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Abstract 

Classical magnetic fields might change the properties of topological insulators such as the time reversal symmetry 
protected topological edge states. This poses a question that whether quantized fields would change differently 
the feature of topological materials with respect to the classical one. In this paper, we propose a model to describe 
topological insulators (ultracold atoms in square optical lattices with magnetic field) coupled to a tunable single‑
mode quantized field, and discuss the topological features of the system. We find that the quantized field can induce 
topological quantum phase transitions in a different way. To be specific, for fixed gauge magnetic flux ratio, we calcu‑
late the energy bands for different coupling constants between the systems and the fields in both open and periodic 
boundary conditions. We find that the Hofstadter butterfly graph is divided into a pair for continuous gauge magnetic 
flux ratio, which is different from the one without single‑mode quantized field. In addition, we plot topological phase 
diagrams characterized by Chern number as a function of the momentum of the single‑mode quantized field and 
obtain a quantized structure with non‑zero filling factor.
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1 Introduction
Since the observation of the quantized Hall effect [1], 
electronic topological quantum matter [2] became one 
of the most active subjects of condensed matter physics. 
The researchers have paid much attention to topological 
materials [3–7] including but not limited to Chern insu-
lators (CIs) [8–12] in the past decades. Novel topologi-
cal phases that correspond to different conducting edge 
or surface states are predicted and observed. Topological 
phase of matter exist not only in electronic systems but 
also in ultracold atomic gases in optical lattices [13–16]. 
The later system increases the modulation flexibility of 
topological materials and inspires a wide interest in top-
ological insulators subject to external fields [17, 18], for 

instance, quantum quench [19, 20], thermalization [21, 
22] and decoherence [23–25].

Manipulating the topological features of matter by cou-
pling the systems to electromagnetic fields becomes an 
active research area for many years. Various topological 
structures coupled to electromagnetic fields are studied for 
different issues, including topological phases induced pho-
tocurrent [26–33], topological order by dissipation [34–
36], and optical Hall conductivity [37–40]. Interestingly, 
classical electromagnetic fields can change the energy band 
structure of the topological materials and induce nontrivial 
topological edge states in topological insulators such as 
HgTe/CdTe quantum well [41] or graphene [42]. In addi-
tion, the superradiant phase transition occurs in quantum 
spin Hall insulator for arbitrary weak coupling between the 
system and fields [43]. This provides us with a new perspec-
tive to study the topological features of topological matter 
coupled to a quantized field. Many problems remain open, 
including how topological features can take place in a sys-
tem where the topological tight-binding system coupled to 
a single-mode quantized field with momentum, and what is 
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the behavior of the Chern number in such a situation? We 
will answer these questions in this paper.

In this paper, we first introduce our framework that con-
sists of the Harper-Hofstadter model and a single-mode 
quantized field. The Harper-Hofstadter model contains the 
Harpers model [44] and the Hofstadter model [45] for opti-
cal lattices, which is realizable in experiments [46, 47]. With 
the development of the Ultracold atoms, it has become an 
important platform for considering topological matter 
coupled to a quantized field, the experimental implemen-
tation of our scheme can be designed with several theoreti-
cal studies [48, 49]. In order to connect 1D and 2D physics, 
we express the model in a mixed real- and momentum-
space called mixed-space representation [50–53]. With 
these arrangements, we calculate the energy bands of the 
quantized light-matter interaction system for both open 
and periodic boundary conditions. And then we calculate 
the Chern number of the system and show the topological 
quantum phase transitions induced by a single-mode quan-
tized field. The changes of Chern number for fixed mag-
netic flux ratio indicate that the quantum field indeed can 
induce topological phase transition. Finally, we construct 
phase diagrams according to Chern number versus the 
single-mode quantized field to show all topological phases.

The paper is organized as follows. The Hamiltonian of 
Harper-Hofstadter model coupled to a single-mode quan-
tized field is introduced in Sec. 2. Eigenspectrum of the sys-
tem in hybrid representation is calculated and discussed in 
Sec. 3. The Chern number spectrum in periodic conditions 
is given in Sec. 4. Finally we conclude in Sec. 5.

