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Abstract 

A growing cohort of experimental linear photonic networks implementing Gaussian boson sampling (GBS) have now 
claimed quantum advantage. However, many open questions remain on how to effectively verify these experimental 
results, as scalable methods are needed that fully capture the rich array of quantum correlations generated by these 
photonic quantum computers. In this paper, we briefly review recent theoretical methods to simulate experimental 
GBS networks. We focus mostly on methods that use phase-space representations of quantum mechanics, as these 
methods are highly scalable and can be used to validate experimental outputs and claims of quantum advan-
tage for a variety of input states, ranging from the ideal pure squeezed vacuum state to more realistic thermalized 
squeezed states. A brief overview of the theory of GBS, recent experiments, and other types of methods are also pre-
sented. Although this is not an exhaustive review, we aim to provide a brief introduction to phase-space methods 
applied to linear photonic networks to encourage further theoretical investigations.

1  Introduction
Since Feynman’s original proposal in the early 1980s [1], 
a growing amount of research has been conducted to 
develop large-scale, programmable quantum comput-
ers that promise to solve classically intractable prob-
lems. Although a variety of systems have been proposed 
to achieve this [2–5], practical issues such as noise and 
losses introduce errors that scale with system size, 
hampering physical implementations. Therefore, one 
approach of current experimental efforts has been the 
development of specialized devices aiming to unequivo-
cally demonstrate quantum advantage, even when exper-
imental imperfections are present.

To this end, recent developments use photonic net-
works implementing different computationally hard 
tasks [6–9]. Such devices are made entirely from linear 
optics such as polarizing beamsplitters, mirrors, and 

phase-shifters [4, 10], with optical parametric oscillators 
as the quantum source [11, 12]. Unlike cryogenic devices 
based on superconducting quantum logic gates [13, 14], 
these networks are operated at room temperature. Large 
size networks now claim quantum advantage [15–18], 
especially for a type of quantum computer called a 
Gaussian boson sampler that generates random bit out-
puts with a distribution that is exponentially hard to rep-
licate at large network sizes.

This begs the question: how can one verify that large-
scale experimental outputs are correct, when the device 
is designed to solve problems that no classical computer 
can solve in less than exponential time?

In this paper, we review theoretical methods that 
answer this for photonic network-based quantum com-
puters. We especially focus on positive-P phase-space 
representations that can simulate non-classical states 
[19]. Here, we mean simulate in the sense of a classi-
cal sampling algorithm that replicates probabilities and 
moments to an accuracy better than experimental sam-
pling errors, for the same number of samples. Such meth-
ods account for loss and decoherence. They are classical 
algorithms for standard digital computers. In addition, 
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they are highly scalable, with polynomial run-time for 
large networks.

Other types of simulation exist, where the classical 
algorithm replicates the detection events of the experi-
ment [20–22]. These become intractably slow for larger 
networks. The use of methods like this is to offer a way 
to define quantum advantage, meaning a quantum device 
performing tasks that are classically infeasible. Hence, 
we review the definitions of simulation in the literature 
including other approaches as well. There are also meth-
ods that simulate events quickly but approximately, up 
to a systematic error caused by the fact that the approxi-
mate method has a different probability distribution [23–
25]. A comparison is made of different approaches that 
are proposed or used for these problems, including clas-
sical “faking” methods that replicate stochastic detection 
events with some degree of inaccuracy.

Positive-P methods are exactly equivalent to quantum 
moments in the large sample limit and are applicable to 
a variety of experimental networks. One example is the 
coherent Ising machine (CIM) [26, 27], which is used to 
solve NP-hard optimization problems by simulating an 
Ising model with a series of light pulses [9, 28, 29]. The 
largest experimental implementation of the CIM to date 
contains 100,000 modes [12]. This gives approximate 
solutions to hard max-cut problems three orders of mag-
nitude faster than a digital computer. For such problems, 
typically no exact results are known. Therefore, these 
solutions can be hard to validate as well.

Gaussian boson sampling [30–32] experiments have 
seen impressive advancements in recent years. These spe-
cialized linear network quantum computers are used as 
random number generators, where the detected output 
photon counts correspond to sampling from the #P-hard 
Hafnian or Torontonian distributions [7, 8, 33], which 
are either directly or indirectly related to the matrix per-
manent. While more specialized than quantum circuit 
devices, they are also somewhat more straightforward to 
implement and analyze theoretically.

Only a few years after the original theoretical proposals 
[7, 8, 33], multiple large-scale experiments have imple-
mented GBS, with each claiming quantum advantage 
[15–18]. This rapid increase in network size has far out-
paced direct verification methods [20–22], whilst other 
approximate methods [23, 24] typically cannot reproduce 
the higher-order correlations generated in linear pho-
tonic networks of this type.

In summary, we review progress on simulating binned 
correlations or moments of experimental GBS networks 
using the positive-P phase-space representation [30–
32], as well as comparing this with other methods. We 
find that  current experimental results disagree with the 
ideal, pure squeezed state model. However, agreement 

is greatly improved with the inclusion of decoherence in 
the inputs. When this decoherence is large enough, clas-
sical simulation is feasible [34, 35], and quantum advan-
tage is lost. Despite this, recent experimental results 
demonstrate potential for quantum advantage in some of 
the reported datasets [32].

In order to present a complete picture, we also review 
the background theory of GBS, recent large scale experi-
ments [15–18] and other proposed verification algo-
rithms [20–25].

2 � Gaussian boson sampling: a brief overview
The original boson sampler introduced by Aaronson and 
Arkhipov [6] proposed a quantum computer that gener-
ates photon count patterns by randomly sampling an out-
put state whose distribution corresponds to the matrix 
permanent. The computational complexity arises from 
sampling the permanent, which is a #P-hard computa-
tional problem [36, 37].

However, practical applications of the original proposal 
have seen limited experimental implementations, since 
they require one to generate large numbers of indistin-
guishable single photon Fock states. Although small scale 
networks have been implemented [38–40], to reach a 
computationally interesting regime requires the detec-
tion of at least 50 photons [41, 42]. This is challenging to 
implement experimentally.

To solve this scalability issue, Hamilton et  al. [7] pro-
posed replacing the Fock states with Gaussian states, 
which can be more readily generated at large sizes. These 
types of quantum computing networks are called Gauss-
ian boson samplers. They still use a non-classical input 
state, but one that is far easier to generate experimentally 
than the original proposal of number states.

2.1 � Squeezed states
In standard GBS, N single-mode squeezed vacuum states 
are sent into an M-mode linear photonic network. If 
N  = M , the remaining N −M ports are vacuum states. 
If each input mode is independent, the entire input state 
is defined via the density matrix

Here, rj = Ŝ(rj)|0� is the squeezed vacuum state and 
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The ideal GBS assumes that inputs are pure squeezed 
states [46]. These non-classical states are characterized 
by their quadrature variance and are defined as [47, 48]

Here, �2
xj
=

〈

(�x̂j)
2
〉

=
〈

x̂2j

〉

−
〈

x̂j
〉2 is the simplified 

variance notation for the input quadrature operators 
x̂j = â

(in)
j + â

†(in)
j  and ŷj = −i(â

(in)
j − â

†(in)
j ) , which obey 

the commutation relation [x̂j , ŷk ] = 2iδjk.
Squeezed states, while still satisfying the Heisenberg 

uncertainty principle �2
xj
�2

yj
= 1 , have altered variances 

such that one quadrature has variance below the vacuum 
noise level, �2

xj
< 1 . By the Heisenberg uncertainty prin-

ciple, this causes the variance in the corresponding quad-
rature to become amplified well above the vacuum limit, 
�2

yj
> 1 [43, 49, 50]. Other squeezing orientations are 

available and remain non-classical so long as one vari-
ance is below the vacuum limit.
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2.2 � Input‑output theory
Linear photonic networks made from a series of polariz-
ing beamsplitters, phase shifters and mirrors act as large 
scale interferometers, and crucially conserve the Gauss-
ian nature of the input state.

