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Abstract 

We consider a particle trapped by a generic external potential and under the influence of a quantum-thermal 
Ohmic bath. Starting from the Langevin equation, we derive the corresponding Schwinger-Keldysh action. Then, 
within the path-integral formalism, we obtain both the semiclassical Fokker-Planck equation and the quantum 
Fokker-Planck equation for this out-of-equilibrium system. In the case of an external harmonic potential and in the 
underdamped regime, we find that our Fokker-Planck equations contain an effective temperature Teff , which crucially 
depends on the interplay between quantum and thermal fluctuations in contrast to the classical Fokker-Planck equa-
tion. In the regime of high temperatures, one recovers the classical Fokker-Planck equation. As an application of our 
result, we also provide the stationary solution of the semiclassical Fokker-Planck equations for a superconducting 
Josephson circuit and for a Bose Josephson junction, which are experimentally accessible.

1 Introduction
Inspired by the works of Einstein [1] and Smoluchowski 
[2] about the Brownian motion of a mesoscopic parti-
cle in a fluid, in 1908 Langevin introduced its stochastic 
equation [3]. Some years later, Johnson [4] and Nyquist 
[5] observed that, in addition to thermal effects, also the 
quantum mechanical noise plays a relevant role in the 
electric current of conductors. In 1951, the quantum 
version of the fluctuation-dissipation theorem of Cal-
len and Welton [6] paved the way to the quantum Lan-
gevin equation [7–9]. In the first part of this paper, we 
explicitly show that, from the Langevin equation of a 

confined particle in a quantum-thermal Ohmic bath [10], 
one derives the corresponding semiclassical Schwinger-
Keldysh action [11, 12]. The Schwinger-Keldysh action is 
usually obtained by adopting a quite different approach, 
which involves a closed time contour with forward and 
backward branches in time and where the dynamical 
variables of the system are doubled to take into account 
the two branches [10–12]. Moreover, it is well known 
that from the Schwinger-Keldysh action one obtains in 
the high-temperature regime the classical Martin-Siggia-
Rose action [13]. Here, we follow a quite different path: 
for a particle in contact with a quantum-thermal bath, 
its semiclassical Schwinger-Keldysh action is obtained 
directly from the Langevin equation through a Martin-
Siggia-Rose action, which is indeed the semiclassical 
Schwinger-Keldysh action functional.
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In the second part, we derive the main results of 
the paper: the Fokker-Planck equations of our specific 
system. These Fokker-Planck equations are partial-
differential equations describing the probability den-
sity P(q,  v,  t) of finding a particle with position q and 
velocity v at time t [14–20] in a quantum-thermal 
Ohmic bath and trapped by a deterministic external 
potential V(q). From the short-time propagator of the 
transition probability associated with the Schwinger-
Keldysh action, we obtain both the semiclassical and 
the quantum Fokker-Planck equation for a confined 
particle under the effect of a quantum-thermal Ohmic 
bath. Remarkably, our Fokker-Planck equations are 
fully analytical and contain an effective temperature 
Teff  . This effective temperature crucially depends on 
the interplay between quantum fluctuations, charac-
terized by �� with � the reduced Planck constant and 
� the frequency of harmonic potential, and thermal 
fluctuations, characterized by the thermal energy kBT  
with kB the Boltzmann constant and T the tempera-
ture. Following our approach, we also obtain quantum 
Fokker-Planck equations for the superconducting phase 
in a Josephson circuit and for the population imbal-
ance in an atomic Bose Josephson junction, which are 
described by generalized Langevin equations including 
quantum and thermal fluctuations.