2  Hamiltonian
2.1  The Harper‑Hofstader model
We consider the Harper-Hofstader model, which describes 
the nearest-neighbor hopping of atoms in a square lattice. 
The system forms a cylinder with length N,  circumference 
W and a uniform magnetic field is exerted. The Hamilto-
nian of the system is given by [44, 45]

where ĉ†i = (ĉ†i,↑ ĉ†i,↓) creates a fermion at site i in one of 
two internal states, pseudospin labeled by σ = {↑,↓} , 〈i, j〉 
represents nearest neighbors, and t is the hopping ampli-
tude. Î stands for the identity matrix. Lattice plaquette �ij 
depends on artificial vector potentials, and we employ the 
Landau gauge A = (0,Ay, 0) . Here, Ay = �x = 2παx , 
α = p/q (p and q are integers) is the magnetic flux per 
plaquette in units of flux quantum. The flux β pierce the 
cylinder along its height, which can be interpreted as an 
angle twisting the boundaries. Twist angles also can be 
used to define topological invariants [54]. We will average 

(1)Ĥ0 = −t

�i,j�

ĉ†i e
i[�ij−β/W ]Î ĉj ,

over β to reduce the effects of finite circumference W 
along the  y-direction, and the boundary conditions are 
implemented via ĉN+1,y,σ = 0 and ĉx,W+1,σ = ĉx,1,σ (finite 
sites N along the x-direction).

We consider nearest-neighbor hoppings on a two-
dimensional square lattice with a cylinder boundary con-
ditions along the y-direction as sketched in Fig. 1a. The 
horizontal direction is the direction along the cylinder, 
and the vertical one is around the cylinder. When the 
magnetic flux per plaquette α is not zero, the magnetic 
flux � accumulates due to jumping around the lattice 
as shown in Fig. 1b. The spectrum of the system versus 
lattice momentum k is shown in Fig. 1c. The periodicity 
of the bulk states is dictated by the denominator q and 
there are three bands in momentum space with q = 3 . 
The boundaries of the magnetic Brillouin zone are at 
kya ∈ (−π/3,π/3) and kxa ∈ (−π ,π) , where a is the lat-
tice constant.

We start by writing the second quantization form of 
the Hamiltonian in Eq. (1) for a rectangular lattice in real 
space as

Due to the chosen boundary conditions, the momentum 
along the y-direction is conserved while the momentum 
along x is not. Therefore, it is convenient to write the 
Hamiltonian in a mixed-space representation by taking 
the advantage of the conserved momentum along y. We 
write the annihilation operator by employing the Fourier 
transformation along y as

where m represents the x coordinate in the two-dimen-
sional lattice, and Ny represents the number of sites along 
y. In mixed-space representation, the Hamiltonian (1) 
becomes

where �̂†
m,ky

= (�̂†
m,ky,↑

�̂†
m,ky,↓

) creates fermion at 
(m, ky) . We write the details as shown in Appendix A 
(from Eqs. (27) to (30)).

2.2  The coupling of the Harper‑Hofstader system 
with a quantized field

In this section, we focus on the coupling of the topologi-
cal material with quantized fields. The light-matter inter-
action has been studied for various systems, which is a 

(2)Ĥ0 =
∑

r

ĉ†rĤr ĉr .

(3)ĉr =
1

√

Ny

∑

ky

eikyy�̂m,ky ,

(4)Ĥ0 =
∑

m,ky

�̂†
m,ky

Ĥm,ky�̂m,ky ,
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fundamental tool of quantum physics in applications. For 
example, topological-enhanced nonreciprocal scattering 
[55], topological properties in the steady state with dis-
sipation [56] and dissipative topological phase transition 
[36]. For simplicity, we do not consider decoherence of 
the single-mode field.

Consider a single-mode field with momentum q and 
frequency ωq = ν�q� , where ν is the speed of light. The 
Hamiltonian of the single-mode field is given by

where b̂†q and b̂q are creation and annihilation operators, 
respectively. The Hamiltonian that describes the inter-
action between the system and the quantized fields may 
take the following form,

where g is the effective atom-photon coupling constant 
[57, 58] and q = (kT , 0, 0) represents the nonzero com-
ponent kT in x-direction. Experimentally, internal tran-
sitions between two atomic ground states (pseudospins) 
can be solved by utilizing Raman scattering processes 
[49, 59].

The coupling of the system (atoms) to the single-
mode light field by Eq. (6) can be depicted in Fig. 2. The 
Hamiltonian in the real space is shown in Appendix B. 
The green and pink bars in Fig.  2a indicate the atoms 
in spin-up and spin-down states, respectively. The total 

(5)Ĥl = �ωq b̂
†
qb̂q ,

(6)

ĤI = −(
∑

k

g∗ĉ†k,↓b̂
†
q ĉk+q,↑ +

∑

k

gĉ†k,↑b̂q ĉk−q,↓),

transition path of photon (from gray atom to blue atom 
obliquely) is divided schematically into two continuous 
processes. The first process is regarded as the turnover of 
atoms with different pseudospins (from gray atom to blue 
atom vertically), and the second process is regarded as 
the momentum transition of atoms with  the same pseu-
dospin (from blue atom to blue atom horizontally). The 
above statements mean that kT can be understood as a 
spin-dependent momentum transfer in the process.