In the ideal lossless case, as seen in Fig. 1, photonic net-
works are defined by an M ×M Haar random unitary 
matrix U  . The term Haar corresponds to the Haar meas-
ure, which in general is a uniform probability measure on 
the elements of a unitary matrix [51].

For lossless networks, input modes are converted to 
outputs following

where â(out)k  is the output annihilation operator for the 
kth mode. Therefore, each output mode is a linear combi-
nation of all input modes.

Practical applications will always include some form of 
losses in the network, for example, photon absorption. 
This causes the matrix to become non-unitary, in which 
case it is denoted by the transmission matrix T  , and the 
input-to-output mode conversion now contains addi-
tional loss terms [52, 53]:
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Here, b̂(in)j  is the annihilation operator for the jth 
loss mode whilst B is a random noise matrix. The loss 
matrix conserves the total unitary of the system as 
TT

† + BB
† = I  , where I  is the identity matrix.

Although linear networks are conceptually simple 
systems, they introduce computational complexity 
from the exponential number of possible interference 
pathways photons can take in the network. These are 
generated from the beamsplitters. As an example, 
the input ports of a 50/50 beamsplitter are defined as 
superpositions of the output modes:

Classical states such as coherent and thermal states 
input into large-scale linear networks are readily sim-
ulated on a classical computer [34]. This leads to the 
question, why are non-classical states such as Fock and 
squeezed states computationally hard to simulate on 
large-scale photonic networks?
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†(out)
4

)

.

Fig. 1  Gaussian boson sampling schematic where N ⊂ M 
single-mode squeezed states of different polarizations (blue ellipses) 
are sent into a lossless linear photonic network where the remaining 
N −M inputs are vacuum states (blue outlined circles). The linear 
network is created from a series of phase-shifters and beamsplitters, 
represented here in a circuit diagram format. This generates 
an exponential number of interference pathways. Mathematically, 
the network is defined by an N ×M Haar random unitary U . Output 
photon patterns are then obtained using either PNR or click detectors
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In short, non-classical states input into a linear net-
work generate large amounts of quantum correlations, 
which are non-trivial to simulate classically if combined 
with photo-detection. Continuing with the beamsplit-
ter example above, if input ports 1 and 2 now contain 
indistinguishable Fock states, as is the case with stand-
ard boson sampling, the input state can be written as

The absence of a |1, 1�3,4 = â
†(out)
3 â

†(out)
4 |0, 0�3,4 term 

means the output photons are bunched, that is, they are 
entangled and always arrive in pairs [54]. This phenom-
ena is known as the Hong-Ou-Mandel (HOM) inter-
ference effect and is named after the authors who first 
observed this phenomena [55].

If input ports 1 and 2 have input-squeezed vacuum 
states, one generates two-mode Einstein-Podolsky-
Rosen (EPR) entanglement in the quadrature-phase 
amplitudes [56, 57]. More details, including a summary 
of the derivation, can be found in [31, 58].

2.3 � Photon counting
In GBS experiments, photon count patterns, denoted 
by the vector c , are generated by measuring the output 
state ρ̂(out) . The corresponding distribution changes 
depending on the type of detector used.

The original proposal for GBS [7] involved normally 
ordered photon-number-resolving (PNR) detectors that 
can distinguish between oncoming photons and imple-
ment the projection operator [54, 59]

Here, : · · · : denotes normal ordering, cj = 0, 1, 2, . . . 
is the number of counts in the jth detector and 
n̂′j = â

†(out)
j â

(out)
j  is the output photon number. Practi-

cally, a PNR detector typically saturates for a maxi-
mum number of counts cmax , the value of which varies 
depending on the type of PNR detector implemented.

When the mean number of output photons per mode 
satisfies 

〈

n̂′j

〉

≪ 1 , PNR detectors are equivalent to 
threshold, or click, detectors which saturate for more 
than one photon at a detector. Click detectors are 
described by the projection operator [59]

where cj = 0, 1 regardless of the actual number of pho-
tons arriving at the detector.
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In situations where 
〈

n̂′j

〉

≫ 1 , click detectors cannot 
accurately discriminate between the different numbers of 
oncoming photons. However, by sending photons 
through a demultiplexer (demux) before arriving at the 
detector, the output pulses of light become "diluted" such 
that the photon number is small enough to be accurately 
counted using click detectors [60, 61]. In this approach, 
the demux acts as a type of secondary optical network of 
size 1×MS , where MS is the number of secondary 
modes. For output photons to become sufficiently dilute, 
one must satisfy MS ≫

〈

n̂′j

〉

 [60–62]. When this is the 
case, the detectors can be thought of pseudo-PNR 
(PPNR), because the click detectors are accurately meas-
uring photon counts, thus becoming equivalent to PNR 
detectors [62].

The computational complexity of GBS arises in the 
probabilities of count patterns c . These probabilities are 
determined using a straightforward extension of the pro-
jection operators for both PNR and click detectors. In the 
case of PNR detectors, the operator for a specific photon 
count pattern is

the expectation value of which corresponds to the #P-
hard matrix Hafnian [7, 33]

Here, DS is the sub-matrix of 
D = T

(

⊕M
j=1 tanh(rj)

)

T
T , corresponding to the chan-

nels with detected photons, where the superscript T 
denotes the transpose of the lossy transmission matrix.

The Hafnian is a more general function than the matrix 
permanent, although both are related following [7, 33]

Therefore, one of the advantages of GBS with PNR 
detectors is that one can compute the permanent of large 
matrices from the Hafnian instead of performing Fock 
state boson sampling.

For click detectors, the operator for a specific binary 
count pattern c is

whose expectation value corresponds to the Torontonian 
[8]
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where OS is a matrix constructed from the covariance 
matrix of the output state. The Torontonian has also been 
shown to be #P-hard to compute, and is related to the 
Hafnian [8].

2.4 � Experimental progress
Only a few short years after the original proposal of GBS 
with click detectors [8], the first large-scale experimental 
network, called Jiuzhang 1.0, was implemented by Zhong 
et  al. [15]. In this experiment, 25 two-mode squeezed 
states, corresponding to N = 50 single-mode squeezed 
states, were created by driving nonlinear crystals with 
transform-limited laser pulses, which is the standard pro-
cess of parametric down-conversion. The polarization of 
each input squeezed state alternates from horizontal to 
vertical for each spatial mode as illustrated in Fig. 1.

Once generated, the squeezed states were sent into 
a lossy M = 100 mode linear network made from over 
300 beamsplitters and phase-shifters. The network is 
separated into two stages: The first consists of three-
dimensional five-layer triangular and rectangular inter-
ferometers [63], similar to the network implemented in 
the Fock state boson sampling experiment of Wang et al. 
[64]. The squeezed photons propagate through the trian-
gular layers, allowing photons of the same polarization 
within the same layer to interfere. Cross-layer photon 
interference then occurs within the rectangular layers 
however, interference of photons with different polariza-
tions does not occur until the second stage. In this stage a 
series of polarizing beamsplitters in the form of an array 
of Mach-Zehnder-like interferometers causes photons of 
all polarizations to interfere [15].

Jiuzhang 1.0 generated over 50 million binary count 
patterns from superconducting nano-wire click detec-
tors in ≈ 200s . The experimentalists estimated it would 
take Fugaku, the largest supercomputer at the time, 600 
million years to generate the same number of samples 
using the fastest exact classical algorithm at the time 
[20]. Exact samplers are algorithms designed to replicate 
an experiment by directly sampling the Torontonian or 
Hafnian using a classical supercomputer. When experi-
ments claim a quantum advantage, they typically do so 
by comparing the run-time of the experiment with such 
exact samplers.

