t)2M0 + �M2�(�t)2�b�

≤ (1+ �A��t)�ǫn� +M(�t)2

= (1+ �A��t)n+1
�ǫ0� +

(1+ �A��t)n+1
− 1

1+ �A��t − 1
M(�t)2

= TM�t + O(�t3).

So far we have proved that the global error of our algo-
rithm is of 1st order of �t.

Appendix 4. Error from imperfect VQE optimization
Apart from the truncation error intrinsic to finite dif-
ference method, the precision of the VQE sub-program 
employed in each evolution step also influences the error. 
Here we discuss it in detail.

Firstly, we express the solution obtained from the VQE 
sub-program of our algorithm in the i-th step as

where |yi� is the analytical ground state of Hamilto-
nian  (9) (which is also the only eigenstate that corre-
sponds to zero energy), |y⊥i � stands for a normalized 
quantum state that is perpendicular to |yi� , and the real 
number η measures the deviation of our algorithm solu-
tion from the analytical solution.

For arbitrary state |φ� in the subspace defined by 
M−1H⊥ = {M−1

|ψ�||ψ� ∈ H⊥} , where H⊥ = {|ψ�|�ψ |yi−1� = 0} , we 
have

We can express |y⊥i � as 1
CM

−1
[α|yi−1� + β|y⊥i−1�] , 

where the state vector |y⊥i−1� ∈ H⊥ is normalized, coeffi-
cients α,β satisfy |α|2 + |β|2 = 1 , and C is the normaliza-
tion factor of |y⊥i � . From the following relationships

we can derive that 
α = O(�t), β = 1+ O((�t)2), C =

[

�y⊥i−1
|(M−1)†M−1

|y⊥i−1
� + O(�t)

]1/2
= 1+ O(�t) . 

Therefore |y⊥i � = [M−1
|y⊥i−1� + O(�t)]/(1+ O(�t)) . As 

a result, we have the Hamiltonian expectation as

(80)
M = �M1�M0 + �M2��b� ≤

1

2
κeTrmax �A�e�A�T(�A��x0� + �b�).

(81)|ỹi� =
|yi� + η|y⊥i �
√

1+ η2
,

(82)
�φ|H |φ� = �φ|M†(I2N − |yi−1��yi−1|)M|φ� = 1.

(83)�y⊥i |yi� = 0,

(84)(M−1)†M−1
= I2N + O(�t)

(85)
δ = �ỹi|H |ỹi� =

η2�y⊥i |H |y⊥i �

(1+ η2)
=

η2

(1+ η2)

1+ O(�t)

(1+ O(�t))2
∼ η2(1+ O(�t)).
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Hence, the error of our algorithm solution resulting 
from imperfect VQE optimization is

By choosing an appropriate VQE sub-program for a spe-
cific differential system, δ and the error ǫVQE can be reduced 
so that the state |ỹi� in Eq. (81) can serve as a good approxi-
mation to |yi� . In our numerical simulation, we employ 
qubit coupled cluster method as our VQE sub-program 
(Section 2.2). In consequence, the expectation values of the 
Hamiltonian output from the optimized PQC in each step 
are reduced to be 5× 10−8

∼ 1.7× 10−4 averagely.
Taking the errors from truncation in finite difference 

method and imperfect VQE optimization into account, if 
we set the time step length �t to be ∼ ǫ and select a suit-
able VQE sub-program that can output an energy expecta-
tion value of ∼ ǫ2 , then the local error in each step due to 
difference approximation and imperfect VQE optimization 
will be O((�t)2) , and the accumulated error is O(�t) ∼ ǫ.

Appendix 5. Gate query complexity
As for general variational quantum algorithms, includ-
ing those for solving linear differential equations and 
simulating general evolutionary process [48, 49, 65], it is 
not direct to derive an exact value of the time complex-
ity, since it is strongly related with the trainability of the 
parameterized quantum circuit, the training strategy 
employed, and the specific configuration of the target 
function (or loss function) in the parameter space.