With this consideration, we might rewrite the total effective 
Hamiltonian as Ĥtotal = Ĥ↑↑ + Ĥ↓↓ + Ĥ↓↑ + Ĥ↑↓ + Ĥl , 
which describes the whole system including lattice atoms 
and light field, see Fig. 2b. Here,

Ĥ↑↓ and Ĥ↓↑ stand for the processes of spin-flip. Ĥ↑↑ and 
Ĥ↓↓ represent the processes of momentum transfer. And 
Ky ≡ 2παm− β/W = eHx/�c − β/W  , eHx/�c stands 
for the y-component of an artificial vector potential. It 

(7)Ĥ↑↑ = −2t
∑

m,ky

{cos[(k̂x + kT )a] − cos [(ky +Ky)a]}Φ̂
†

m,ky ,↑
Φ̂m,ky ,↑

,

(8)Ĥ↓↓ = −2t
∑

m,ky

{cos [(k̂x − kT )a] − cos [(ky +Ky)a]}Φ̂
†

m,ky ,↓
Φ̂m,ky ,↓

,

(9)Ĥ↑↓ = −g
∑

m,ky

�̂†
m,ky,↑

b̂q�̂m,ky,↓,

(10)Ĥ↓↑ = −g∗
∑

m,ky

�̂†

m,ky,↓
b̂†q�̂m,ky,↑

Fig. 1 Nearest‑neighbor hopping of atoms in a square lattice with a uniform  magnetic field. a Nearest‑neighbor hopping on a two‑dimensional 
square lattice with the periodic boundary conditions along the y‑direction. b A partial view of the system. c The energy bands of the 
Harper‑Hofstader model in momentum space, where the Chern numbers of three bands are 1,−2, 1 . The parameters are N = 30 , ax = ay = t = 1 , 
W = 9 , and β = 0.2π
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may be generated by laser- assisted tunnelings [60, 61]. 
We also give  the Hamiltonian of the first four parts in a 
real-space for more intuitive understanding. For details, 
see Appendix B (from Eqs. (32) to (35)).

We choose the basis as follows,

and

The implementation to realize a single-photon coupled to 
a single-site theoretically [62, 63]. With these settings, we 
express the matrix form of the Hamiltonian for the sys-
tem in a mixed-space representation as

(11)|�m,ky,↑� = |�m,ky,↑� ⊗ |{0}�,

(12)|�m,ky,↓� = |�m,ky,↓� ⊗ |{1}�.

(13)Ĥtotal =

(

ε↑(k̂) − g

−g∗ ε↓(k̂)+ �ωq

)

,

where the diagonal elements represent spin-depend-
ent kinetic energies and the off-diagonal terms 
stand for spin flips. The spin-up (↑) kinetic energy is 
𝜀↑(k̂) = −2t{cos[(k̂x + kT )a] + cos[(ky +Ky)a]}, and the spin-
down (↓) kinetic energy is 𝜀↓(k̂) = −2t{cos[(k̂x − kT )a]+

cos[(ky +Ky)a]}, where a is the lattice spacing in the 
square lattice. The momentum shift kT ( −kT ) is corre-
sponding to the |↑� ( |↓� ) state along the x-direction. The 
matrix containing the momentum of light parameter kTa 
as phase factors is

The matrix indexed by position x = ma is

where θy = (ky +Ky)ay , then Harper’s Hamiltonian in 
mixed-space representation is given by

(14)J =

(

−txe
ikT a 0

0 − txe
−ikT a

)

.

(15)Dm =

(

−2t cos θy − g
−g∗ − 2t cos θy + �ωq

)

,

Fig. 2 a Schematic diagram of the coupling between the field (photon) and the system(atoms in the lattice). The blue and gray spheres represent 
atoms of spin up and spin down, respectively. b Schematic diagram of the coupling of pseudospins defined by Ĥtotal at α = 1/3 . The dashed 
rectangular box represents the coupling(red lines) between the pseudospins inside the lattice. The solid green and blue lines indicate the couplings 
of spin up and down between different lattices, respectively
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In the next section, we will discuss the effects of mag-
netic and single-mode fields on the eigenspectrums of 
the system.