The algorithm implemented in [20] uses a chain rule 
sampler that samples each mode sequentially by comput-
ing the conditional probability of observing photons in 
the kth mode given the photon probabilities of the pre-
vious k − 1 th modes. The computational complexity of 
this algorithm scales as O(N 3

D2
ND ) where ND =

∑M
j=1 cj 

is the total number of detected photon counts. Due to 

(13)
〈

�̂(c)

〉

= Tor(OS),
this scaling with detected counts and system size, more 
recent experiments aim to beat these exact samplers by 
increasing the number of observed counts. The mean 
number of counts per pattern in Jiuzhang 1.0 was ≈ 41 , 
and the largest number of counts in a single pattern was 
76.

Shortly after this initial experiment, in order to reduce 
the probability of an exact sampler replicating the experi-
ment, Zhong et  al. [16] implemented an even larger 
GBS network, named Jiuzhang 2.0, which increased the 
number of modes to M = 144 . The general fabrication 
process of the network remained largely the same as Jiu-
zhang 1.0, although the number of interferometer layers 
and optical elements increased. Multiple experiments 
were performed for different input laser powers and 
waists, producing an increase in the number of observed 
clicks, with a mean click rate of ≈ 68 and a maximum 
observed click number of ND = 113.

At the same time, in classical computing, the 
increased probability of multiple photons arriving at 
the same detector was exploited by Bulmer et al. [22] to 
improve the scaling of the chain rule sampler, achieving 
O(N 3

D2
ND/2) for GBS with both PNR and click detectors. 

Despite this apparently modest improvement, it was esti-
mated that generating the same number of samples as 
Jiuzhang 1.0 on Fugaku would now only take ∼ 73 days 
[22]. Due to the substantial speed-up over previous exact 
algorithms [20, 21], it was predicted that experiments 
using either PNR or click detectors needed ND � 100 to 
surpass exact samplers [22].

To reduce the probability of multiple photons arriving 
at a single detector, Deng et al. [18] added a 1× 8 demux 
to the output modes of Jiuzhang 2.0, dubbing this 
upgraded network Jiuzhang 3.0. The demux is made of 
multiple fiber loop beamsplitters that separate photons 
into four temporal bins and two  spatial path bins and 
aims to ensure 

〈

n̂′j

〉

� 1 , increasing the likelihood the 
click detectors are accurately counting the oncoming 
photons. This simple addition generated patterns with 
almost double the largest number of clicks obtained in 
Jiuzhang 2.0, with one experiment observing a maximum 
of ND = 255 with a mean click number of more than 100.

The linear networks implemented in the three experi-
ments above are all static, that is, once the networks have 
been fabricated, one cannot reprogram any of the internal 
optics. This has the advantage of circumventing the expo-
nential accumulation of loss that arises from increased 
depth [17, 65], although one sacrifices programmability.

To this end, Madsen et  al. [17] implemented a pro-
grammable GBS called Borealis where N-squeezed state 
pulses are generated at a rate of 6MHz from an optical 
parametric oscillator in a cavity. Following from an ini-
tial proposal by Deshpande et al. [65], the linear network 
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is formed using three fiber delay line loops attached to a 
variable beamsplitter (VBS), which is constructed from 
a programmable phase-shifter, polarizing beamsplitters 
and a Pockels cell, which simply modulates the polariza-
tion. The input pulses enter each VBS sequentially, the 
first VBS causes pulses in the time range τ = 1/(6MHz) 
to interfere, which simply corresponds to interference 
between photons inside the VBS and the next on-coming 
pulse. The second and third VBS allow pulses in the range 
6τ = 1MHz and 36τ = 6MHz  to interfere, respectively. 
Photons output from the final fiber loop are then sent 
into a 1× 16 demux and then counted by 16 PNR detec-
tors, which are superconducting transition edge sensors.

Transition edge sensors are a type of highly efficient 
PNR detector that contains a very low dark count rate 
[66, 67]. They extract energy information from oncom-
ing light, where each detection event is represented as 
a time-varying voltage signal (see figures in Ref. [66] for 
an example). Therefore, the larger the number of pho-
tons in an output pulse, the larger the energy, and hence, 
the observed voltage signal. However, since each detec-
tor operates at some baseline temperature, a large volt-
age signal affects the cooldown time of each detector. 
To extract photon numbers from the observed voltage-
time graph, Madsen et al. [17] use the method outlined 
in Morais et al. [66] which requires measuring the area, 
height, length, and maximum slope of the voltage-time 
output. In order to do this accurately, the detector is 
required to reach the cooldown temperature before an 
additional pulse arrives, or else one cannot distinguish 
between pulses.

This is achieved by the demux, which is constructed 
using a series of beamsplitters. The demux not only par-
tially “dilutes” the number of photons in each output 
pulse, as cmax = 13 , but it also delays the output pulses 
as the cooldown time for each detector is ≈ 50− 100kHz 
[17]. This ensures an accurate determination of photon 
numbers.

The two largest networks using this setup sent N = 216 
and N = 288 input pulses into the network, detecting a 
mean photon number of ≈ 125 and ≈ 143 , respectively. 
However, this network was more susceptible to losses 
than the previous Jiuzhang systems [18, 25].

3 � Simulation methods
The rapid growth of experimental networks has spurred 
a parallel increase in the number of algorithms proposed 
for the validation and/or simulation of these networks. 
Due to this, there are some inconsistencies in the liter-
ature on the language used to define a simulator which 
runs on a classical computer. Therefore, we clarify the 
definitions of the various classical simulators proposed 
for validation used throughout the rest of the review.

We first emphasize that a classical algorithm or classi-
cal simulator is any program designed to run on a digital 
computer, be that a standard desktop or supercomputer. 
The current algorithms proposed to validate GBS can be 
defined as either strong or weak classical simulators [68]. 
There is a large literature on this topic, starting from early 
work in quantum optics.

Weak classical simulators parallel the quantum com-
putation of experimental networks by sampling from 
the output probability distribution [69]. Algorithms that 
sample from the full Torontonian or Hafnian distribu-
tions are exact samplers [20–22], as outlined above, and 
all known exact algorithms are exponentially slow. There 
are faster but approximate algorithms producing discrete 
photon count patterns that are typically called “faked” 
or “spoofed” patterns. Some of these generate fake pat-
terns by sampling from the marginal probabilities of 
these distributions [23, 24], in which case they are called 
low-order marginal samplers. Such low-order methods 
are only approximate, since they don’t precisely simulate 
higher-order correlations [23, 24].

In contrast, strong classical simulators are a type of 
classical algorithm that evaluates the output probability 
distribution, be that the full or marginal probabilities, of 
a GBS with multiplicative accuracy, in time polynomial in 
the size of the quantum computation [69, 70].

Phase-space simulators have a similarity to strong clas-
sical simulators, because the samples, which are produced 
with a stochastic component representing quantum fluc-
tuations, are used to compute probabilities or moments 
of the ideal distribution. Positive-P phase-space simula-
tions have been widely used in quantum optics for this 
reason [19, 71–75]. While the sampling precision is not 
multiplicative, it is better than the experimental precision 
of GBS at the same sample number, which is sufficient 
for validation. By approximating the inputs as classical 
states, one can also use phase-space methods to produce 
fake patterns [32], in which case they are called a classical 
P-function sampler, as explained below.

For non-classical inputs, one can generate probabilities 
but not count patterns using phase-space methods: since 
there are no known algorithms to generate counts effi-
ciently from non-classical phase-space samples.

3.1 � Exact classical simulation
There are a number of “exact” classical simulation meth-
ods that generate equivalent photon counts, where we 
use quotes for “exact,” because even these methods have 
round-off errors due to finite arithmetic. These algo-
rithms are all exponentially slow [20–22]. It is known that 
the non-classicality of the squeezed input states of GBS 
is essential to providing quantum advantage in the GBS 
experiments, since classical states which have a positive 
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Glauber-Sudarshan P-representation [76, 77] are known 
to have classically simulable photon counts. This will be 
treated in Section (3.2.2). However, the non-Gaussianity 
arising from the photon-detection measurement process 
is also important.

