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Abstract 

We present a microscopic many-body calculation of the nonlinear two-dimensional coherent spectroscopy (2DCS) of 
trion-polaritons and exciton-polaritons in charge-tunable transition-metal-dichalcogenides monolayers placed in an 
optical microcavity. The charge tunability leads to an electron gas with nonzero density that brings brightness to the 
trion — a polaron quasiparticle formed by an exciton with a nonzero residue bounded to the electron gas. As a result, 
a trion-polariton is created under strong light-matter coupling, as observed in the recent experiment by Sidler et al. 
[Nat. Phys. 13, 255 (2017)]. We analyze in detail the structure of trion-polaritons, by solving an extended Chevy ansatz 
for the trion quasiparticle wave-function. We confirm that the effective light-matter coupling for trion-polaritons is 
determined by the residue of the trion quasiparticle. The solution of the full many-body polaron states within Chevy 
ansatz enables us to microscopically calculate the nonlinear 2DCS spectrum of both trion-polaritons and exciton-
polaritons. We predict the existence of three kinds of off-diagonal cross-peaks in the 2DCS spectrum, as an indication 
of the coherence among the different branches of trion-polaritons and exciton-polaritons. Due to the sensitivity of 
2DCS spectrum to quasiparticle interactions, our work provides a good starting point to explore the strong nonlinear‑
ity exhibited by trion-polaritons in some recent exciton-polariton experiments.

1  Introduction
Exciton-polaritons in microcavities are hybrid light-matter 
quasiparticles, formed due to strong coupling between exci-
tons and tightly confined optical modes [1–3]. Owing to the 
half-matter, half-light nature, they open a research frontier 
of polaritonics to explore novel nonlinear quantum phe-
nomena that are impossible to observe in linear optical sys-
tems and are difficult to reach in pure matter systems. This 
potential is further amplified by the recent manipulation 
of atomically thin transition metal dichalcogenides (TMD) 

[4–6], such as MoS2 , WS2 , MoSe2 , and WSe2 . In these two-
dimensional materials, robust bright excitons of electrons 
and holes with relatively large effective masses and large 
exciton binding energy dominate the optical response even 
at room temperature. As a result, TMD monolayers are 
promising candidates for ultrafast polariton-based nonlin-
ear optical integrated devices, such as ultra-low threshold 
lasers, fast and low-power switches, and all-optical inte-
grated quantum gates. For this purpose, strong polariton 
nonlinearity is typically required. However, so far it remains 
a challenge to obtain strong exciton-exciton interaction and 
polariton-polariton interaction [7, 8].

In this respect, the recent observation of trion-polari-
tons in charge-tunable MoSe2 monolayers by Sidler et  al. 
received considerable interest [9]. At first glance, the exist-
ence of trion-polaritons is a surprise, since a trion is a 
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fermionic three-particle bound-state of one hole and two 
electrons and therefore in principle it should not be able to 
couple with bosonic photon of light. But now, we under-
stand that trions in charge-tunable monolayers are actually 
the quasiparticles of Fermi polarons [10], which are exci-
tons (as impurities) dressed by the whole Fermi sea of an 
electron gas [11–15]. Except in the true trion limit (with 
vanishing electron gas density), where the three-particle 
bound-state is recovered, the trion is better viewed as a 
dressed exciton with a nonzero residue that characterizes 
the free motion of the exciton [9, 10]. As a result, cavity 
mode can indeed couple to the trion and lead to the for-
mation of trion-polaritons. The real surprise of trion-polar-
itons comes with the observation that there seems to be a 
large nonlinearity in the optical response, as revealed by the 
pump-probe measurement [16]. The understanding of such 
a large nonlinearity has been the focus of several theoreti-
cal analyses [17–19]. Further experimental investigations 
are definitely needed. In particular, a nonlinear four-wave-
mixing measurement, such as the two-dimensional 
coherent spectroscopy (2DCS) [20–24] would be ideally 
suitable to quantitatively characterize the large nonlinearity 
of trion-polaritons.

The purpose of this work is two-fold. On the one hand, 
we wish to clarify the nature of trion-polaritons by care-
fully examining the full many-body Fermi polaron wave-
functions of either exciton-polariton or trion-polariton, 
with the use of the Chevy ansatz that describes the one-par-
ticle-hole excitations of the Fermi sea [25]. The variational 
Chevy ansatz [25] (or equivalently the many-body T-matrix 
theory [26]) has been previously used to determine the 
self-energy and the spectral function of trion-polaritons 
[9, 18]. However, a detail analysis of the many-body wave-
functions is of lack. Here, our strategy is to follow the recent 
theoretical study of the wave-functions of the three-par-
ticle trion bound state [27, 28], where a single excess elec-
tron is approximately used to simulate the whole Fermi sea 
through the k-space discretization. Our calculation is free 
from such a k-space approximation. A trade-off, however, is 
the ignorance of the internal degree of freedom of the exci-
ton wave-function. This ignorance is fully justified by the 
large exciton binding energy ( ∼ 500 meV), which is at least 
ten times larger than the trion binding energy in TMD mon-
olayers ( ∼ 30 meV) [5]. The internal structure of excitons 
then should only bring negligible effects on the low-energy 
properties of trion-polaritons.

