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Abstract

at the 3o level.

Inspired by the astonishing 7o discrepancy between the recent CDF-Il measurement and the standard model predic-
tion on the mass of W-boson, we investigate the A’-corrections to the vertex of u — v,eve decay in the context

of the R-parity violating minimal supersymmetric standard model. These corrections can raise the W-boson mass
independently. Combined with recent Z-pole and kaon decay measurements, myy < 80.37 GeV can be reached. We
find that these vertex corrections cannot explain the CDF result entirely at the 2o and even 3o levels. However, these
corrections together with the oblique contributions can be accordant with the CDF-Il result and relevant bounds

1 Introduction
In the past decades, the observation of striking agreement
between the standard model (SM) predictions and the
experimental results in a vast number of particle interac-
tions has shown up the powerful predicted capacity of the
SM. However, the SM is not the final answer to the parti-
cle physics, as it is unable to explain several phenomena,
including the matter-antimatter asymmetry, the origin of
neutrino mass, the hierarchy problem, and the candidate
of dark matter. These strongly call for some new phys-
ics (NP) beyond the SM. Although no up-to-date direct
evidence shows that the NP exists, there are still indirect
ways, e.g., studying the loop-effects of NP on low-energy
processes or electroweak observables, like the precision
measurement of the W-boson mass.

Recently, the Collider Detector at Fermilab (CDF)
collaboration at Tevatron reported a high preci-
sion measurement on the mass of W-boson with
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the CDEF-II detector. The measured value is given by
m%VDF = 80.4335 £ 0.0094 GeV [1] with better precision
than all other previous measurements and is 7o from
the SM prediction mw = 80.357 &= 0.006 GeV [2]. If the
measurement is confirmed in the future, such an aston-
ishing tension will undoubtedly be a strong challenge to
the SM. After this exciting m‘CVDF reported, plentiful theo-
retical researches [3—38] have emerged in a short time.
Before this profound result, there are already some
anomalies indicating the clues of NP, e.g., the recent aver-
age values of the observables R, reported by the Heavy
Flavor Averaging Group [39-41], are about 3.20 away from
the corresponding SM predictions [42-50], considering
the Rp and Rp- total correlation —0.29. To explain these
anomalies, there are numerous phenomenological studies
combined with the m%(PF measurement in different models
(e.g., see Refs. [34, 51-55]). In this work, we utilize the min-
imal supersymmetric standard model (MSSM) extended
by the R-parity violation (RPV), especially including the
XLQD superpotential term, which can explain the B-phys-
ics anomalies in the neutral current' or/and the charged

! Some anomalies are observed in the b — su* ™ decays include P; [56],
the branching fraction of B; — ¢u*u™ [57], etc. The ratios Ryw in the
b — s€T¢~ (£ = e, ) processes, have been reported recently by the LHCb
Collaboration [58] that they are in agreement with the SM predictions,
and this new result overturns the previous ones which show anomalies in
Ry [59-61].
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one (see, e.g., Refs. [62-65]). Thus, further investigations
on this framework for the m%})F explanation are neces-
sary. Although it is found that the MSSM can provide some
parameter points which can raise my into the 20 accord-
ance region [9], mainly through bosonic self-energy contri-
butions relevant to the oblique corrections [66, 67], the stop
mass in the solution with m; < 1TeV is not suit for general
collider search scenarios. Thus, it is also worth studying
other corrections to my, in the extended MSSM frame-
work, considering the general bounds for colored sparticle
masses at the Large Hadron Collider (LHC). Above all, we
will study corrections to the vertex W€v from the R-parity
violating interaction /LQD and get an enhancement to
myy, which is independent of the oblique corrections.

This paper is organized as follows. In Section 2, we
introduce the vertex corrections to the W-boson mass in
the MSSM framework extended by RPV. Then, we show
the numerical results and discussions in Section 3. Our
conclusions are presented in Section 4.

2 The contribution to my from the R-parity
violating MSSM

As we know, the W-boson mass can be determined from

the muon decay with the relation (see, e.g., Refs. [68-70])

LI Y1+ Ar) 1
1 1 ma .
2 4 ﬁG;lm% @

which comprises the three precise inputs, the Z-boson
mass mz, the Fermi constant G, and the fine structure
constant «. Here the one-loop corrections to Ar can be
expressed as

2
My

Ar=Ar™ 4 1+ 1Y+ b, (2)

where the SM part ArM is derived first in Refs. [71, 72].
Within the NP part, the self-energy of the renormalized
W-boson is denoted by /*, and the vertex and box correc-
tions to the u — v,ev, decay are denoted by /" and n?,
respectively. In the MSSM, the pure squarks (sleptons)
only engage the self-energy sector at the one-loop level.
The corrections to the vertex and box involve charginos
and neutralinos. Among these one-loop contributions in
the MSSM, the dominant contribution to n1y is the one-
loop diagrams involving pure squarks. This dominant
part in /#° can be expressed by [68]