This is because the measurement set-up where quad-
rature-phase-amplitude measurements are made on a 
system described by Gaussian states can be modeled by a 
positive Wigner function, and hence, becomes classically 
simulable [34, 35]. Gaussian states are defined as those 
with a Gaussian Wigner function. We note that squeezed 
states, while non-classical, are Gaussian states. Examples 
of the classical simulation of entanglement for systems 
with a positive Wigner function are well known [78–83].

The role of the measurement set-up in GBS is clari-
fied by the work of Chabaud, Ferrini, Grosshans, and 
Markham [69] and Chabaud and Walschaers [70]. These 
authors illustrate a connection between quantum advan-
tage and the non-Gaussianity of both the input states and 
measurement set-up. In [69], conditions sufficient for 
the strong simulation of Gaussian quantum circuits with 
non-Gaussian input states are derived. Non-Gaussian 
states are those for which the Gaussian factorization of 
correlation functions is not applicable [84].

By demonstrating a mapping between bosonic quan-
tum computation and continuous-variable sampling 
computation, where the measurement comprises a dou-
ble quadrature detection, Chabaud and Walschaers [70] 
adapt classical algorithms derived in [69] to derive a 
general algorithm for the strong simulation of bosonic 
quantum computation, which includes Gaussian boson 
sampling. They prove that the complexity of this algo-
rithm scales with a measure of non-Gaussianity, the stel-
lar rank of both the input state and measurement set-up. 
This enables a quantification of non-Gaussianity, includ-
ing from the nature of the measurement, as a resource for 
achieving quantum advantage in bosonic computation.

3.2 � Approximate classical simulation
3.2.1 � Low‑order marginal samplers
Recent experiments have surpassed the threshold of 
applicability of exact samplers [16–18]. Even for experi-
ments below this threshold [15], the computation time 
can still be very long and resource intensive. Therefore, 
approximate methods that are more readily scaled to 
larger sizes have been proposed. These cannot validate 
GBS, but they are useful in quantifying a computational 
advantage.

One approach presented by Villalonga et  al. [23], 
exploits the computational efficiency of computing low-
order marginal probabilities of the ideal GBS distribu-
tion to generate photon count patterns by sampling 
from a distribution that contains the correct low-order 

marginals. We note that the relevant marginal probabili-
ties must first be evaluated before sampling.

Two methods are implemented to compute margin-
als, which take the form of multivariate cumulants, also 
called connected correlations or Ursell functions. The 
first method corresponds to a Boltzmann machine (BM) 
and computes pattern probabilities of the form [23]

where Z is the partition function that normalizes the dis-
tribution and �i, �i,j , . . . are parameters computed using a 
mean-field approximation.

Each term in the exponent corresponds to a marginal 
probability of the ideal distribution, where a BM spoofer 
using only the first two summations was implemented 
due to scalability. The BM method is only applicable to 
GBS with click detectors, where faked binary patterns are 
obtained via Gibbs sampling [23].

The second method uses a greedy heuristic to gener-
ate discrete binary patterns with approximately correct 
second and third-order marginals. This algorithm scales 
exponentially with the desired order of the marginal and 
the length of the patterns, which are typically equal to 
the number of modes. Although the greedy method was 
originally developed for GBS with click detectors, it has 
since been extended to PNR detectors [17].

Faked patterns generated from both methods were 
compared to experimental samples from Jiuzhang 1.0 and 
2.0. The best comparison results came from computing 
the total variation distance difference

where δm is the total variation distance between pattern 
probabilities of the ideal distribution and the marginal 
spoofers, and δe is the total variation distance between 
experiment and ideal.

Since computing pattern probabilities is computation-
ally challenging, comparisons were limited to only 14 
modes. However, although the first-order BM sampler 
was always beaten by the experiment, faked samples 
generated from the second-order BM and second and 
third-order greedy algorithms were closer to the ideal 
distribution than the experiment.

Comparisons of the cross-entropy measure, which is a 
widely used quantum advantage benchmark in random 
circuit sampling quantum computers [13, 85, 86], were 
also performed by Villalonga et  al. [23]. It remains an 

(14)

�

�̂(c)

�

= 1

Z
exp





�

i

�iOπi(ci)+
�

i<j

�i,jOπi(ci)Oπj(cj)

+
�

i<j<k

�i,j,k π̂i(ci)π̂j(cj)π̂k(ck)+ . . .





(15)�δ = δm − δe,
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open question whether this is a useful measure for boson 
sampling networks [24].

In general, if experimental samples obtain a smaller 
cross entropy than the spoofer, there is evidence of com-
putational advantage. As was the case for the total varia-
tion distance difference, when compared to samples from 
the first-order BM, experimental samples were immedi-
ately larger, but for all other spoofers results were mixed, 
with all samples obtaining a similar cross entropy to the 
experiment [23].

An algorithm introduced by Oh et al. [24] was specifi-
cally designed to spoof the cross entropy measure of GBS 
networks using up to second-order marginal probabili-
ties. This algorithm produced samples that successfully 
spoofed the small scale test networks in Ref. [17], but 
became too computationally demanding to spoof larger 
scale networks that claim quantum advantage [15–17].

3.2.2 � Classical P‑function samplers
Practical implementations of GBS will inevitably produce 
decoherence and losses. These may arise within the net-
work, as discussed above, or in the input states as dis-
cussed in subsection  4.2. For large enough decoherence 
and loss, either the inputs, outputs or both are trans-
formed to classical states [35, 52].

For such classical states, GBS loses its quantum advan-
tage and an efficient classical simulation is possible. This 
was first shown by Rahimi-Keshari et  al. [34] for Fock 
state boson sampling and later extended to GBS by Qi 
et al. [35], although the fundamental ideas are much older 
than this [87]. In both cases, the condition for classical 
simulation hinges on whether the resulting phase-space 
output distribution, simulated using a set of experimen-
tal inputs, was non-negative. These conditions hinge on 
the well-known result that, for some states, the Glauber-
Sudarshan and Wigner representations produce negative 
distributions on phase space [54, 88], which is why they 
are typically referred to as quasi-probability distributions.

We define any classical algorithm that samples from 
the output distribution of a classical state GBS as a clas-
sical GBS sampler. Although the most commonly tested 
classical state is the fully decoherent thermal state, it is 
an extreme case and and has been thoroughly disproved 
for all current experimental networks [15–18]. However, 
a more realistic scenario is a classical approximation to 
pure squeezed states.

Two such states have recently been proposed called 
squashed and squished states [18, 89]. Unlike thermal 
states, which have a quadrature variance of �2

xj
= �2

yj
 , 

squashed and squished states maintain the unequal vari-
ances of squeezed states (see Fig. 2 for a diagram of the 
variances for different states). Despite this, decoherence 
may cause the once squeezed quadrature variance to 

become �2
xj
= 1 , whilst �2

yj
> 1 . Therefore, squashed and 

squished states are classical states. No true squeezing 
occurs, since neither variance is below the vacuum limit. 
We note that the difference between these two states is 
that squished states must contain the same mean number 
of photons as the input squeezed state [18], whereas the 
squashed state photon number can vary.

Comparisons of all experimental networks with simu-
lated thermal states have, expectedly, failed [15–18]. 
However, Juizhang 1.0 data was shown to have a large 
degree of input decoherence [30], and hence simulated 
squashed states were shown to model samples from Jiu-
zhang 1.0 as well as the theoretical ideal distribution for 
some statistical tests [89]. An efficient phase-space sam-
pler, which can generate binary patterns for any classi-
cal input state, later showed that squashed state count 
patterns were closer to the simulated ideal distribu-
tion than the experimental data set in Jiuzhang 2.0 that 
claims quantum advantage [32]. This method is reviewed 
in more detail in section 4. The most recent GBS experi-
ments with PNR and click detectors, Borealis and Jiu-
zhang 3.0, produced outputs that were closer to the ideal 
than simulated squashed and squished states, although 
squished states have only been tested against samples 
from Jiuzhang 3.0 to date.