On the other hand, the full many-body Fermi polaron 
wave-functions obtained within the Chevy ansatz 
approximation allow us to microscopically calculate 
the 2DCS spectrum of trion-polaritons, in addition to 
that of exciton-polaritons. The microscopic determi-
nation of the 2DCS spectrum of an interacting many-
body system is highly non-trivial [29–32]. Therefore, 

we would like to restrict ourselves to the case of a single 
trion-polariton or exciton-polariton in the system [32]. 
This rules out the possibility of addressing the inter-
action effect between two trion-polaritons that is of 
major interest. However, our calculation would capture 
the basic features of the 2DCS spectrum, which could 
then be used to discriminate the possible interaction 
effects between two trion-polaritons in future 2DCS 
measurements.

The rest of the paper is organized as follows. In the next 
section (Section  2), we outline the model Hamiltonian 
for the Fermi-polaron-polaritons in TMD monolayers 
and present the many-body solutions by using the Chevy 
ansatz approximation. In Section 3, we discuss the struc-
tures of trion-polaritons and exciton-polaritons and the 
optical responses of both photons and excitons. In Sec-
tion 4, we predict the the 2DCS spectroscopy and discuss 
in detail the off-diagonal cross-peaks, which show the 
coherence between exciton-polaritons and trion-polar-
itons. Finally, Section  5 is devoted to conclusions and 
outlooks.

2 � Model Hamiltonian and the Chevy ansatz 
solution

We consider the systems of TMD monolayers explored 
experimentally in Refs. [9, 23, 24] and theoretically in Refs. 
[6, 10, 28]. As discussed in great detail in Ref. [28] (see, i.e., 
Fig. 1 of Ref. [28] on the band structure and optical transi-
tions of TMD monolayers), in charge-tunable TMD mon-
olayers tightly bound excitons formed by electrons and 
holes near the K (or K ′ ) valley move in the Fermi sea of an 
electron gas in other valley with a nonzero electron density 
that corresponds to a Fermi energy at about εF ∼ 10 meV. 
Electrons in the electron gas have opposite spin with respect 
to the electron inside excitons. By solving the three-body 
problem with two unlike electrons (i.e., with opposite spin) 
and one hole, in the presence of Coulomb-like interactions, 
it was found numerically by Fey and collaborators [33] that 
an exciton experiences an effective short-range interac-
tion with the background Fermi sea. Therefore, we model 
the electron-exciton interaction by a contact interaction 
with strength U < 0 , following the theoretical treatment 
in Ref. [9]. The value of the interaction strength U is tuned 
to yield the trion binding energy ET ∼ 30 meV [9, 28]. The 
TMD monolayers can be placed in the antinode of a pla-
nar photonic microcavity, with cavity photon mode being 
tuned near resonance with the excitonic and trionic optical 
transitions.

2.1 � Model Hamiltonian
We denote the cavity photon mode and the exciton by 
the creation (or annihilation) field operators a†k ( ak ) 
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and X†
k ( Xk ), respectively. The electrons in the electron 

gas are described by the creation and annihilation field 
operators c†k and ck . The polariton system under con-
sideration therefore can be well described by a Fermi 
polaron model Hamiltonian ( � = 1 ) [9],

Here, ǫk = k2/(2me) , ωk = k2/(2mph)+ δ , and 
ǫXk = k2/(2mX ) are the single-particle energy disper-
sion relation of electrons, cavity photons and exci-
tons, respectively, with electron mass me , photon mass 
mph ∼ 10−5me and exciton mass mX ≃ 2me in 2D TMD 
materials [5]; δ is the photon detuning measured in rela-
tive to the exciton energy level; and finally, � is the light-
matter coupling (i.e., Rabi coupling). We do not explicitly 
consider the direct Coulomb interactions between the 
electrons in the background Fermi sea. According to the 
Fermi liquid theory, the effects of these direct interac-
tions can be formally taken into account by considering 
weakly interacting quasiparticles with effective mass and 
(residual) renormalized Landau interaction parameters. 
These quasiparticles are precisely the electrons that we 
are referring to in the model Hamiltonian.

We will restrict ourselves to the case that the maximum 
number of exciton-polaritons is one, i.e.,

(1)H =H
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which realizes the Fermi polaron limit. In contrast, the 
density of the electrons ( n =

∑

k c
†
kck ) is tunable, by 

adjusting the Fermi energy εF through gate voltage in the 
experiments [9, 16].

In the absence of the electron gas, the strong light-matter 
coupling leads to the well-defined two branches of exciton-
polaritons: the lower polariton and upper polariton [1–3]. 
With the electron gas, one may naively anticipate the effec-
tive interactions between lower (upper) polarities and the 
electron gas, and hence the formation of two separate lower 
and upper branches of Fermi polarons. However, the cor-
rect physical picture turns out to be the formation of attrac-
tive and repulsive Fermi polarons of dressed excitons in the 
first place, and then the coupling of Fermi polarons to the 
light. For this reason, the trion-polaritons is better viewed as 
Fermi-polaron-polaritons [9], where the treatment of a trion 
as an attractive Fermi polaron is explicitly emphasized.