3  Eigenspectrum
In this section, we first find the eigenspectrum of the 
Hamiltonian matrix in Eq.  (16) and then express it as a 
function of the magnetic flux and the momentum of 
the single-mode field. We work in a cylindrical geom-
etry with finite sites N along the x-direction as open 
boundaries, while periodic boundary conditions along 
the y-direction are considered. In this situation, the spin-
dependent Harper’s matrix

has a tridiagonal block structure. The boundary condi-
tion in the x-direction is open, while there is a discrete 
translational invariance along the y-direction. The matri-
ces Dm , J and the null matrix 0 are square matrices of 
2× 2 dimension expanded by internal states |↑� and |↓� . 
The total dimension of the matrix Ĥtotal in Eq.  (17) is 
2N × 2N  because the size of the space along the x-direc-
tion is N.

In the following, we consider a size of the optical lat-
tice to be 30 sites (a complete lattice period) along the 
x-direction as well as two spin states per site and periodic 
boundary conditions along the y-direction, so ky is a good 
quantum number. The case analysis demonstrates that 
the eigenvalues Eky are labeled by a discrete band index 
n and momentum ky , are also functions of the photon 
momentum kT , electron-light coupling constant g, as well 
as flux ratio α = �/�0.

In Fig.  3, we show the spectrum of α = �/�0 versus 
the energy E0 with kT = 0 . A standard butterfly graph in 
the case of zero photon momentum kT = 0 and g/t = 0 
is shown in Fig. 3a. For photon momentum kT = 1.2 and 
g/t = 0.5 , the standard butterfly graph split into two 

(16)

Ĥtotal =
∑

m,ky

�†
m,ky

J†�m−1,ky

+
∑

m,ky

�†
m,ky

Dm�m,ky

+
∑

m,ky

�†
m,ky

J�m+1,ky .

(17)

Ĥtotal =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Dm−N∕2 J … 0 0 0 0

J
∗

⋱ ⋱ 0 0 0 0

⋮ ⋱ Dm−1 J 0 0 0

0 0 J
∗

Dm J 0 0

0 0 0 J
∗

Dm+1 ⋱ ⋮

0 0 0 0 ⋱ ⋱ J

0 0 0 0 … J
∗

Dm+N∕2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

parts because the energy corresponding to the spin up 
and down is not the same as Fig. 3b shows.

We next discuss the case with flux ratio α = 1/3 , where 
3 is the smallest integer denominator for the Hofstad-
ter model exhibiting topological nontrivial bands [64]. 
We will analyze the eigenvalues Eky for different photon 
momentum kT and coupling constant g. Let us first con-
sider the case kT = 0 and g/t = 0 , the results are shown 
in Fig. 3c. We can clearly see three sets of degenerate bulk 
bands connected by spin-degenerate edge bands. The 
dashed lines indicate the edge bands and lines with a band 
shape indicate the bulk bands in Fig. 3c and d. The perio-
dicity of bulk bands and the edge bands are 2π/3 and 2π , 
respectively, along the ky-direction as shown in Fig.  3c. 
The case of kT = 0.84 and g/t = 0.5 as shown in Fig. 3d, 
it  is the same as in Fig. 3b, which shows that the single-
mode field leads to the separation of the energy spectrum. 
From Fig. 3d, we find six sets of bulk bands connected by 
edge states, which are subjected to photon momentum 
parameter kT and coupling constant g. All the bulk bands 
have the same period of 2π/3 , while the edge bands are 2π 
along the ky-direction. This means the boundaries of the 
magnetic Brillouin zone are at ky = ±π/3.

4  Chern numbers
In this section, we convert the cylindrical geometry into 
a torus one to study the Chern number spectrum, where 
periodic boundary conditions are imposed along the x 
and y directions. For rational α = 1/3 , we write the spin-
dependent Harper’s Hamiltonian as a 6× 6 matrix in 
momentum (kx, ky) space

which defines 3× 3 block matrices H−− or H++ , where 
spin states |↑� = |+� and |↓� = |−� . The spin-diagonal 
3× 3 block matrices

where kx + kT and kx − kT describe respectively the 
spin states |↑� = |+� and |↓� = |−� momentum trans-
fer along the x direction. The kinetic energy terms are 
Ŵm = −2 cos(kya− 2παm) , with the magnetic flux ratio 
α = 1/3 and m values (0, 1, 2).