The classical GBS samplers implemented in these tests 
assume either all N ⊂ M inputs or all M outputs are clas-
sical states. A more physically realistic scenario is one 
where the inputs and/or outputs are mixtures of classi-
cal and quantum states. In order to model this, a classical 
sampler that scales with the loss rate η of the linear net-
work was introduced by Oh et al. [25].

The aim of this algorithm is to simulate the output 
covariance matrix V p of a pure squeezed state GBS using 
a tensor network method. This covariance matrix arises 
from a decomposition of the actual output covariance 
matrix V = W + V p , where W ≥ 0 is a random dis-
placement matrix arising from classical photons in the 
outputs.

As outlined in the previous subsection, the compu-
tational complexity of computing the ideal GBS, corre-
sponding to V p in this case, scales with the number of 
system modes and hence detected photons. However, 
only non-classical output photons contribute to this 
computational complexity. Therefore, if more experimen-
tal output photons are classical rather than non-classical, 
the matrix W  will dominate the computation of V  [25], 
which one should then be able to simulate efficiently.

This is the general principle of the algorithm imple-
mented by Oh et  al. [25], where the number of non-
classical output photons is computed from the actual 
squeezing parameter s = −1/2 ln(1− η) . Clearly, as the 
loss rate increases, the non-classical photons decrease, 
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in turn causing the number of classical photons to 
increase, allowing W  to dominate the output covari-
ance matrix.

Samples obtained from this method were used to cal-
culate the total variation distance and cross-entropy 
for the small-scale test networks of Ref. [17], as well as 
second and higher-order cumulants for larger-scale net-
works [15–18]. In all cases, samples produced from this 
classical sampler were closer to the ideal distributions 
than all the experiments, highlighting the extent to which 
the loss rate η plays a role in affecting claims of quantum 
advantage in the current generation of GBS.

The effect of losses and noise was also investigated by 
Mendes et  al. [90], which proposed using the Lambert-
Tsallis Wq-function to determine the randomness of the 
observed photon counts without actually computing the 
output probability distribution.

The Wq-function was used to determine the random-
ness of output photon patterns, with counts from an 
8× 8 Haar random unitary with input states having 
equal squeezing parameters serving as a baseline test 
[90]. When the input squeezing parameters and detector 
efficiency were altered, it was shown that one could dis-
tinguish samples from the two systems because the ran-
domness measured by the disentropy was altered.

4 � Validating Gaussian boson sampling in phase 
space

One of the many open questions in GBS research is 
how to efficiently validate large-scale experimental net-
works. The exact methods reviewed above either suf-
fer from scalability issues [20–22], or else they do not 
simulate higher-order correlations [23] due to compu-
tational complexity. Due to the rapid growth of experi-
mental networks, even higher-order correlations will be 
produced due to the increase in interference pathways. 
The requirement of a simulation method that validates 
a quantum computer is that it allows the computation 
of measurable probabilities with an accuracy at least 
equal to the experimental sampling error.

Such correlations and probabilities play an increas-
ingly important role in characterization of the output 
distribution [91], even when losses are present [53, 
92], despite their increased sensitivity to decoher-
ence. Therefore, scalable methods are needed that 
simulate higher-order correlations without perform-
ing the impractical #P-hard direct computation of the 
count samples. To this end, we review recent theoreti-
cal methods that simulate grouped count probabilities 
(GCPs) of GBS networks using the normally ordered 
positive-P phase-space representation.

Fig. 2  A diagram of the quadrature variance for different states. The vacuum state (blue dashed line) has variance �2
xj
= �2

yj
= 1 and arises 

from the Heisenberg uncertainty principle as the minimum uncertainty state. When �2
xj
< 1, �2

yj
> 1 one obtains the non-classical pure squeezed 

state (green dashed line) or the thermalized squeezed state (purple dashed line), which has a larger variance for the squeezed quadrature than pure 
squeezing but remains below the vacuum limit. The classical thermal state (solid red line) has variance �2

xj
= �2

yj
> 1 , while although the squashed 

state has variance �2
xj
 = �2

yj
 , neither squeezing is below the vacuum limit as, in this case, �2

xj
= 1, �2

yj
> 1.
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Currently, these methods can be used for networks 
with click detectors, and have successfully been applied 
to compare theory and experiment for samples from 
Jiuzhang 1.0 [30] and Jiuzhang 2.0 [32]. We emphasize 
that the positive P-representation does not produce dis-
crete count patterns. However, the simulated output 
distributions have identical moments to the ideal GBS 
distributions.

We first outline the necessary background theory 
on phase-space representations, focusing on normally 
ordered methods, and GCPs before briefly review-
ing simulation results for data from Jiuzhang 1.0. These 
results were initially presented in [30], but were obtained 
by simulating single-mode squeezed states as opposed 
to two-mode squeezed states, due to ambiguities in the 
public dataset. The results are corrected here, but this 
does not change the conclusions presented in [30], as it 
only has a small effect on the ideal GBS distribution com-
parisons and the specific fitting parameter values.

For more details on the phase-space method, the 
interested reader is referred to Refs. [30–32], whilst the 
efficient phase-space code package, xQSim, can be down-
loaded from public domain repositories [93].

4.1 � Phase‑space methods
Originally developed by Wigner for symmetrically 
ordered operators [94], phase-space representations 
establish a mapping between quantum operators of dif-
ferent orderings to probability distributions defined 
on the classical phase-space variables of position and 
momentum [54, 95], which are more commonly rewrit-
ten in terms of the complex coherent state amplitude 
vectors α , α∗.

Moyal [96] later showed how one can use these meth-
ods to compute the dynamics of operators. Due to this, 
phase-space representations are frequently used to com-
pute the operator master equation [95, 97], which for 
some representations, corresponds to the second-order 
Fokker-Planck equation (FPE), which is commonly used 
in statistical mechanics.

The FPE in turn, can be mapped to a stochastic differ-
ential equation (SDE) that introduces randomly fluctuat-
ing terms and, for some real or complex vector a , takes 
the general form [98]

where A is a vector function and B is a matrix, both of 
which are typically known, while ξ(t) is a real Gaussian 
noise term with �ξ� = 0 and 

〈

ξi(t)ξj(t
′)
〉

= δ(t − t ′)δij . 
These randomly fluctuating terms, defined as the deriva-
tive of a Wiener process [98], play an analogous role to 

(16)
d

dt
a = A(a)+ B(a)ξ(t),

quantum and thermal fluctuations for applications in 
quantum mechanics.

Each solution of an SDE is a stochastic trajectory 
in phase-space and physically corresponds to a single 
experiment. Therefore, averages over an ensemble of tra-
jectories ES corresponds to a mean value from multiple 
experimental shots.

Such dynamical methods have been successfully 
applied to a variety of quantum optics systems [99–102] 
(also see Ref. [75] for a brief review), including the CIM 
[26, 27]. However, as is clear from subsection 2.2, linear 
networks are not modeled dynamically and hence cannot 
produce an SDE.

Instead, phase-space representations model linear net-
works as stochastic difference equations (SDFE) where 
the Mth order SDFE takes the general form [103]

where an , Am , B and ξn are discrete analogs to their con-
tinuous variable definitions in Eq. (16). This becomes 
clearer when compared with Eq. (4).

Due to the randomly fluctuating term, SDEs do not 
have analytical solutions and must be computed numeri-
cally using a variety of methods [104]. As is also the case 
with numerical computations of non-stochastic differen-
tial equations, SDEs are approximated as difference equa-
tions for numerical computation. Although one usually 
has practical issues such as small step size limits for SDEs 
[103, 104], SDEs and SDFEs are two sides of the same 
coin.

Due to the use of PNR and click detectors, we focus on 
simulating linear networks using the normally ordered 
Glauber-Sudarshan diagonal P-representation and gener-
alized P-representations. Non-normally ordered Wigner 
and Q-function methods are possible also [30–32], but 
these have too large a sampling error to be useful for sim-
ulations of photon counting.