2.2 � The Chevy ansatz solution
To solve the model Hamiltonian in the case of one exci-
ton-polariton, let us take the following Chevy ansatz,

(3)
∑

k

(a†kak + X†
kXk) ≤ 1,

(4)
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†
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
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Fig. 1  Two-dimensional contour plots of the zero-momentum spectral function of the exciton (a) and of the photon (b), as a function of the 
photon energy ωph = δ + ωX at the electron Fermi energy εF = 7.8 meV. The two black horizontal dot-dashed lines show the energies of the 
exciton (i.e., the repulsive polaron branch with εX ≃ 2004.4 meV) and the trion (i.e., the attractive polaron branch with εT ≃ 1963.5 meV), in the 
absence of the cavity photon field. The diagonal white dotted line indicates the cavity photon energy ωph = δ + ωX . Two avoided crossings at 
ω = εX and ω = εT  are clearly visible. The spectral functions are measured in arbitrary units and are plotted in a linear scale
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for the Fermi-polaron-polariton states with zero total 
momentum K = 0 . Here, the Fermi sea at zero tempera-
ture |FS� is obtained by filling the single-particle energy 
level ǫk with N electrons, from the bottom of the energy 
band up to the energy εF . The hole momentum kh and the 
particle momentum kp satisfy the constraints ǫkh � εF 
and ǫkp > εF , respectively. The energy of the whole Fermi 
sea is denoted as EFS.

The ansatz involves the free motions of excitons and 
photons with the amplitudes φ0 and φ̃0 , respectively. It 
also describes the one-particle-hole excitations of the 
Fermi sea due to the inter-particle interaction of excitons 
and electrons, with the amplitude φkpkh . Although there 
is no direct interaction between photons and electrons, 
for completeness we include the terms a†−kp+kh

c†kpckh |FS� 
with the amplitude φ̃kpkh . These terms actually do not 
contribute to the ansatz due to the negligible photon 
mass, since the related energy would be extremely large 
(i.e., ωk becomes very significant for nonzero k  = 0).

Unlike the previous works that only minimize the 
ground-state energy of the Chevy ansatz for the variational 
parameters ( φ0 , φ̃0 , φkpkh , and φ̃kpkh ) or the self-energy of 
polaritons [9, 16], here we are interested in solving all the 
many-body Fermi-polaron-polariton states, by using an 
alternative exact diagonalization approach. To this aim, 
we put the system — consisting of N electrons and a single 
exciton-polariton — onto a two-dimensional square lattice 
with L× L sites. The electron density then takes the value

where a is the lattice spacing and unless specified other-
wise is set to be unity ( a = 1 ). We consider that the pho-
ton, exciton, and electrons hop on the lattice only to the 
nearest neighbor with strengths ta , tX and tc , respectively. 
Their single-particle energy dispersion relations are then 
given by ( ω̃k = ωk − δ),

where mph ≡ 1/(2taa
2) , mX ≡ 1/(2tXa

2) , and 
me ≡ 1/(2tca

2) in the dilute limit ( n → 0 ) that is of inter-
est. In the same limit, we have the relation
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(La)2
,
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,
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2mX
,

(8)
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[
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(
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)]

+ 4tc ≃
k2x + k2y

2me
,

It is also easy to see the relations ta/tc = me/mph ∼ 105 
and tX/tc = me/mX ≃ 1/2 . We assume the periodic 
boundary condition, so the momentum k on the lattice 
takes the values,

with the integers nx, ny = −L/2+ 1, · · · − 1, 0, 1, · · ·L/2.
On the square lattice, we may identify that the Hil-

bert space of the model Hamiltonian involves four dif-
ferent types of expansion basis states (at zero polaron 
momentum),

It is straightforward to see that the dimension of the Hil-
bert space is D = 2+ 2N (L2 − N ) . By using the expan-
sion basis states, the Fermi-polaron-polariton model 
Hamiltonian then is casted into a D × D Hermitian 
matrix, with the following matrix elements ( Hji = H∗

ij),

and

and
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4πN

L2
tc.

(10)
(

kx, ky
)

=
(

2πnx

L
,
2πny

L

)

,

(11)|1� =X†
0|FS�,

(12)|2� =a†0|FS�,

(13)|3�kpkh =X†
−kp+kh

c†kpckh |FS�,

(14)|4�kpkh =a†−kp+kh
c†kpckh |FS�,

(15)�1|H|1� =EFS + nU ,

(16)�1|H|2� =
�

2
,

(17)�1|H|3�k′pk′h =
U

L2
,

(18)�1|H|4�k′pk′h =0,

(19)�2|H|2� =EFS + δ,

(20)�1|H|3�k′pk′h =0,

(21)�2|H|4�k′pk′h =0,



Page 5 of 13Hu et al. AAPPS Bulletin           (2023) 33:12 	

We diagonalize the D × D Hermitian matrix to obtain all 
the eigenvalues E(n) and eigenstates, from which we extract 
the Fermi-polaron-polariton energies E (n) = E(n) − EFS , 
the residue of excitons Z(n)

X ≡ φ
(n)∗
0 φ

(n)
0  and the residue of 

photons Z(n)
ph ≡ φ̃

(n)∗
0 φ̃

(n)
0  . Furthermore, we directly calcu-

late the retarded Green functions of excitons and photons,

and the associated spectral functions

Here, since we use a finite-size square lattice, the level 
spacing in the single-particle dispersion relation is about 
�E = 4tc/L . We will use �E to replace the infinitesi-
mal 0+ in the spectral function and to eliminate the dis-
creteness of the single-particle energy levels. To make 
connection with the experimental measurement, we 
measure the energy ω in the spectral function from the 
top of the valence band by adding a constant energy shift 
ωX = Eg − EX = 2 eV [5, 27], where Eg and EX are the 
band gap and the binding energy of excitons, respectively.