2  Langevin equation for a particle 
in a quantum‑thermal Ohmic bath

Let us consider a particle of mass m and coordinate q(t) 
under the action of a deterministic potential V(q(t)) but 
also of a thermal bath which induces a dissipative force 
−γ q̇(t) with damping coefficient γ and a Gaussian sto-
chastic force ξ(t) . The stochastic coordinate q(t) of the 
particle satisfies the equation of motion

Here, we assume the Markovian dynamics such that 
the damping term γ q̇(t) does not include any memory 
effect and the equation of motion (1) involves only one 
time variable t. Given a generic observable O which 
depends explicitly on the Gaussian random variable ξ(t) , 
the stochastic average has the following path integral 
representation

(1)m q̈(t)+ γ q̇(t)+
∂V (q(t))

∂q
= ξ(t) .

(2)�O� =
D[ξ(t)]O[ξ(t)] e−

1
2

+∞
−∞

+∞
−∞ ξ(t)C−1(t−t

′)ξ(t ′) dt dt ′

D[ξ(t)] e−
1
2

+∞
−∞

+∞
−∞ ξ(t)C−1(t−t ′)ξ(t ′) dt dt ′

,

which crucially depends on the choice of the cor-
relation function C(t), which, in general, is that 
C(t − t ′) = �ξ(t)ξ(t ′)�.

Equation (1) is called semiclassical quantum Lan-
gevin equation [7–9] provided that the correlation 
function C(t) is given by

where T is the absolute temperature, kB is the Boltzmann 
constant, and � is the reduced Planck constant. The cor-
relation function of Eq.  (3) is the one of a stochastic 
quantum-thermal Ohmic bath [7–9]. The presence of γ 
both in Eqs.  (1) and (3) is a consequence of the fluctua-
tion-dissipation theorem (FDT) [10]. Moreover, in Eq. (3) 
the term eiω t can be substituted by cos(ω t) because the 
imaginary part is odd and its integral gives zero. Equation 
(1) with Eq. (3) is called semiclassical because the dynam-
ical variable q(t) is not a quantum operator. The quantum 
nature of Eq. (1) is however encoded in the correlator C(t) 
through Eq. (3). Note that in the high-temperature regime 
kBT ≫ �ω , where coth (�ω/(2kBT )) → 2kBT/(�ω) , 
Eq. (3) gives C(t) = 2γ kBT δ(t) with δ(t) the Dirac delta 
function and Eq.  (1) becomes the familiar classical Lan-
gevin equation [3].

3  Martin‑Siggia‑Rose action
To derive the Martin-Siggia-Rose action [13] (see also 
Refs. [21–26]) from the semiclassical quantum Langevin 
equation (1), we observe that the expectation value of the 
generic observable O can also be written as

where the Dirac delta function δ(x) appears because one 
considers the path integral over all possible q(t) but with 
the constraint that q(t) satisfies Eq.  (1). This constraint 
ensures the correct implicit dependence of q(t) with 
respect to ξ(t) . Taking into account the path integral rep-
resentation of δ(x) , we have

where q̃(t) is an auxiliary response field. We now use 
Eq. (2) and the properties of Gaussian integrals obtaining

(3)C(t) =
∫ +∞

−∞

dω

2π
γ �ω coth

(
�ω

2kBT

)

eiω t ,

(4)
�O� =

∫
D[q(t)]O[q(t)]

〈
δ[q − q(t)]

〉

=
∫

D[q(t)]O[q(t)]
〈

δ

[

mq̈(t)+ γ q̇(t)+
∂V (q(t))

∂q
− ξ(t)

]〉

,

(5)
�O� =

∫
D[q(t), q̃(t)]O[q(t)]

〈

exp

[

i

∫ ∞

−∞
dtq̃(t)

[

mq̈(t)+ γ q̇(t)+
∂V (q(t))

∂q
− ξ(t)

]]〉

,

(6)�O� =
∫

D[q(t), q̃(t)]O[q(t)]eiS[q(t),q̃(t)]/�,
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where

remembering that the stochastic noise ξ(t) is time-trans-
lation invariant, namely C(t − t ′) = �ξ(t)ξ(t ′)� = �ξ(t − t ′)ξ(0)� . The 
functional of Eq.  (7), with C(t) = �ξ(t)ξ(0)� given by 
Eq. (3), is our Martin-Siggia-Rose action [13].