4.1.1 � Generalized P‑representation
The generalized P-representation developed by Drum-
mond and Gardiner [19] is a family of normally ordered 
phase-space representations that produce exact and 
strictly positive distributions on phase-space for any 
quantum state. It was developed as a non-classical exten-
sion of the Glauber-Sudarshan diagonal P-representation, 
which is defined as

where |α� is a coherent state vector.

(17)an+1 =
M
∑

m=0

Am(n−m,an−m)+ B(n,an)ξn,

ρ̂ =
∫

P(α)|α��α|d2Mα,
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Due to the absence of off-diagonal terms in the den-
sity matrix, which represent quantum superpositions, 
the diagonal P-representation produces a distribution 
P(α) that is negative and singular for non-classical 
states such as Fock and squeezed states.

To account for this, the generalized P-representation 
introduces the projection operator

which doubles the phase-space dimension. This 
increased dimension allows quantum superpositions to 
exist, since the basis now generates independent coher-
ent state amplitudes α , β with off-diagonal amplitudes 
β  = α∗ , which define a quantum phase-space of larger 
dimensionality.

The most useful generalized-P method for simulat-
ing linear networks with squeezed state inputs is the 
positive P-representation, which expands the density 
matrix as the 4M-dimensional volume integral

Here, α , β can vary along the entire complex plane 
and by taking the real part of Eq. (19), the density 
matrix becomes hermitian, thus allowing efficient 
sampling.

The other generalized-P method, called the com-
plex P-representation, requires P(α,β) to be complex, 
resulting from its definition as a contour integral [19]. 
This makes the complex P-representation useful for 
simulating Fock state boson sampling, which requires 
a complex weight term � to be applied to the sampled 
distribution [105, 106].

One of the key reasons the positive P-representation 
is useful for simulating photonic networks arises from 
the moment relationship

where 〈. . . 〉 denotes a quantum expectation value and 
〈. . . 〉P a positive-P ensemble average. Therefore, normally 
ordered operator moments are exactly equivalent to pos-
itive-P phase-space moments, which is also valid for any 
generalized P-representation.

The reader familiar with phase-space methods may 
know that other representations, such as the Wigner 
and Husimi Q function, also output a positive, non-
singular distribution for Gaussian, non-classical states.

(18)�̂(α,β) =
|α�

〈

β∗∣
∣

〈

β∗|α
〉 ,

(19)ρ̂ =
∫ ∫

P(α,β)�̂(α,β)d2Mαd2Mβ .

(20)

〈

â†j1 . . . âjn

〉

=
〈

βj1 . . . αjn
〉

P
,

=
∫ ∫

P(α,β)
(

βj1 . . . αjn
)

d2Mαd2Mβ ,

While this is certainly true, for experiments using nor-
mally ordered detectors, one must re-order every non-
normally ordered operator to obtain normal ordering. 
This introduces a term corresponding to vacuum noise 
in the initial phase-space samples, resulting in sampling 
errors that increase exponentially for higher-order cor-
relations, thereby making such methods unsuitable for 
simulating photonic networks [32].

Using the coherent state expansion of pure squeezed 
states [107], one can define the input state Eq. (1) in 
terms of the positive P-representation as

The resulting positive-P distribution for input pure 
squeezed states is [30]

where Cj =
√

1+ γj/(πγj) is a normalization constant 
and γj = e2rj − 1.

Output samples are then readily obtained by trans-
forming the input coherent amplitudes as α′ = Tα , 
β ′ = T

∗β , which corresponds to sampling from the out-
put density matrix

4.2 � Grouped count probabilities
For GBS with click detectors, the number of possible 
binary patterns obtained from an experiment is ≈ 2M 
with each pattern having a probability of roughly 
〈

�̂(c)

〉

≈ 2−M . Samples from large scale networks are 
exponentially sparse, requiring binning to obtain mean-
ingful statistics. It is therefore necessary to define a 
grouped count observable that corresponds to an experi-
mentally measurable quantity.

The most general observable of interest is a d-dimen-
sional grouped count probability (GCP), defined as [30]

which is the probability of observing m = (m1, . . . ,md) 
grouped counts of output modes M = (M1,M2, . . . ) 
contained within disjoint subsets S = (S1, S2, . . . ) . Here, 
similar to Glauber’s original definition from intensity cor-
relations [87], n =

∑d
j=1Mj ≤ M is the GCP correlation 

order.

(21)ρ̂(in) = Re

∫ ∫

P(α,β)�̂(α,β)dαdβ .

(22)P(α,β) =
∏

j

Cje
−(α2j +β2

j )(γ
−1
j +1/2)+αjβj ,

(23)ρ̂(out) = Re

∫ ∫

P(α,β)�̂(α′,β ′)dαdβ .

(24)G
(n)
S

(m) =
�

d
�

j=1
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�̂Sj (c)





�

,



Page 12 of 19Dellios et al. AAPPS Bulletin           (2023) 33:31 

Each grouped count mj is obtained by sum-
ming over binary patterns c for modes con-
tained within a subset Sj . For example, a d = 1 
dimensional GCP, typically called total counts, gener-
ates grouped counts as mj =

∑M
i ci , whilst d > 1 gives 

m = (m1 =
∑M/d

i=1 ci, . . . ,md =
∑M

i=M/d+1 ci) . This defi-
nition also includes more traditional low-order marginal 
count probabilities and moments.

Although a variety of observables can be generated 
using GCPs, such as the marginal probabilities commonly 
used by spoofing algorithms [23, 24], multi-dimensional 
GCPs are particularly useful for comparisons with exper-
iment. The increased dimension causes the number of 
grouped counts to grow, e.g. for d = 2 m = (m1,m2) , 
which in turn increases the number of count bins (data 
points) available for comparisons, providing a fine 
grained comparison of results. This also causes effects 
of higher order correlations to become more statistically 
significant in the data [32].

One the most useful applications arises by randomly 
permuting the modes within each subset Sj , which results 
in a different grouped count for each permutation. The 
number of possible permutation tests scales as [32]

where different correlations are compared in each com-
parison test. This leads to a very large number of distinct 
tests, making good use of the available experimental data.

Despite these advantages, caution must be taken 
when comparing very high dimensional GCPs, since the 
increased number of bins means that there are fewer 
counts per bin. This causes the experimental sampling 
errors to increase, reducing the significance of statistical 
tests [32].

5 � Computational phase‑space methods
To simulate GCPs in phase space, input stochastic ampli-
tudes α , β corresponding to the phase-space distribution 
of the input state ρ̂(in) must first be generated. However, 
although pure squeezed states are the theoretical “gold 
standard” of GBS, practically they are challenging to cre-
ate in a laboratory and inevitably decoherence will arise 
from equipment.

5.1 � Decoherent input states
A more realistic model is one that includes decoherence 
in the input state. Such a model was proposed in [30] 
and assumes the intensity of the input light is weakened 

(25)

(

M
M/d

)

d
= M!

d(M/d)!(M −M/d)! ,

by a factor of 1− ǫ while adding nthj = ǫnj thermal pho-
tons per mode. The number of input photons per mode 
remains unchanged from the pure squeezed state defi-
nition, but the coherence of photons is now altered to 
m̃ = (1− ǫ)mj . To account for possible measurement 
errors, a correction factor t is also applied to the trans-
mission matrix, to improve the fit to the simulated 
distribution.