To close this subsection, let us briefly comment on the 
usefulness of Chevy ansatz. On lattice, this variational 
approach with the inclusion of one-particle-hole excita-
tions was extensively used to qualitatively understand 
the stability of a ferromagnetic phase in two-dimen-
sional Hubbard model [34, 35]. In the dilute limit, where 
the density or the filling factor n → 0 as adopted in this 
work, it was used to describe the Fermi polaron in ultra-
cold atomic systems [25]. It turns out that this approxi-
mation works quantitatively well in the dilute limit, 
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(27)AX (k = 0,ω) =− 1

π
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(28)Aph(k = 0,ω) =− 1

π
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probably due to a nearly perfect destructive interference 
of the high-order contributions with more than one par-
ticle-hole pairs [36]. The validity of Chevy ansatz has also 
been examined by using numerically exact Monte Carlo 
simulations and an excellent agreement was found [37].

3 � Trion polaritons and the one‑dimensional 
optical response

In our numerical calculations, we consider a square lat-
tice of L = 16 . We set the hopping strength tc = 10 meV 
and then determine ta = tc(me/mph) = 106 meV and 
tX = tc(me/mX ) = 5 meV. At these parameters, the spec-
tral broadening factor �E = 4tc/L = 2.5 meV, which qual-
itatively agrees the homogeneous broadening observed in 
the optical response of exciton-polaritons [5]. We take 
an attractive interaction strength U = −8tc = −80 meV, 
which leads to a trion energy at about −3.2tc = −32 meV 
in the dilute limit (i.e., n → 0 or N = 1 at L = 16 ), in rea-
sonable agreement with the trion binding energy ET ∼ 30 
meV found in 2D TMD materials [5].

Most of our calculations are carried out for a num-
ber of electrons N = 16 , which corresponds to a Fermi 
energy εF ≃ 4πNtc/L

2 ≃ 7.8 meV [9, 16]. At this num-
ber of electrons, we find the attractive polaron energy 
EA ≃ −3.65tc = −36.5 meV and the repulsive polaron 
energy ER ≃ +0.44tc = 4.4 meV, without the cavity field. 
Measured from the top of the valence band, these values 
give rise to the trion energy εT = EA + ωX = 1963.5 meV 
and the exciton energy εX = ER + ωX = 2004.4 meV.

For convenience, we will also measure the pho-
ton energy ωph with respect to the top of the valence 
band, which leads to ωph = δ + ωX . For the light-mat-
ter coupling, we always fix the Rabi frequency to be 
� = 2tc = 20 meV.

In Fig.  1a and b, we report the zero-momentum spec-
tral functions AX (k = 0,ω) and Aph(k = 0,ω) at the typi-
cal experimental Fermi energy εF = 7.8 meV for excitons 
and photons, respectively, in the form of the two-dimen-
sional contour plot with a linear scale (as indicated on the 
top of the figure). Both spectral functions clearly show an 
avoided crossing at the energy close to ωX = 2 eV. The two 
branches can be well-understood as the upper and lower 
polaritons given by the model Hamiltonian H(0)

aX , which 
exist even in the absence of the electron gas. This is evi-
dent if we compare Fig. 1 with Fig. 9 in Appendix A, where 
the latter figure reports the results at a much smaller Fermi 
energy εF = 1 meV. For the upper and lower polariton 
branches, we find that the existence of the electron gas will 
slightly shift the position of the avoided crossing (i.e., from 
ωX = 2000 meV to εX ≃ 2004.4 meV), due to the exciton-
electron interaction that becomes effectively repulsive for 
the excited state of repulsive polarons.
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The main effect of the electron gas to the spectral func-
tions is the appearance of an additional avoided crossing, 
the trion-polariton, at the trion energy ω = εT . At the 
Fermi energy εF = 7.8 meV in Fig. 1, this avoided crossing 
has an energy splitting smaller than but comparable to the 
Rabi coupling � = 20 meV for the exciton-polariton. The 
shape of the avoided crossing is apparently asymmetric in 
the exciton spectrum. At the much smaller Fermi energy 
εF = 1 meV in Fig. 9, the avoided crossing can hardly be 
identified in both exciton spectrum and photon spectrum, 
which unambiguously indicates that the existence of a 
Fermi sea is the key source for the trion-polariton.

To better understand the two avoided crossings for 
exciton-polaritons and trion-polaritons, we show in 
Figs.  2 and 3 the residues (upper panel) and spectral 
functions (lower panel) of excitons and photons, at the 
photon energy ωph = εX and ωph = εT , respectively.