We have seen that in the high-temperature regime 
C(t) = 2γ kBTδ(t) . In this regime, Eq.  (7) is much sim-
pler and the action is known as the classical Martin-Sig-
gia-Rose action [13]. Quite remarkably, in this classical 
high-temperature regime, one can easily perform the 
path integral over the dual variable q̃(t) , obtaining

with the real effective action

that  is called Onsager-Machlup [27] action according to 
Olender and Elber [28].

4  Semiclassical Schwinger‑Keldysh action
Let us restrict ourselves to a harmonic poten-
tial V (q) = m�2q2/2 . In the underdamped regime 
γ ≪ m�2/ωcut with ωcut being the ultraviolet cutoff fre-
quency associated with the zero-point fluctuations in 
Eq. (3), we apply the approximation [29, 30]

which is white noise including quantum fluctuations. The 
effective temperature is defined by

This approximation is justified for the following reason. 
The Langevin equation (1) in the long-time limit gives 
[31]

where ξ̃ (ω) =
∫∞
−∞ dtξ(t)e−iωt and

(7)
S[q(t), q̃(t)]/� = −

∫ +∞

−∞
q̃(t)

[

m q̈(t)+ γ q̇(t)+
∂V (q(t))

∂q

]

dt

+
i

2

∫ +∞

−∞

∫ +∞

−∞
q̃(t)C(t − t ′)q̃(t ′) dt dt ′ ,

(8)�O� =
∫

D[q(t)] O[q(t)] e−SOM[q(t)],

(9)SOM[q(t)] =
1

4γ kBT

∫ +∞

−∞

[

m q̈(t)+ γ q̇(t)+
∂V (q(t))

∂q

]2
dt,

(10)

C(t) ≃ γ�� coth

(
��

2kBT

)

δ(t) = 2γ kBTeffδ(t),

(11)Teff =
��

2kB
coth

(
��

2kBT

)

.

(12)q̃(ω) =
∫ ∞

−∞
dt q(t)e−iωt = χ̃(ω)ξ̃ (ω),

is the response function in the frequency domain. Equa-
tion (12) leads to the correlation function

with C̃(ω) =
∫∞
−∞ dte−iωtC(t) = γ�ω coth [�ω/(2kBT )] . 

The autocorrelation function of the conjugate momen-
tum also involves the combination of C̃(ω)�χ̃ (ω)�2 . In 
the underdamped limit γ ≪ m�2/ωcut , the response 
function (13) is dominant only around ω = ±� as

Consequently, in Eq.  (14), we can safely use approxi-
mation that C̃(ω) ≃ C̃(�) , which justifies the white 
noise approximation in Eq.  (10) in the underdamped 
limit γ ≪ m�2/ωcut . In the classical limit �� ≪ kBT  , 
we recover Teff = T  . In the low-temperature regime 
�� ≫ kBT  , on the other hand, Eq.  (10) provides 
Teff = ��/(2kB).

By using Eq. (10), the action (7) with the kernel reads

Remarkably, Eq.  (16) is very similar to the Schwinger-
Keldysh action [11, 12] of a quantum particle in contact 
with an Ohmic bath. The only difference is due to the 
fact that instead of �q̃ ∂V (q)/∂q in the exact Schwinger-
Keldysh action there is [V (q + �q̃)− V (q − �q̃)]/2 . 
See, for instance, page.  33 of Ref.  [10]. Clearly, 
[V (q + �q̃)− V (q − �q̃)]/2 ≃ �q̃ ∂V (q)/∂q under the 
assumption of a small �q̃ . It is important to stress that the 
Echern-Schon-Ambegaokar action [32] used for super-
conducting Josephson junctions is nothing else than the 
exact Schwinger-Keldysh action. At zero temperature, 
the Schwinger-Keldysh action has been used to study 
the effect of quantum noise in the quantum phase tran-
sition of a Josephson junction [33]. In the classical limit 
Teff → T  , one can readily find that Eq.  (16) coincides 
with the classical dissipative action [10].