For the completeness of discussion, here we give out an 
asymptotic upper bound of the gate query complexity of 
our algorithm, i.e., the number of quantum gate queries 
in experiment. In classical computing, the time complex-
ity is evaluated by the number of basic operations like 
adding, subtracting, and other arithmetic operations. 
Analogously, we take the gate query complexity as the 
metric of time complexity of our quantum algorithm.

Firstly, we concentrate on the optimization process of the 
i-th step ( t ∈ [i�t, (i + 1)�t] ). Since we use qubit coupled 
cluster method as our VQE sub-program, O(n

lp
q × L2inq × n2q) 

gate queries are required for Pauli-term ranking, and at 
most O(ne × (2nq + p)× L2i(2nq + p)) gate queries for VQE 
optimization (including evaluation of gradients if a gradient-
based classical optimizer is employed), where ne , the maxi-
mal number of training epochs in each time step, is a preset 
hyperparameter; nq is the number of qubits of the differen-
tial system; lp is the maximal number of qubits acted on by 
the selected Pauli-terms in QCC procedure; L is the number 
of unitaries in the decomposition of matrix A ; and p is the 
number of Pauli-terms to be selected in QCC Pauli-ranking 
procedure (see Section  2.2). Here the factor of L2 comes 

(86)

ǫVQE = 1− |�y�i|ỹi| = 1−
1

√

1+ η2
∼

1

2
η2 ∼

1

2
δ · (1+ O(�t)).

from the fact that we need to evaluate O(L2) elements of B 
and O(L) elements of γ . Therefore, the time complexity of 
training the VQE sub-program for minimizing the expecta-
tion value of the Hamiltonian in the i-th step is O(n

lp+3
q L2i) , 

where constants and hyperparameters are omitted.
Then, we sum the complexities up for all T/�t steps. 

According to the discussions in Appendices 1, 2, and 3, 
�t ≥ ǫ/(TM) , where ǫ is the error of the final state. As a 
result, we have the total gate query complexity through 
the complete algorithm procedure as:

Since it is assumed that L has an order of O(poly logN ) , 
the total gate query complexity (hence the time complex-
ity) of the entire algorithm is O(poly logN ).

Appendix 6. Configurations for simulating 
non‑Hermitian systems
We set the time limit T = 3 when simulating non-Her-
mitian systems using our algorithm. During the training 
process, L-BFGS-B [66, 67] optimizer is employed. For 
each � , we select different hyperparameters to obtain good 
results, which are listed in Table 1. Here p is the number of 
Pauli entanglers used in each evolution step. In our experi-
ment, we find that systems with larger � are easier to be 
simulated. Therefore, we initialize all parameters of QMF 
ansatzes to be zero for � = 2 , while for smaller � s, QMF 
parameters are randomly sampled from a uniform distribu-
tion over their domains, which are [0,π ] for θi s and [0, 2π ] 
for φi s in Eq.  (15). This random initialization strategy can 
avoid our parameters from being initialized on barren pla-
teaus around the coordinate origin. Note that parameters 
of Pauli entanglers are always initialized as zeros. Also, we 
split the evolution process of � = 0.5 system into two parts. 
This is because the turning point of the state is around 
t ∼ 1.8 , where the state change is not obvious. This leads 
to possible barren plateaus around the zero eigenvalue of 
Hamiltonian (9) and makes our algorithm harder to reach 
the global minimum. Hence, we use more Pauli entanglers 
to enhance our PQCs for t > 1.8 . As a benefit, the time 
step �t can be larger than the value of t ≤ 1.8.

Table 1 Hyperparameters for simulating non-Hermitian systems 
with different �s

� �t p Parameter initializer

2.0 0.02 4 Zero

0.99 0.03 2 Uniform random

0.5 ( t ≤ 1.8) 0.03 4 Uniform random

0.5 ( t > 1.8) 0.05 9 Uniform random

(87)O

((

T

�t
L

)2

n
lp+3
q

)

≤ O

((

L

ǫ

)2

log
lp+3

2 N

)

.
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