Let us first focus on the avoided crossing for exciton-
polaritons at ωph = εX ≃ 2004.4 meV in Fig. 2. The com-
position of the different branches might be seen from 
the exciton and photon residues. The upper branch (or 
the rightest branch) locates at the energy ∼ 2.013 eV and 
consists of a number of many-body energy levels that 

distribute nearby with notable exciton and photon resi-
dues. For this upper branch, due to its collective nature, 
it seems difficult to find a Hopfield coefficient that clearly 
defines the contributions or components from cavity pho-
tons and excitons, as in the case of conventional exciton-
polaritons. In contrast, for the lower branch (or the middle 
branch in the range of the whole plot, which is referred to 
as middle polariton in the literature) located at the energy 
∼ 1.996 eV, we find that it is only contributed by one 
dominated state. All other nearby many-body states have 
residues much less than 1% . This branch seems to decou-
ple from the particle-hole excitations of the Fermi sea and 
therefore retains the characteristic of the exciton-polari-
ton without the electron gas. We note that, the energy 
splitting between the upper and lower branches is given 
by 2.013− 1.996 = 0.017 eV or 17 meV, which is slightly 
smaller than the Rabi coupling � = 20 meV. We attribute 
this slight difference to the transfer of the residue or the 
oscillator strength to the third branch (the lowest-energy 
branch) in the exciton spectrum, as shown in Fig. 2b.

The situation for the avoided crossing of trion-polaritons 
at ωph = εT is very similar. As can be seen from Fig.  3, 
the upper branch of this avoided crossing near the energy 

Fig. 2  a Residues of the exciton (black solid circles) and the photon 
(red empty square) for each many-body state that is arranged with 
increasing energy. b The spectral function of the exciton (black solid 
line) and the photon (red dotted line), shown in arbitrary units. Here, 
we take a cavity photon energy ωph = δ + ωX = εX ≃ 2004.4 meV. 
The electron Fermi energy is εF = 7.8 meV

Fig. 3  a Residues of the exciton (black solid circles) and the photon 
(red empty square) for each many-body state that is arranged with 
increasing energy. b The spectral function of the exciton (black solid 
line) and the photon (red dotted line), shown in arbitrary units. Here, 
we take a photon energy ωph = δ + ωX = εT ≃ 1963.5 meV. The 
electron Fermi energy is εF = 7.8 meV
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∼ 1.967 eV is formed by a bundle of many-body states 
with significant residues. The lower branch is instead 
contributed by one state only at the energy ∼ 1.958 eV. 
The energy splitting of the two branches is about 9 meV 
and is less than the Rabi coupling � = 20 meV. The small 
energy splitting is again attributed to the reduced oscillator 
strength, which we now turn to discuss in greater detail.

As we mentioned earlier, a plausible picture for the for-
mation of trion-polaritons is the strong effective light-
matter coupling between a photons and an attractive 
Fermi polaron of the exciton impurity. It is clear that only 
the free part of the attractive polaron (as characterized by 
φ0 ) contribute to the light-matter coupling, in the form of 
the term (�/2)[a†0(φ0X0)+ h.c.] at zero momentum. In 
other words, the effective Rabi coupling would be given by

which is reduced by the square root of the excitonic resi-
due. This expression of the effective Rabi coupling would 
also work well for the repulsive polaron (i.e., the exciton-
polariton with the electron gas).

(29)�eff ≃ �φ0 = �
√

ZX ,

In Fig. 4, we show the ground-state energy of the trion-
polariton (a) and its excitonic and photonic residues 
(b), as a function of the photon energy ωph = δ + ωX . 
The excitonic residue does not change significant when 
ωph � εX . In particular, at the avoided crossing of 
ωph = εX , the excitonic residue ZX ∼ 0.25 , which implies 
an effective Rabi coupling �eff ≃ �

√
ZX = 10 meV, 

which is very close to the observed value of 9 meV. The 
slightly reduced Rabi coupling of 17 meV at the avoided 
crossing of the exciton-polariton might be understand 
in a similar way. We may identify that the excitonic 
residue of the repulsive polaron at ωph = εX is about 
ZX ∼ 0.7 . Therefore the effective Rabi coupling is given 
by �eff ≃ �

√
ZX = 16.7 meV, in agreement with our 

finding.

4 � Two‑dimensional coherent spectroscopy
Let us now consider the 2DCS spectroscopy, which is to 
be implemented in future experiments on studying the 
exciton-polariton physics in TMD materials. In 2DCS, 
three excitation pulses with momentum k1 , k2 and k3 are 
applied to the system under study at times τ1 , τ2 and τ3 , 
separated by an evolution time delay t1 = τ 2 − τ1 and a 
mixing time delay t2 = τ3 − τ2 , as illustrated in the left 
part of Fig. 5. These pulses generate a signal with momen-
tum ks , as a result of the nonlinear third-order process of 
the many-body interaction effect. The signal can then be 
measured after an emission time delay t3 by using the fre-
quency-domain heterodyne detection.

During the excitation period, each excitation pulse cre-
ates or annihilates an exciton. As the photon momentum 
of the excitation pulses is negligible, the exciton has the 

Fig. 4  a The ground-state energy of Fermi-polaron-polaritons as a 
function of the photon energy ωph = δ + ωX , where ωX = 2 eV. The 
red dotted line and the black dot-dashed line show the cavity photon 
detuning and the trion energy without cavity field εT ≃ 1963.5 meV. 
b Residues of the exciton (black solid circles) and the photon (red 
empty squares) of the ground-state as a function of the photon 
energy. Here, we take the electron Fermi energy εF = 7.8 meV