We call Eq.  (16) semiclassical Schwinger-Keldysh 
action. Indeed, the classical Schwinger-Keldysh 
action, which is nothing else than the classical  Mar-
tin-Siggia-Rose action, is obtained  with  Teff → T  . 

(13)χ̃(ω) = 1

−mω2 − iγω +m�2
,

(14)�q(t → ∞)2� =
∫ ∞

−∞

dω

2π
C̃(ω)�χ̃ (ω)�2,

(15)

γ �ω��χ̃(ω)�2 → π

2m2�
[δ(ω −�)+ δ(ω +�)].

(16)
S[q(t), q̃(t)]/� = −

∫ +∞

−∞
q̃(t)

[
m q̈(t)+ γ q̇(t)+m�2q

]
dt

+
iγ

2

∫ +∞

−∞
2kBTeffq̃(t)

2 dt.
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Then, by functional integrating over q̃(t) one recovers 
again the Onsager-Machlup action (9).

5  Fokker‑Planck equations
In this section, we derive the corresponding Fokker-
Planck equation for the MSR action in Eq.  (7) or the 
Schwinger-Keldysh action in Eq. (16).

5.1  Semiclassical Fokker‑Planck equation
Let us rewrite the action of Eq. (7) as

where Se[q(t), v(t), q̃(t), �(t)] is a new effective action 
with a velocity field v(t) and an auxiliary field �(t) as 
a Lagrange multiplier that guarantees v(t) = q̇(t) by 
δSe/δ� = 0 [34], and

The effective Lagrangian Le[q(t̄), v(t̄), q̃(t̄), �(t̄)] can be 
used to introduce the propagator [34]

which gives the transition probability from the initial 
configuration (q, v, t) to the final configuration (q′, v′, t ′) . 
It follows that the probability P(q, v, t) of finding the sys-
tem in the configuration (q, v, t) satisfies the convolution 
equation

In Appendix 1, we show how to derive the semiclassi-
cal Fokker-Planck equation from this expression taking 
into account Eq. (20). The final result of this derivation 
is [34, 35]

(17)

eiS[q(t),q̃(t)]/� ≡
∫

D[v(t), �(t)]eiSe[q(t),v(t),q̃(t),�(t)]/�,

(18)

Se[q(t), v(t), q̃(t), �(t)] =
∫ ∞

−∞
dtLe[q(t), v(t), q̃(t), �(t)]

=
∫ ∞

−∞
dt�

[

−mq̃(t)v̇(t)−mq̃(t)
∂F(q, v)

∂v

+
i

2

∫ ∞

−∞
dt ′q̃(t)C(t − t ′)q̃(t ′)+ �(t)[q̇(t)− v(t)]

]

,

(19)F(q, v) ≡
γ

2m
v2 +

V ′(q)

m
v.

(20)
K (q′ , v′ , t ′ |q, v, t) ≡

∫ q(t ′)=q′

q(t)=q
D[q(t̄)]

∫ v(t ′)=v′

v(t)=v
D[v(t̄)]

×
∫

D[q̃(t̄), �(t̄)]ei
∫ t′
t dt̄Le[q(t̄),v(t̄),q̃(t̄),�(t̄)]/� ,

(21)P(q′ , v′ , t ′) =
∫ +∞

−∞
dq

∫ +∞

−∞
dv K (q′ , v′ , t ′ |q, v, t)P(q, v, t) .

under Eq. (10)  where V(q) is the harmonic potential of 
frequency � . In the classical limit � → 0 , or equivalently 
kBT ≫ �� , Eq. (22) reduces to the familiar classical one 
[10, 36, 37]

On the other hand, at T = 0 , the effective temperature 
has a finite minimum Teff = ��/(2kB) as shown in Fig. 1. 
Figure  1 illustrates that the difference from the original 
temperature is significant in the low-temperature regime 
due to the quantum effects.