3G, cos 0%,

) dom = — — 2108 %w_
(7 dom 8+/2sin 63,72
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where 6y is the Weinberg angle and the definition of mix-
ing angle 0; is referred to Ref. [68] and the function
Fo(x,y) =x+y— ny log with the extra properties
Fom2,m%) =0 and Fo (m 0) = m? Thus, one can see
that /* is sensitive to the mass splitting between the isospin
partners due to the factor cos? ; cos? 6. Obviously, #* can
be negligible when the soft breaklng masses My are suffi-
ciently heavy compared to the chiral mixing. In this work,
we focus on the vertex corrections 4" affected by the A/
-coupling in the R-parity violating MSSM (RPV-MSSM)
and can omit /#° and 4 in the particular scenario.

In RPV-MSSM, the /'-superpotential term VW = A J kzl' Qjﬁk
leads to the related Lagrangian in the mass basis

£rQp :)";’jk (ﬁué'deLj + é’Ljé!Rk VL + tji;‘\)k ﬁiidLi)
o e = - L (4)
— T (Tidpiary + gyl + diglfus ) + hic.

where the generation indices i,j,k = 1,2,3, while the
color ones are omitted, and “c” indicates the charge con-
jugated fermions. In this paper, all the repeated indices
are defaulted to be summed over unless otherwise stated.
The relation between 7’ and /' is z;}k Al],kl(; with K
being the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
In this work, we restrict the index k of the superfield Dy
to the single value 3.

Including the one-loop contribution from the RPV-
MSSM, the W{;v;-vertex is described by the following
Lagrangian

g
v _
eff — \/5
where g is the SU(2); gauge coupling, and the correction
part /y; from the A’-contributions is given by (as the anal-
ogy to the formula in Ref. [73])

= _0y"PL(8y; + hy)v; W, +hc, (5)

, 3

i~ ean 2xth(xt)’L133’“z33’ (6)
where xt =m?/ mzf and the loop function
fwx) = = 7+ % and other non-dominant parts

are ehmmated. This dominant contribution is from the ver-
tex engaged by the right-handed sbottom by (Fig. 1a) while
the vertex involving left-handed squarks (Fig. 1b) provides
non-dominant effects and can be eliminated. Then, we

s 2 2 2 2\ 24 2, 2 2
— sin” ¢; cos GtFo(mzl,mzz) sin Ob cos QbFO(mbl’mbz)

20 20, 2 2 20 win2 g 2 2
+ cos” 6; cos GbFo(mtl,mbl)—i—cos 0; sin QbFo(mtl,mbz)

+ sin® 0; cos? 0;Fo (m%z, m%l) + sin® 0; sin? 0;Fo (m%z, m%z)} ,
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Fig. 1 The diagrams of the W¢v-vertex and Ze0O-vertex (shown as examples) in the RPV-MSSM

consider the A'-correction only to the W pv-vertex or to the
Wev-vertex at a time. This can be easily achieved by setting
one of the couplings (]33, 5/233) dominant while neglecting
the rest. Given this “single coefficient dominance” scenario,
the A-corrections to the ; — v,ev, box also vanish,? then
the one-loop A-contribution to Ar only comes from /4,
(the index a here is restricted to 1 or 2 at a time).

Given the purpose of this work is to investigate that to
what degree, the pure 1’ contribution, //,,, can accommo-
date the new W-boson mass data. We can further write
down the prediction of the W-boson from the pure-1'

contributions? as

% In this scenario, the A'-contributions to the ;& — v;ev; through Z penguin
vanish as well.

3 There are always contributions from the original MSSM framework, while

we can set sufficiently heavy masses of left-handed squarks, sleptons, and
gauginos in soft breaking terms to screen these effects.
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7)
with Egs. (1) and (6). It is clear from Eq. (7) that the right-
handed sbottom mass my and the coupling /5, are
related to A’-correction of myy.