Fig. 5  Two double-sided Feynman diagrams that represent the 
two contributions to the standard rephasing 2D coherent spectra 
under the phase-match condition ks = −k1 + k2 + k3 , with 
the time ordering of excitation pulses indicated on the left. The 
evolution, mixing, and emission time delays are labeled as t1 , t2 , 
and t3 , respectively. a shows the process of excited-state emission 
(ESE), R2(t1, t2, t3) . b corresponds to the ground-state bleaching 
(GSB), R3(t1, t2, t3) . In the diagrams, we use |g� to denote the Fermi 
sea and |e� to label the many-body states with an exciton-polariton, 
respectively. There are infinitely many many-body (Fermi polaron) 
states |e� , as indicated by different colors
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zero momentum. Therefore, each pulse can be described 
by the interaction operator V,

Following the standard nonlinear response theory [22], 
the signal is given by the third-order nonlinear response 
function,

where the time-dependent interaction operator 
V (t) ≡ eiHtVe−iHt , and �· · · � stands for the quantum 
average over the initial many-body configuration of the 
system without excitation pulses, which at zero tem-
perature is given by the ground state. By expanding the 
three bosonic commutators, we find four distinct corre-
lation functions and their complex conjugates [22]. For 
the rephasing mode that is of major experimental inter-
est, t1 > 0 and ks = −k1 + k2 + k3 . For this case, only 
two contributions are relevant if we consider at most 
one excitonic excitation in the system: the process of so-
called excited-state emission (ESE) [22, 23] ,

and the process of ground-state bleaching (GSB) [22, 23],

These two processes can be visualized by using double-
sided Feynman diagrams, as given in Fig. 5a and Fig. 5b, 
respectively. It is worth noting that we do not include 
the third process R∗

1(t1,t2, t3) of excited-state absorption 
(ESA), which involves the many-body states of two exci-
tons and becomes important at large exciton density.

For an exciton system, a microscopic calculation of the 
2DCS spectrum has been recently carried out [32]. Here, 
we extend such a microscopic calculation to the exciton-
polariton system. After some straightforward algebra fol-
lowing the line of Ref. [32], we obtain the ESE and GSB 
contributions,

where the indices n and m run over the whole many-body 
polaron states.

These two expressions can be easily understood from 
the double-sided Feynman diagrams. For the ESE pro-
cess illustrated in Fig.  5a, the weight Z(n)

X Z
(m)
X  meas-

ures the transfer rates between different many-body 

(30)V ∝ X0 + X†
0.

(31)
R

(3) ∝ �[[[V (t1 + t2 + t3),V (t1 + t2)],V (t1)],V ]�,

(32)R2 = �VV (t1 + t2)V (t1 + t2 + t3)V (t1)�,

(33)R3 = �VV (t1)V (t1 + t2 + t3)V (t1 + t2)�.

(34)R2 =
∑

nm

Z
(n)
X Z

(m)
X eiE

(n)t1ei[E
(n)−E

(m)]t2e−iE(m)t3 ,

(35)R3 =
∑

nm

Z
(n)
X Z

(m)
X eiE

(n)t1e−iE(m)t3 ,

states induced by the three excitation pulses and the 
signal. For example, the transfer of the first pulse at 
momentum k1 brings a factor of φ(n)

0  , while the trans-
fer of the second pulse at momentum k2 comes with 
a factor of [φ(m)

0 ]∗ , and so on. When we combine all 
the four factors for the four transitions, we obtain the 
weight Z(n)

X Z
(m)
X  . On the other hand, the three dynami-

cal (time-evolution) phase factors arise from the 
phases accumulated during the time delays t1 , t2 , and 
t3 , respectively. The GSB process can be analyzed in an 
exactly same way. The only difference is the absence of 
the mixing time ( t2 ) dependence in the expression. This 
is easy to understand from Fig. 5b: between the second 
and third pulses the system returns to the ground state 
of a Ferm sea, so there is no phase accumulation during 
the mixing time delay.

By taking a double Fourier transformation for t1 and t3 
in R2(t1, t2, t3) and R3(t1, t2, t3) , we obtain the 2DCS spec-
trum [32],

where (−ω1)
− ≡ −ω1 − i0+ , and ω1 and ω3 are the exci-

tation energy and emission energy, respectively.

4.1 � Zero mixing time delay t2 = 0

Let us first focus on the case of zero mixing time delay 
t2 = 0 , where

and consider the dependence of the 2DCS spectrum 
|S(ω1, 0,ω3)| on the photon energy ωph = δ + ωX , as 
shown in Fig. 6. By changing the photon detuning δ from 
the blue shift above the exciton-polariton crossing (a) to 
the red shift below the trion-polariton crossing (f ), we 
typically find three diagonal peaks located at the diagonal 
line ω3 = −ω1 (see the white dashed lines) and six off-
diagonal cross-peaks located symmetrically with respect 
to the diagonal line.