The advantage of this decoherence model, which is a 
type of thermal squeezed state [47, 108], is that it allows 
a simple method for generating phase-space samples 
for any Gaussian state following

where 
〈

wjwk

〉

= δjk are real Gaussian noises that model 
quantum fluctuations in each quadrature and

are the thermal squeezed state quadrature variances.
As ǫ → 1 the inputs become classical, since 

�2
xj
, �2

yj
≥ 1 , but small amounts of thermalization cause 

the inputs to remain non-classical described, for exam-
ple, by a squeezing of �2

xj
< 1 . So long as the state is 

Gaussian, one can model a variety of inputs, both clas-
sical and non-classical, by simply varying ǫ , where ǫ = 0 
corresponds to a pure squeezed state and ǫ = 1 to a 
thermal state. We note that this sampling method gen-
erates single-mode states. To simulate GBS with two-
mode squeezed state inputs, as is the case with the 
Jiuzhang experiments, the N single-mode states are 
interfered using the matrix B =

⊕N/2
k=1Uk [89], where 

Uk is a unitary 50/50 beamsplitter matrix.
The input stochastic samples are also straightfor-

wardly extended to non-normally ordered representa-
tions, as outlined in detail in [30–32].

Performing the summation over binary patterns can 
now be efficiently simulated in phase-space using the 
multi-dimensional inverse discrete Fourier transform 
[30]

where the Fourier observable simulates all possible cor-
relations generated in an experimental network and is 
defined as

(26)
αj =

1

2

(

�xjwj + i�yjwj+M

)

βj =
1

2

(

�xjwj − i�yjwj+M

)

,

(27)
�2

xj
= 2(nj + m̃j)

�2
yj
= 2(nj − m̃j),

(28)G
(n)
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k

G̃
(n)
M (k)e

i
∑

j kjθjmj ,
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Here, θj = 2π/(Mj + 1) , kj = 0, . . . ,Mj and 
πj = exp(−n′j)(exp(n

′
j)− 1)cj is the positive-P click 

observable, obtained from the equivalence Eq. (20), 
where n′j = α′

jβ
′
j  is the output photon number.

This simulation method is highly scalable, with 
observables such as d = 1, 2 dimensional GCPs, first 
and second-order marginals taking a few minutes to 
simulate on a desktop computer for current experimen-
tal scales. This scalability is highlighted by simulations 
of total counts for much larger network sizes of up to 
M = 16, 000 modes [30], which is much larger than the 
current generation of GBS networks. We note however 
that increasing the GCP dimension to d ≥ 4 causes 
the simulations to take hours as opposed to minutes. 
This is not particularly limiting for current experimen-
tal networks, since d = 4 is also the experimental data 
limit, where the increase in sampling errors from too 
few counts per bin reduces the accuracy of statistical 
tests [32].

5.2 � Phase‑space classical sampler
If classical states are input into a GBS, the network can be 
efficiently simulated using the diagonal P-representation, 
which arises as a special case of the positive P-represen-
tation if P(α,β) = P(α)δ(α∗ − β) . Due to this, initial sto-
chastic samples are still generated using Eq. (26), except 
now one has rotated to a classical phase-space with 
β = α∗.

Similar to non-classical states, the input density matrix 
for any classical state is defined as

where the form of the distribution P(α) changes depend-
ing on the state. Input amplitudes are again transformed 
to outputs following α′ = Tα or α′ = TBα for single or 
two-mode states, respectively, and are used to define the 
output state

Using the output coherent amplitudes, one can now 
efficiently generate binary patterns corresponding to any 
classical state input into a linear network. In order to 
conserve the simulated counts for each ensemble, cor-
responding to a single experimental shot, the jth output 
mode of the kth ensemble is independently and randomly 
sampled via the Bernoulli distribution [32]

(29)G̃
(n)
S

(k) =
〈

d
∏

j=1

⊗

i∈Sj

(

πi(0)+ πi(1)e
−ikjθj

)

〉

P

.

(30)ρ̂(in) =
∫

P(α)|α��α|d2α,

(31)ρ̂(out) =
∫

P(α)
∣

∣α′〉〈α′∣
∣d2α.

Here, c(class)j = 0, 1 is the classically generated bit of the 
jth mode where the probability of c(class)j = 1 , the “suc-
cess” probability, is

This is simply the click probability of the kth stochastic 
ensemble with an output photon number of n′j =

∣

∣αj
∣

∣

2.
For an M-mode network, each stochastic ensemble 

outputs a classical faked pattern of the form

which are binned to obtain GCPs, denoted G(class) , that 
can be compared to simulated distributions.

In the limit of large numbers of patterns, binned classi-
cal fakes are approximately equal to the simulated output 
distribution corresponding to the density matrix Eq. (31). 
An example of this can be seen in Fig.  3 where 4 × 106 
binary patterns are generated by sending N = 20 thermal 
states into an M = N  mode lossless linear network rep-
resented by a Haar random unitary. The binned classical 
patterns produce a total count distribution that agrees 
with simulations within sampling error, because for this 
classical input example, there is no quantum advantage.

5.3 � Statistical tests
For comparisons to be meaningful, statistical tests are 
needed to quantify differences between experiment and 
theory. To this end, Refs. [30, 31] implement a slightly 
altered version of a standard chi-square test, which is 
frequently used in random number generator validation 
[109, 110], and is defined as

Here, k is the number of valid photon count bins, which 
we define as a bin with more than 10 counts, and Ḡi,S is 
the phase-space simulated GCP ensemble mean for any 
input state S, which converges to the true theoretical 
GCP, Gi,S , in the limit ES → ∞ . The experimental GCP is 
defined as Gi,E , and σ 2

i = σ 2
T ,i + σ 2

E,i is the sum of experi-
mental, σ 2

E,i , and theoretical, σ 2
T ,i , sampling errors of the 

i-th bin.
The chi-square test result follows a chi-square distribu-

tion that converges to a normal distribution when k → ∞ 
due to the central limit theorem [111, 112]. One can use 
this to introduce another test that determines how many 
standard deviations away the comparison result is from 

(32)P
(k)
j

(

c
(class)
j

)

=
(

p
(k)
j

)c
(class)
j

(

1− p
(k)
j

)1−c
(class)
j

.

(33)p
(k)
j = (πj(1))

(k) =
(

1− e
−n′j

)(k)
.

(34)(c(class))(k) = [P(k)
1 ,P

(k)
2 , . . . ,P

(k)
M ],

(35)χ2
ES =

k
∑

i=1

(

Gi,E − Ḡi,S

)2

σ 2
i

.
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its expected normally distributed mean. The aim of this 
test is to obtain the probability of observing the output 
χ2
ES result using standard probability theory. For example, 

an output of 6σ , where σ is the standard deviation of the 

normal distribution, indicates the data has a very small 
probability of being observed.

To do this, Ref. [32] implemented the Z-score, or Z-sta-
tistic, test which is defined as

where 
(

χ2
ES/k

)1/3 is the Wilson-Hilferty (WH) trans-
formed chi-square statistic [111], which allows a faster 
convergence to a normal distribution when k ≥ 10 [111, 
112], and µ = 1− σ 2 , σ 2 = 2/(9k) are the corresponding 
mean and variance of the normal distribution.

The Z-statistic allows one to determine the probability 
obtaining the resulting χ2/k value. A result of ZES > 6 
would indicate that experimental distributions are so 
far from the simulated results that patterns may be dis-
playing systematic errors. Valid experimental results 
with correct distributions should have χ2

EI/k ≈ 1 , where 
the subscript I denotes the ideal GBS distribution, with 
ZEI ≈ 1 . For claims of quantum advantage, one must 
simultaneously prove that ZCI ≫ 1 , where the subscript 
C denotes binary patterns from the best classical fake, 
such as the diagonal-P method described above. This is 
the ’gold standard’ and would show that, within sampling 
errors, experimental samples are valid, and closer to the 
ideal distribution than any classical fake.

In the more realistic scenario of thermalized squeezed 
inputs, one may still have quantum advantage if ZET ≈ 1 
while ZCT ≫ 1 , where the T indicates a simulated ther-
malised squeezed state. Therefore, these four observables 
are of the most interest for comparisons of theory and 
experiment, and are given below.

5.4 � Comparisons with experiment
Throughout this section, for purposes of illustration, we 
primarily review comparisons of data from Jiuzhang 1.0 
using two-mode squeezed state inputs. A thorough com-
parison of all data sets obtained in Jiuzhang 2.0 is pre-
sented elsewhere [32].