Quite remarkably, the semiclassical Fokker-Planck equa-
tion (22) has the following stationary analytical solution

where

With a harmonic potential V (q) = m�2q2/2 , the station-
ary solution gives the second moments of the coordinate 
and velocity as

(22)

∂tP(q, v, t) =
[

−v∂q +
γ

m
∂vv +

V ′(q)

m
∂v +

γ kBTeff

m2
∂2v

]

P(q, v, t) ,

(23)∂tP(q, v, t) =
[

−v∂q +
γ

m
∂vv +

V ′(q)

m
∂v +

γ kBT

m2
∂2v

]

P(q, v, t) .

(24)Pstat(q, v) = Z−1e−[mv2/2+V (q)]/(kBTeff) ,

(25)Z ≡
∫ ∞

−∞
dq

∫ ∞

−∞
dv e−[mv2/2+V (q)]/(kBTeff) .

Fig. 1 Effective temperature in Eq. (11). The dashed line stands 
for Teff = T
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and

These second moments are exactly consistent with a 
Langevin analysis in the underdamped limit [31, 38]. In 
the classical limit Teff → T  , Eqs. (26) and (27) recover the 
equipartition of energy. Due to the quantum correction 
in Eq. (11), both of Eqs. (26) and (27) are proportional to 
�� in the low-temperature regime.

Note that Eqs.  (26) and (27) are the underdamped 
results which are, strictly speaking, justified in the under-
damped limit γ ≪ m�2/ωcut . With finite damping con-
stant γ > m�2/ωcut , the second moments of the velocity 
should have a logarithmic ultraviolet divergence [38]. 
We stress that, however, we are restricting ourselves to 
the underdamped limit and do not consider such cases 
throughout this paper. Only in this underdamped limit, 
do the second moments of the coordinate or the momen-
tum have clear physical interpretation as they recover the 
equipartition of energy in the classical limit [31, 38].

5.2  Quantum Fokker‑Planck equation
As mentioned in Section  4, the dissipative Schwinger-
Keldysh action is different from the MSR action in terms 
of the potential term in the higher order of q̃ . Let us call 
the corresponding Fokker-Planck equation derived from 
the Schwinger-Keldysh action the quantum Fokker-
Planck equation since it includes higher order of the 
quantum component q̃ , which should coincide with the 
semiclassical one to the first order of q̃.

To obtain the quantum Fokker-Planck equation, we can 
simply substitute the potential term in Eq. (18) as

where V (k)(q) denotes the k-derivative of V(q) in q. Since 
it is time-local, one can proceed to the Fokker-Planck 
equation in a similar manner as in the last section. Even-
tually, one obtains the quantum Fokker-Planck equation

where F̃  , that gives the difference from semiclassical 
equation (22), is defined as

(26)�q2� =
∫ ∞

−∞
dq

∫ ∞

−∞
dvq2Pstat(q, v) =

kBTeff

m�2
,

(27)�v2� =
∫ ∞

−∞
dq

∫ ∞

−∞
dvv2Pstat(q, v) =

kBTeff

m
.

(28)�q̃V
′(q) →

V (q + �q̃)− V (q − �q̃)

2
=

∞∑

n=0

(�q̃)2n+1 V
(2n+1)(q)

(2n+ 1)!
,

(29)

∂tP(q, v, t) =
[

−v∂q +
γ

m
∂vv +

γ kBTeff

m2
∂2v + ∂v

(
∂vF̃

)]

P(q, v, t) ,

For a harmonic potential V (q) = m�2q2/2 , as in the 
last equality in Eq. (30), the higher-order derivatives in 
Eq.  (30) vanish. With a generic potential, the presence 
of infinite derivatives makes it quite difficult to solve it 
in full generality. While a truncation of the series with 
n = 1 or n = 1, 2 could be used to find reliable correc-
tions to the semiclassical result, it may lead to negative 
probability distribution [39].