These peaks arise from the three branches of excita-
tions, as we already seen in Fig. 1. Formally, with decreas-
ing energy the many Fermi-polaron-polariton states have 
been grouped into the upper polariton, middle polari-
ton, and lower polariton branches, as often referred to 
in the literature [9, 16–18, 27]. Therefore, we can roughly 
understand the Fermi-polaron-polariton as a three-
energy-level system, with the energies E (n), E (m) ∼ EUP , 
EMP , and ELP that are tunable by the cavity photon detun-
ing. The corresponding excitonic weights are given by the 
excitonic residues Z(UP)

X  , Z(MP)
X  , and Z(LP)

X  . Hence, from 

(36)S
(
�1, t2,�3

)
=

∑

nm

Z
(n)

X
Z
(m)

X(
−�1

)−
− E

(n)

1 + e
i
[
E
(n)
−E

(m)
]
t2

�
+

3
− E

(m)
,

(37)

S(ω1, 0,ω3) = 2
∑

nm

Z
(n)
X

(−ω1)
− − E (n)

Z
(m)
X

ω+
3 − E (m)

,
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Eq. (37) we can easily identify that the diagonal peaks 
occur when ω1 = −Eα and ω3 = Eα with peak amplitude 
(Z

(α)
X )2 ( α = UP,MP, LP ), while the off-diagonal peaks 

appear when ω1 = −Eα and ω3 = Eβ with peak amplitude 
Z
(α)
X Z

(β)
X  ( α  = β = UP,MP, LP).

The experimental measurement of diagonal peaks 
and crossover peaks at zero mixing time delay t2 = 0 
then provides us the information of both the energies 
Eα and the residues Z(α)

X  . In particular, when the pho-
ton energy ωph = δ + ωX is near the two avoided cross-
ings (as shown in Fig.  6b and e, respectively), we may 
easily identify the effective Rabi coupling from the cor-
responding energy splitting. Near the avoided crossing 
for the trion-polariton, the asymmetry of the crossing 
can also be clearly seen.

We note that, when the photon energy is tuned to 
roughly the half-way between the two avoided cross-
ing, the middle polariton disappears in the 2DCS 
spectrum (see Fig. 6d). This is simply because, at this 
photon energy the middle polariton is of photonic in 
characteristics, with negligible excitonic component. 
Therefore, it can not be seen from the 2DCS, which 
probes the excitonic part instead of the photonic part 
of the system. This feature of the 2DCS spectrum 

is useful to characterize the main component of the 
ground-state of the trion-polariton (or the lower 
polariton branch). As the photon energy decreases 
across the avoided crossing for trion-polaritons, we 
find that the brightness of the diagonal trion-polariton 
peak becomes much weaker.

Although the upper, middle and lower polariton 
branches can also be conveniently measured by using 
one-dimensional optical response, such as the reflec-
tance spectroscopy and photoluminescence spectros-
copy [9], the application of 2DCS spectroscopy has 
unique features to discriminate the intrinsic homoge-
neous line-with of the resonance peaks [23] and the 
interaction effects [21, 24]. Unfortunately, both effects 
(i.e., the disorder potential for excitons and the exci-
ton-exciton interaction) are not included in our model 
Hamiltonian. Nevertheless, our results in Fig. 6 provide 
the essential qualitative features of the 2DCS spectrum, 
which is to be measured in future exciton-polariton 
experiments. In addition, the appearance of the off-diag-
onal peaks and their evolution as a function of the mix-
ing time decay t2 are useful to characterize the quantum 
coherences among the different branches of polaritons, 
which we now turn to discuss.

Fig. 6  The simulated rephasing 2D coherent spectra (amplitude) at various photon energies ωph = δ + ωX at and at zero mixing time decays 
t2 = 0 . The photon energy decreases from ωph = 2020 meV to from ωph = 1950 meV in a–f. We typically find three peaks appearing on the 
diagonal dashed line. The red color illustrates the maximum amplitude, as indicated in the colormap above each subplot. The electron Fermi energy 
is set to be εF = 7.8 meV
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4.2 � Quantum coherence of the cross‑peaks
In Fig. 7, we present the simulated rephasing 2D coherent 
spectra |S(ω1, t2,ω3)| with increasing mixing time decays 
t2 . We choose a photon energy ωph = δ + ωX = 2004 
meV at the avoided crossing for exciton-polaritons, where 
all the three polariton branches are clearly visible at 
t2 = 0 . We label the three off-peaks at the top-right corner 
of the figure as HCP1, HCP2, and HCP3 [23], respectively.

As can be seen from Eq. (36), the time t2-dependence 
of the 2D spectrum S(ω1, t2,ω3) comes in through the 
term ei[E(n)−E

(m)]t2 . As we interpret the Fermi-polaron-
polariton as a three-level system, where the energy lev-
els E (n), E (m) are to be replaced by EUP , EMP , and ELP , 
it is readily seen that the t2-term gives rise to quantum 
oscillations with three different periods: 2π/|EMP − ELP | 
for the HCP1 cross-peak, 2π/|EUP − ELP | for 
HCP2, and 2π/|EUP − EMP | for HCP3. At the pho-
ton energy ωph = δ + ωX = 2004 meV, we find that 
EMP − ELP ≃ 33.2 meV, EUP − ELP ≃ 50.5 meV, and 
EUP − EMP ≃ 17.3 meV. Therefore, the periodicities 
of the cross-peaks are at the order of 10−10 s or 100 fs, 
and are given by THCP1 ≃ 124.4 fs, THCP2 ≃ 81.6 fs, and 
THCP3 ≃ 239.5 fs.