3 Numerical results and discussions

In this section, we investigate the explanation of m
combined with the relevant constraints. At first, we con-
centrate on the pure 1’-effects assuming the soft breaking
masses of gauginos and left-handed squarks (sleptons)
are sufficiently heavy, and then, only the model parame-
ters (1;33,71/11;1%) are involved. If the pure //-contribution

CDF
w

(see Eq. (7)) can explain the new W-boson mass at the 20
level, we need /1, to fulfill —6.34 < K, x 103 < —3.47.
With Eq. (6), this bound provides

~ 2
0.7313 < xfiy (x) /1;33’ < 1.3357. (8)
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Also, —6.34 < I, x 103 < —3.47 let the ratio
st = (W = Lavae/ T(W = Eavasm (9)
stay in the region

~12.7 < R¥p/sm — 1) x 10° < —6.9, (10)

because R\{p/sp; can be calculated as 1 + 2/, with Eq. (5).
Then, we compare Eq. (10) with the W-boson partial
width ratios Ry, = ['(W — [v)/T(W — I'v), and their
experimental results are given as RLV/e = 0.996 £ 0.008,
R}, =1.008 +0.031, and R}, = 1.043 + 0.024 [74]. It i
found that the my explanation demands much stronger

2
. m 2
(32218 =455 - [(‘1 + 5o 9W> og

br
2 2
. m 1 m
(321%)8g)) =ljsadiz— | 5 sin® Ow | | log | —F
my 3 m;
L L
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Given that the mass of 7, is set sufficiently heavy, the
8gZL] part can be eliminated.

As to the invisible Z-decay, this model can also
make loop-level contributions to the Z — vv, ie., ¢
exchanged with v and u(it;) exchanged by d(dr) in
Fig. 1c, d. Then, the effective number of light neutrinos
N,, which is defined by Iiny =Nvl"§’§/[ [76], will con-
strain the couplings via

5094 4 §glaa 2
N, = ‘1 TH Tk T (13)
3¢y
where the coupling §g5M = % and the formulas of 5g£’)‘7 is
given by
2
m’ | 1 4
—ir—= 4= 9 ,
R +< o ot ow (14)
R

w2 4 (=14 2gn2e
—imr — = —— 4+ —sin .
1714 2 6 9S w

bounds, whenever the NP exists in the u or e channel (the
7 flavor is assumed decoupled with the NP for simplicity).
As shown in Fig. 1c and d, the NP effects on

the WZ/v-vertex will also inevitably affect the
Z-vertex. The Z-boson partial width ratios
R, =T(Z— Il)/)T(Z—I'l') are measured as

l/
Rg/e = 1.0001 = 0.0024, Rf/ﬂ = 1.0010 £ 0.0026, and
R4, =1.0020 & 0.0032 [74], which all constrain the

T/e
coupling gy, in the effective Lagrangian

Ceff = g Z,')/“ ggLPL -}-gZRPR 4z,

cos Oy (11)

where g/ = SijggSLM + SgéjL + 8ng and gZ]R = 87gpM, with
gELM = —5 +sin“ Oy and gesRM = sin? @y The formulas

of (SgZL and (Sgg are [75]

2

L

Then, the measurement Ny © = 2.9840(82) [76] will
make constraints.

Except the purely leptonic decays of W/Z boson,
the u — evev, and t — £vev. decays, which con-
tain the WJ{v-vertex, should also be considered.
The fraction ratios B(t — uv,v:)/B(t — ebevr),
B(t — ebevy)/B(n — evevy), and
B(t — uv,v:)/B(u — evev,) make the bounds [77] as

(3212)5g] :31;33~.;§3{—x[(1 +logx;) + 87422 [(11 — 10sin” Oy)
b

m
1

R

1 2
+ (6 — 8sin” 6w) log a7 + 7= (~9 + 16in” Ow) <

2 2

e 5 G Mz 2 .9 mz

(2008, =psatisa o K‘s sin "W> <10g (2
tr

m
tr

1+ 8K,
ee
i
——— =1.0029(14).
1+ 83k,
(12)

i

. 1 n 1+1.29
in 5 c 9sm w .

Here we can define B/ = (327r2)(8gZ + Sgg) and fur-
ther get the bound |B**| < 0.35(0.53) at the 2(3)o level.

Due to that 4, <0, Eq. (15) induces the 2(3)o

aa ~3
bounds —4.6(—6.0) < H,, x 10> <0 or
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M 133D at the 26 (left) and 30 (right) levels. The pure A™-contributions to the mCDF explanation are denoted
are shown by the green and gray, respectively. The areas ﬁIIed by the red are allowed by the data

of K¥ — £Fv(y)decay. The dashed lines express the mW value (GeV) enhanced by vertex corrections

—1(=24) < h, x 103 < 0 for a restricted to 1 or 2, respec-
tively. Similarly, the decays of kaons and pions also make the
bounds, and the most stringent ones [77] induce
—1.4(-32) < Hj, x 10> <0 or —0.8(—1.7) < ki, x 10> < O at
the 2(3)o level, which are provided by the constraints in
the K+ — £Tv(y) and w — £v(y) decays, respectively.