We first review comparisons of total counts, which is 
the probability of observing m clicks in any pattern and 
is usually one of the first observables experimentalists 
compare samples to. This is because in the limit of a large 
number of clicks, one can estimate the ideal distribution 
as a Gaussian distribution via the central limit theorem.

To simulate the ideal total counts distribution in phase-
space using GCPs we let n = M and S = {1, 2, . . . ,M} , 
giving G(M)

{1,...,M}(m) . For Jiuzhang 1.0, one obtains a Z-sta-
tistic of ZEI ≈ 408 for k = 61 valid bins. Clearly, experi-
mental samples are far from the ideal and indicate photon 
count distributions are not what would be expected from 
an ideal GBS.

(36)ZES =
(

χ2
ES/k

)1/3 − (1− 2/(9k))
√

2/(9k)
,

Fig. 3  Comparisons of total counts, the m count probability 
regardless of pattern, for 4× 106 classical binary patterns generated 
from thermal states with r = [1, . . . , 1] input into a 20× 20 
Haar random unitary matrix U with transmission coefficient 
t = 0.5 . a Positive-P phase-space simulated output distribution, 
obtained using ES = 1.2× 106 ensembles, for thermal states 
sent into a linear network denoted by the solid blue line are 
compared against the distribution produced by the binned 
thermal fake patterns which are represented by the orange 
dashed line. b Comparison of the normalized difference 
�G(M)(m)/σm =

(

Ḡ − G(class)
)

/σm , where σm is the sum 
over compared grouped count variances (following from Eq. 
(35)), and G(class) represents a classically simulated, discrete count 
probability. Upper and lower lines correspond to one standard 
deviation of theoretical phase-space sampling errors, while the error 
bars correspond to the sampling errors of the simulated “fake” 
counts. The results are cut off for photon count bins containing 
less than 10 counts. The expected good agreement becomes clearer 
when Z-score statistical tests are performed, giving Z(class) ≈ 1 . In this 
example, since the input is classical there is no quantum advantage, 
and the classical sampler is exact, as expected



Page 15 of 19Dellios et al. AAPPS Bulletin           (2023) 33:31 	

To determine whether these differences either increase 
or decrease when higher-order correlations become 
more prevalent in the simulations, the dimension of the 
GCP is increased to d = 2 . In this case, Jiuzhang 1.0 sees 
an almost doubling in Z values for comparisons with the 
simulated ideal distribution (see Fig. 4), where ZEI ≈ 796 
is obtained from k = 975 [30]. The increase in the num-
ber of valid bins with GCP dimension causes the normal 
distribution of the WH transformed chi-square statistic 
to have a smaller variance. When compared to a single 
dimension, where k = 61 gives σ 2 ≈ 3.6× 10−3 , binning 

with d > 1 causes experimental samples to now pass a 
more stringent test, as k = 975 produces a normal distri-
bution with variance σ 2 ≈ 2.3× 10−4.

Simulating the more realistic scenario of thermal-
ized squeezed states, a thermalized component of 
ǫ = 0.0811± 0.0005 and a transmission matrix correc-
tion of t = 1.0305± 0.0005 is used as to compare a sim-
ulated model to samples from Jiuzhang 1.0. This is very 
close to the original, modified parameters [30]. In this 
case, an order of magnitude improvement in the resulting 
Z value is observed, giving ZET ≈ 17± 2 for total counts.

Despite this significant improvement, differences are 
still large enough that ZET > 1 . Similar results were also 
obtained for data sets with the largest recorded photon 
counts in Jiuzhang 2.0, that is data sets claiming quantum 
advantage [32]. However, this is not the case for data sets 
with small numbers of recorded photons which typically 
give ZET ≈ 1 [32], although these experiments should be 
easily replicated by exact samplers. The large amount of 
apparent thermalization is the likely reason why simu-
lated squashed states described Jiuzhang 1.0 samples just 
as well as the ideal GBS in Ref. [89].

When higher-order correlations are considered, sam-
ples from Jiuzhang 1.0 are far from the expected cor-
relation moments of the ideal distribution. Although 
including the above fitting parameters improves this 
result with ZET ≈ 130  for d=2, the samples still deviate 
significantly from the theoretical thermalized distribu-
tion [30].

Unlike comparisons of total counts, samples from all 
data sets in Jiuzhang 2.0 satisfy ZEI ,ZET > 1 for simula-
tions with d > 1 , meaning higher-order correlations also 
display significant departures from the expected theoreti-
cal results, even for the simpler cases with low numbers 
of photon counts [32]. The reasons for this are not cur-
rently known.

6 � Summary
In order to effectively validate GBS quantum comput-
ers, scalable methods are needed which capture the 
entire interference complexity of linear networks. The 
positive-P phase-space representation is the only cur-
rently known method which can simulate every meas-
urable grouped output distribution with non-classical 
input states, allowing efficient comparisons of theory 
and experiment for data that is available on a reasonable 
time-scale. Although it is currently limited to GBS with 
click detectors, an extension to GBS with PNR detectors 
is possible since the positive-P representation is still use-
ful, although a different binning method is required since 
the outputs are no longer binary.

One of the important issues here is the extraordinary 
relative sparseness of the experimental data, which 

Fig. 4  a Comparison of a one-dimensional planar slice 
through the maximum of a d = 2 dimensional GCP G(100)

50,50 (m) 
for binary patterns from Jiuzhang 1.0 data (dashed orange line). 
Phase-space simulations (solid blue line) are performed for the ideal 
GBS, without decoherence, and use ES = 1.2× 106 stochastic 
ensembles. b Normalized difference between theory and experiment 
�G(M)(m)/σm versus m1 , which is the grouped count for modes 
contained within the first subset S1 . Upper and lower solid black lines 
are ±1σT  , with grouped count bins containing less than 10 counts 
being cut off. Although the distributions are visually similar in a), 
the normalized difference shows that significant discrepancies are 
present (see Fig. 3 for definitions), and one can readily determine 
that the ideal GBS model is not validated for this set of experimental 
data, although the agreement is much better if a decoherent, 
thermalized model is used instead
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makes it completely impossible to experimentally 
recover any reasonable estimate of the full distribution. 
Thus, while the full distribution is exponentially hard to 
compute, it is equally hard to measure. This means that 
comparisons of theory and experiment always involve 
some type of grouping or binning of the available data.

The next significant point is that one can both exper-
imentally measure and theoretically compute the 
grouped distributions. This can be carried out theoreti-
cally with great precision using the positive-P phase-
space simulation method, combined with a Fourier 
transform binning algorithm. These do not add greatly 
to the computational overhead, giving exact tests that 
are computable in just a few minutes, which is of great 
practical value.

The resulting statistical tests employed in these com-
parisons are far more scalable than ones implemented 
in many previous comparisons [15–18, 23–25], as they 
do not require the computation of photon count pat-
tern probabilities, which limits the comparisons that 
can be performed using these tests. Exact simulation 
using direct photon counts is impractical in the large-
scale regime where quantum advantage is found.

Statistical testing shows that the GBS experiments 
tested are far from the ideal GBS output distributions 
which are obtained from injecting pure squeezed vac-
uum states into a linear network. The reason for the 
discrepancy is that some form of decoherence is inevi-
table in such large quantum systems, and this makes the 
ideal standard too high a bar that is unlikely to ever be 
fully realized. A more reasonable goal is an output dis-
tribution obtained from including some decoherence in 
the inputs, although the amount of decoherence must 
be small enough that input states remain non-classical.

In summary, the positive P-representation provides 
an effective, scalable method to validate quantum pho-
tonic network data. It is not limited to quantum com-
puting applications such as the GBS, as the theory 
presented here can be readily adapted to other optical 
networks, and can include non-ideal features that occur 
in practical experiments. Having a target distribution 
which is non-ideal yet non-classical is the “Goldilocks” 
target calculation of these devices: a porridge which is 
neither too hot nor too cold.
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