The 2DCS spectra in Fig. 7 are shown in 40 fs increments. 
We can clearly identify that the brightness of each cross-
peak oscillates with the mixing time delay t2 , revealing the 
coherent coupling among different branches of exciton-
polariton and trion-polaritons. In comparison with the zero 
mixing time delay 2DCS in Fig. 6b, we find that the HPC1 
cross-peak nearly recovers its full brightness at t2 = 120 
fs and 240 fs, confirming that its periodicity is close to the 
anticipated value THCP1 ≃ 124.4 fs. For the HCP2 cross-
peak, we see similarly that it nearly disappears at t2 = 40 
fs, 120 fs, and 200 fs and fully recovers at t t2 = 80 fs, 160 
fs, and 240 fs, in agreement with our anticipation that 
THCP2 ≃ 81.6 fs. In addition, the HPC3 cross-peak only 
returns to the its full brightness at THCP3 ≃ 240 fs.

To better characterize the quantum oscillations, we 
report in Fig. 8 the simulated rephasing 2D signal at the 
crosspeaks as a function of the mixing time t2 , both in 
the form of its amplitude (the upper panel) and in its real 
part (the lower panel). The oscillations do not take the 
exact form of 1+ cos(ωt2) , as one may naively antici-
pate from Eq. (36). This is partly due to the existence 
and competition of three different periods in the oscil-
lations, which may bring a slight irregular structure. On 

Fig. 7  The simulated rephasing 2D coherent spectra (amplitude) at the photon energy ωph = δ + ωX = 2004 meV with increasing mixing time 
decays t2 from a to f. In a, the three higher-cross-peak (HCP) are indicated. The three peaks appearing on the diagonal dashed line essentially do 
not change. However, the higher-cross-peaks and lower-cross peaks oscillate as a function of t2 , revealing the quantum coherence among different 
quasiparticles. The red color illustrates the maximum amplitude, as indicated in the colormap above each subplot. The electron Fermi energy is set 
to be εF = 7.8 meV
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the other hand, we find that the oscillations at HCP2 and 
HCP3 typically exhibit a decay. These dampings should 
be related to the many-body nature of the upper-polar-
iton branch, i.e., it is formed by a bundle of many-body 
states as we discussed in Fig.  2. Therefore, the upper 
polariton has an intrinsic spectral broadening, which 
eventually causes the damping in the quantum oscilla-
tion of the cross-peaks HCP2 and HCP3. In contrast, 
both the lower-polariton and middle-polariton at the 
photon energy ωph = δ + ωX = 2004 meV are domi-
nated by a single Fermi polaron state, and do not expe-
rience the intrinsic spectral broadening. As a result, the 
quantum oscillation at HCP1 is long-lived, if we do not 
take into account the lifetimes of excitons (due to the 
natural radiative decay) and of photons (due to the qual-
ity of the cavity).

5 � Conclusions and outlooks
In conclusions, based on the Fermi polaron description 
of an exciton-polariton immersed in an electron gas, we 
have analyzed the structure of exciton-polaritons and 
trion-polaritons in monolayer transition metal dichal-
cogenides and have predicted their 2D coherent spec-
troscopy for on-going experimental explorations in the 
near future.

From the structure analysis, we have found that 
the upper-polariton branch at the exciton-polariton 
avoided crossing typically consists of a number of 

many-body Fermi polaron states. Instead, the lower-
polariton branch at the trion-polariton avoided cross-
ing involves only one Fermi polaron state. The situation 
for the middle-polariton branch varies, depending on 
whether it is close to the exciton-polariton crossing 
or close to the trion-polariton crossing. In the former 
case, the middle-polariton is also dominated by a single 
Fermi polaron state.

As there are three polariton branches [9, 17, 27], in 
the 2D coherent spectroscopy, we have found three 
diagonal peaks and six off-diagonal cross-peaks. From 
these peaks measured in future experiments, in princi-
ple we should be able to extract the excitonic residues 
of different polariton branches. We have predicted the 
existence of quantum oscillations in the 2D spectra as a 
function of the mixing time delay t2 , as the evidence for 
the quantum coherence among the different polariton 
branches [23].

Although in the present study we have not considered 
the effects of the disorder potential on excitons and the 
inter-exciton interaction, our results would provide a good 
starting point to understand the 2D coherent spectroscopy 
on exciton-polaritons to be experimentally measured in 
the near future. Theoretically, the inclusions of the disor-
der effect and interaction effect would be extremely chal-
lenging in numerics, since the dimension of the Hilbert 
space of the model Hamiltonian will increase dramatically. 
We will address these effects in future publications.

Fig. 8  The simulated amplitude a and real part b of the rephasing 2D signal at the three cross-peaks as a function of the mixing time delays t2 . Note 
the different periodicity at different crosspeaks. We choose the photon energy ωph = δ + ωX = 2004 meV as in Fig. 6 and take the electron Fermi 
energy εF = 7.8 meV
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Appendix A: Exciton‑polaritons 
and trion‑polaritons at small electron density
In Fig. 9, we report the zero-momentum spectral func-
tions of excitons and of photons for a small electron 
density with Fermi energy εF = 1.0 meV. At this den-
sity, the exciton energy level is barely affected by the 
scattering with the electron gas and the trion energy 

level is basically given by the trion binding energy of 
ET ≃ 32 meV. We can hardly identify the existence of 
the trion-polariton from the excitonic spectrum. Nei-
ther, the trion-polariton can barely be seen from the 
photonic spectrum. Both spectra are very similar to the 
spectrum of exciton-polaritons in the absence of the 
electron gas.
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