6  Fokker‑Planck equation for Josephson junctions
In a resistively and capacitively shunted Josephson 
(RCSJ) junction, the superconducting phase φ(t) obeys 
the generalized Langevin equation [31, 40]

where EC = (2e)2/(2C) is the charging energy with a 
capacitance C, α = RQ/R is the ratio between the criti-
cal resistance RQ = h/(2e)2 and the resistance R, EJ is 
the Josephson energy, Iext is the external current, and 
�0 = h/(2e) is the magnetic flux quantum. The current 
noise ξ(t) originates from the shunted resistor and is 
assumed to satisfy the FDT in Eq.  (3). It has been theo-
retically predicted that the system is superconducting 
below the critical resistance α > 1 while it is insulating 
above the resistance α < 1 [41, 42]. The ultraviolet cut-
off frequency can be chosen as ωcut = �/� with � being 
the superconducting gap. The approximation (10) is valid 
within the underdamped limit α ≪ 2πEJ/� [31].

We can identify this Langevin equa-
tion as Eq.  (1) by replacing q(t) → φ(t) , 
v → φ̇ = 2πV /�0 , m → �

2/(2EC) , γ → �α/(2π) , and 
V (q) → Uwash[φ] ≡ −EJ cosφ −�0Iext/(2π) · φ . Conse-
quently, following the procedures in the last sections, 
we obtain the quantum Fokker-Planck equation for the 
RCSJ junction as

(30)

F̃(q, v) ≡
v

m

∞∑

n=0

(
�∂v

im

)2n V (2n+1)(q)

(2n+ 1)!

=
V ′(q)

m
v +

v

m

∞∑

n=1

(
�∂v

im

)2n V (2n+1)(q)

(2n+ 1)!

= �2qv.

(31)
�
2

2EC
φ̈ +

�α

2π
φ̇ + EJ sin φ −

�0Iext

2π
= ξ ,

(32)
∂tP(φ,V , t) =

[

− 2πV

�0
∂φ + αEC

π�
∂V V +

α�2
0E

2
C

2π2�3
kBTeff∂

2
V

+
(
�0

2π

)2

∂V

(
∂V F̃ [φ,V ]

)]

P(φ,V , t),
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with V (t) = �0φ̇/(2π) the voltage. The function F̃ [φ,V ] 
is given by

where, in the last row, we used 
Uwash[φ] ≃ −EJ −�0Iext/(2π) · φ + EJφ

2/2 . We can 
find the semiclassical stationary solution as

which is illustrated in Fig.  2(a) for EJ/EC = 1 , 
kBT/EC = 0.1 , and �0Iext/(2πEJ ) = 0.3 . Also in Fig. 2(a), 
we use Uwash[φ] ≃ −EJ −�0Iext/(2π) · φ + EJφ

2/2 . 
The effective temperature is given by Eq.  (11) with 
� = (2ECEJ )

1/2/� . Equation (34) indicates that, in the 
stationary configuration, the voltage V is more localized 
as one increases EC/(kBTeff) , and the superconducting 
phase φ is localized with a large EJ/EC . Experimentally, 
one can observe EJ/EC ≃ 3.8× 105 in a RCSJ circuit [43], 
which reflects the highly localized phase in the supercon-
ducting circuit.

In a one-dimensional Bose Josephson junction (BJJ) 
in a head-to-tail configuration, we have two one-dimen-
sional Bose gasses in contact through a tunnel coupling 
J (x) = J0Lδ(x) at a point x = 0 where J0 is the strength of 
the Josephson coupling and L is the system size. The zero-
mode of the population imbalance ζ0 also obeys the Lan-
gevin equation [44, 45]

in the linear regime �ζ0(t)� ≪ 1 with � the Josephson 
frequency, γ the damping constant associated with the 

(33)
F̃ [φ,V ] =

4πEC

�0�
2

[
∂Uwash[φ]

∂φ
+

∞∑

n=1

(
�0EC

iπ�
∂V

)2n
U

(2n+1)
wash [φ]
(2n+ 1)!