However, the 20-level m$PF explanation demands
—6.34 < M, x 10> < —3.47 as mentioned before, and

thus, one can see exactly the 2o0-level explanation is
already excluded by these decays of kaons and pions,
while we can still investigate the degree of the NP rais-
ing my . Given that 4, , is constrained more strongly
than 7, in the following we focus the NP in the e fla-
Vor. Thus, we set Jj55 dominant and other 7/ couplmgs
negligible. Then with the CKM rotation, /ll]k = /IU, P the
nonzero 7’ couplings |/1 133 & X33l [4]03] & 004|l l33h
and |/1113| ~ 10~ 3|/1133| As we consider the real number
N33 varying in 0 < Aj53 <3, it is checked that the
effects on the m%})F explanation and constraints from
the couplings 4,5 and /1113 are negligible. It is worth to
mention that all the model parameters are set at the
scale of around TeV. Given that only (axial-)vector cur-
rents are involved in relevant processes discussed before,
the couplings of these currents are kept nearly the same
when the scale runs down to the electroweak scale.
Combining the bounds introduced above with the W
mass explanation, the allowed regions are shown in Fig. 2.
The two areas allowed by Z — ¢¢ and kaon decays

overlap almost entirely at the 20 level, while the Z — ¢¢
bound is stronger at the 3¢ level. The bounds of Ny'* is
more stringent than the former two at the 20 level, but
the loosest at the 30 level. In the common region of these
three observables at the 20 level, mf;, can be raised to
around 80.37 GeV at most, while it cannot reach the
value to explain m‘c,})F as predicted. Even at the 30 level,
there are still none common areas for m$§PF and bounds

besides the one when mp < 600 GeV, but this mass scale
is already excluded by LHC searches [78—80]. Therefore,
we find that the pure 2’ contributions cannot fully solve
the my problem unless with other effects, e.g., the
oblique corrections [9, 81]. Thus, we will further study

Table 1 The sets of parameters in the MSSM part. Parameters
with mass dimension are given in GeV. The lower limits of squark
masses refer to Ref. [78]

Parameters Sets Parameters Sets

tan B 15 Mlm = Mgm 2000

n 1000 Méwz = Mow,z = MDLZ 104

M 500 /\/l(23 1500 ~ 3000
My 1000 M, 1500 ~ 10*
Mz 5000 M, 1300 ~ 3000
Mg 2000 Ave =Ads = A 1500

m; 1733 Ar Ap —5000 ~ 5000
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Fig. 3 Same as Fig. 2 but the dashed lines express the mw’ value (GeV) enhanced by both vertex corrections and oblique ones of the MSSM

the combination explanation with the A’-contributions
and the oblique ones of the MSSM framework.
_Different from the pure-RPV case that only parameters
(X133 mZ]R) are focused on, in the following we further
consider non-decoupled masses of stops and gauginos,
and the parameters are collected in Table 1. Then, we uti-
lize FeynHiggs-2.18.1 [82-89] to calculate the loop
correction of MSSM part, i.e., 4%, which is given as the
nearly fixed value #*~ —8 x 10 for the parameters
My, My, My, Ag, and Ay, varying in the ranges shown
in Table 1, also keeping the mass of Higgs-like boson in
122 < my < 128 GeV. Then, we can further set
My, =21TeV, My, =10 TeV, and A; = A = 1.5 TeV
as the benchmark point, and write down the prediction
of my from combined contributions as

(m} /GeV) = 80.370 — 15.622/,,, = 80.370 + 0.0742xfw (x;)

phenomenological analysis on the muon decay that
is relevant to the W mass under the framework of
RPV-MSSM, to access whether such a deviation can
be accommodated by this NP model. We focused on
the one-loop corrections to the vertex of u — v ev.
decay, assuming that the vertex correction is only
affected by a single /' coupling in the RPV-MSSM.
The numerical results shown in Fig. 2 imply that
pure A'-contributions in the RPV-MSSM are hard to
accommodate the CDF measurement entirely. How-
ever, the A-corrections can help raise the prediction
of W mass to be accordant with m$PF at the 30 level
when combined with the oblique corrections, which
is shown in Fig. 3.

i \2 (16)
a33| *

Then, the allowed regions are shown in Fig. 3. One can
see that my can be raised to around 80.38 GeV in the 2o
-level allowed region of the Z and kaon decays, and explain-
ing the W-mass anomaly at 2o is still unachievable. How-
ever, the 3o-level explanation is allowed by all the bounds,
within the narrow overlap near the edge of m‘c,})l: region.

4 Conclusions

In this paper, inspired by the astonishing 7o discrep-
ancy between the CDF-II measurement and the SM
prediction on the mass of W-boson, we performed a
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