]

V

=
4πEC

�0�
2

(

−
�0Iext

2π
+ EJφ

)

V ,

(34)P
cl
stat(φ,V ) = Z

−1exp

[

−
EC

πkBTeff

[(
eV

EC

)2

+
Uwash[φ]

EC

]]

,

(35)ζ̈0 + γ ζ̇0 +�2ζ0 =
√
M�

�ρ̄
ξ ,

Josephson coupling J0 , M the effective mass related to 
the interparticle interaction strength g, and ρ̄ the aver-
age atomic density. The stochastic noise ξ(t) satisfies 
the FDT in Eq.  (3). The ultraviolet cutoff can be cho-
sen as ωcut = 2πcρ̄ ≃ 104� where c = (g ρ̄/m)1/2 is the 
speed of sound and m is the atomic mass [45, 46]. Then, 
the approximation (10) is valid if N̄ J0/Mc2 ≪ 10−8 with 
N̄ ≡ ρ̄L being the average number of atoms, which is the 
Josephson regime in which the tunneling energy N̄ J0 is 
much smaller than the kinetic energy Mc2 . For this one-
dimensional BJJ, we find the quantum Fokker-Planck 
equation as

with �R ≡ J0/� the Rabi frequency  and 
φ0(t) = −ζ̇0(t)/�R the zero-mode of the relative phase. 
The function F̃(ζ0,φ0) is given by

The linearized equation (35) involves a harmonic 
potential and gives no quantum correction that stems 
from the higher-order derivatives of the external poten-
tial. The stationary solution is given by

We show the stationary solution in Fig.  2(b) for 
�/�R = 0.5 and kBT/(��) = 0.1 . Figure 2(b) shows that 
the relatively localized φ0 around the origin and the delo-
calized ζ0 are realized as a stationary configuration. As 
one decreases the ratio between the interaction energy 
and the tunneling energy �/�R =

√
2g ρ̄/J0 less than 

one, the population imbalance ζ0 is delocalized and the 
relative phase φ0 is highly localized in the stationary con-
figuration given by Eq. (38).

(36)
∂tP(ζ0,φ0, t) =

[

�Rφ0∂ζ0 + γ ∂φ0φ0 +
2g

�2c
kBTeff∂

2
φ0

+
1

�2
R

∂φ0

(
∂φ0 F̃

)]

P(ζ0,φ0, t) ,

(37)F̃(ζ0,φ0) = −�R�
2ζ0φ0.

(38)Pstat(ζ0,φ0) = Z
−1exp

[

−
��

2kBTeff

N̄

(
�

�R
ζ 20 +

�R

�
φ2
0

)]

.

Fig. 2 Stationary solutions of the semiclassical Fokker-Planck equations of a RCSJ junction (a) and BJJ (b). The left panel (a) illustrates the result 
of Eq. (34) for EJ/EC = 1 , kBT/EC = 0.1 , and �0Iext/(2πEJ) = 0.3 . The right panel (b) shows the result of Eq. (38) for �/�R = 0.5 and kBT/(��) = 0.1 . 
The gray dashed curves in the insets stand for the probability in the classical limit Teff → T
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7  Conclusions
In the first part of this paper, we have derived the 
Schwinger-Keldysh action of a particle under the effect 
of a deterministic external potential and a stochastic 
Ohmic bath, which contains both thermal and quan-
tum fluctuations. Contrary to previous papers [10–12], 
our derivation has been performed starting from the 
Langevin equation of the system. In the second part of 
the paper, we have then adopted the Schwinger-Keldysh 
action to include the velocity of the particle by using 
a Hubbard-Stratonovich transformation and to derive 
the fully analytical semiclassical and quantum Fokker-
Planck equations for the time-dependent probability of 
the particle in the quantum-thermal Ohmic bath. The 
semiclassical Fokker-Planck equation involves the effec-
tive temperature associated with the frequency of har-
monic potential. The obtained results can be applied to 
various contexts. In Section 6, we wrote down the quan-
tum Fokker-Planck equations for the Josephson mode 
in an atomic Josephson junction and for the supercon-
ducting phase in a superconducting Josephson circuit. 
We showed the stationary solution of the semiclassical 
Fokker-Planck equation for each of the Josephson sys-
tems. These Josephson systems have been experimentally 

realized and attracted marked attention. We expect that 
our work would also contribute to the understanding of 
such a noisy Josephson junction. For instance, the escape 

rate of the superconducting phase from a local potential 
minimum is related to the temperature that appeared in 
the Fokker-Planck equation [10]. Experimental measure-
ments imply that the escape temperature deviates from 
the absolute temperature at a low-temperature regime. 
The deviation of the escape temperature is explained 
by macroscopic quantum tunneling [47–49]. In addi-
tion to the macroscopic quantum tunneling, within the 
underdamped limit, our obtained effective temperature 
originating from the quantum fluctuations would give a 
considerable contribution to this escape temperature in 
a superconducting Josephson circuit, which would be 
useful to verify our result. To obtain a quantum Fokker-
Planck equation without higher-order derivatives, it 
could be useful to apply the approach of effective action 
[50]. The effective action includes the quantum fluctua-
tions, and it would enable us to derive a quantum Fokker-
Planck equation.

Appendix A: Derivation of Fokker‑Planck equation
In order to derive the semiclassical Fokker-Planck equa-
tion for P(q, v, t) from Eqs. (20) and (21), let us consider 
an infinitesimal time  interval ε = t ′ − t . The probability 
P(q′, v′, t + ε) satisfies, to O(ε) [34, 35],

Taking into account Eq. (10), Eq. (39) gives

In the above calculation, we used ∫
D[�(t)]ei�(t)[q′(t)−q(t)−εv(t)]/� = δ

[
q′(t)− q(t)− εv(t)

]
 . 

Hence, performing the integrals in Eq. (40), one obtains

(39)

P(q′, v′, t + ε) =
∫ ∞

−∞
dq

∫ ∞

−∞
dvK (q′, v′, t + ε|q, v, t)P(q, v, t)

=
∫ ∞

−∞
dq

∫ ∞

−∞
dv

∫ q(t ′)=q′

q(t)=q
D[q(t̄)]

∫ v(t ′)=v′

v(t)=v
D[v(t̄)]

∫
D[q̃(t̄), �(t̄)]

× exp

[∫ t+ε

t
dt1i

[
−mq̃(t1)v̇(t1)−mq̃(t1)

∂F(q, v)

∂v
+

i

2

∫ t+ε

t
dt2q̃(t1)C(t1 − t2)q̃(t2)+ �(t1)[q̇(t1)− v(t1)]

]]

.

(40)

P(q′, v′, t + ε) =
∫ ∞

−∞
dq

∫ ∞

−∞
dv

∫
D[q̃(t), �(t)]

× exp

[

−iεq̃m

(
v′ − v

ε
+

∂F

∂v

)

− εγ kBTeffq̃
2 +O(ε2)+ iε�

(
q′ − q

ε
− v

)]

P(q, v, t)

=
∫ ∞

−∞
dq

∫ ∞

−∞
dv

∫
D[q̃(t)]δ

(
q′ − q − εv

)
e−imq̃(v′−v)

×
[

1− iεq̃

(

m
∂F

∂v
− iγ kBTeffq̃

)

+O(ε2)

]

P(q, v, t),
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For ε → +0 one finally finds Eq.  (22), which is our 
semiclassical Fokker-Planck equation.
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