(18)H(kx, ky) =

(

H++ H+−

H−+ H−−

)

,

(19)H++ =

⎛

⎜

⎜

⎝

Γ1 − ei(kx+kT )a − e−i(kx+kT )a

−e−i(kx+kT )a Γ2 − ei(kx+kT )a

−ei(kx+kT )a − e−i(kx+kT )a Γ3

⎞

⎟

⎟

⎠

,

(20)H−− =

⎛

⎜

⎜

⎝

Γ1 + ℏ� − ei(kx−kT )a − e−i(kx−kT )a

−e−i(kx−kT )a Γ2 + ℏ� − ei(kx−kT )a

−ei(kx−kT )a − e−i(kx−kT )a Γ3 + ℏ�

⎞

⎟

⎟

⎠

,
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The spin-off-diagonal 3× 3 block matrices are

and H−+ = H∗
+− . They describe spin-flip processes 

induced by the independently tunable single-mode field. 
The energy spectrum is shown in Fig. 5, which is similar 
to the cases with open boundary conditions, but there are 
no boundary states with periodic boundary conditions 
along the x and y directions. As a consequence, there is 
no edge state in the later case.

Next, we analyze the Chern spectrum with a  single-
mode quantized field and fixed flux ratio α = 1/3 . The 
energy spectrum associated with the Hamiltonian 
H(kx, ky) in Eq. (18) has six bands Emσ (k) labeled by the 
band index mσ ( σ labels the spin). There are at least 2 
band gaps when the bands are double degenerate, and 
there are at most 5 gaps when the system has no degen-
eracy. In the absence of overlapping regions between 
the energy bands Emσ (k) , the Chern number for the mth

σ  
band is

(21)H+− =





−g 0 0
0 − g 0
0 0 − g



, where the domain of integration � is the mag-
netic Brillouin zone. Namely, �x = [−π ,π ] and 
�y = [−π/q,π/q] . The function

is the Berry curvature expressed in terms of the Berry 
connection A

(mσ )
j (k) = �umσ (k)|∂j|umσ (k)� , where 

|umσ (k)� are the eigenstates of the Hamiltonian H(kx, ky) 
defined in Eq. (18). In the limit of no electron-light cou-
pling, kT = 0 and g = 0 , the energy spectrum for flux 
ratio α = p/q is doubly degenerate with q magnetic 
bands and (q − 1) gaps, such that the Chern number from 
Eq.  (22) reduces to the standard form in the literature 
[64, 65]. To compute the Chern number Cmσ , we general-
ize the discretization method used in the quantum Hall 
system [66, 67] without electron-light coupling kT = 0 
and g = 0 . For this purpose, we define the link function

(22)Cmσ =
1

2π i

∫

�

d2kF (mσ )
xy (k),

(23)F
(mσ )
xy (k) =

∂A
(mσ )
y (k)

∂x
−

∂A
(mσ )
x (k)

∂y
,

Fig. 3 The spectrum of the system with α = �/�0. a and b are for E0 (in units of t). Eigenvalues Eky (in units of t) of the Harper’s matrix Eq. (17) 
vs ky for magnetic flux ratio α = 1/3 , β = 0.2π , a = 1 , and W = 9 are shown in c and d. The parameters are a kT = 0 and g/t = 0 , b kT = 0.84 and 
g/t = 0.5 , c kT = 0 and g/t = 0 , and d kT = 0.84 and g/t = 0.5



Page 7 of 11Han et al. AAPPS Bulletin            (2023) 33:1  

and obtain the Berry curvature

which is a purely imaginary number defined in the range 
of −π ≤ I

[

F
mσ
xy (k)

]

≤ π . The Chern number becomes

When the energy bands Emσ (k) overlap, we need to rede-
fine the link variable of the degenerate bundle with 
degeneracy V via the multiplet 
|ψ

(V )
mσ (k)� =

[

|u
(1)
mσ (k)�, . . . , |u

(V )
mσ (k)�

]

, leading to

with these definitions, the expression for the Berry cur-
vature defined in Eq. (24) remains valid when written in 
terms of the new link functions defined above. For two 
internal states and magnetic flux ratio α = p/q , there is a 

L
(mσ )
j (k) =

�umσ (k)|umσ (k + δkj)�

|�umσ (k)|umσ (k + δkj)�|
,

(24)F
mσ
xy (k) = ln

[

L
mσ
x (k)Lmσ

y (k + δkx)

L
mσ
x (k + δky)L

mσ
y (k)

]

,

(25)Cmσ =
1

2π i

∑

k

F
(mσ )
xy (k).

L
(mσ )
j (k) =

Det�ψ
(V)
mσ (k)|ψ

(V)
mσ (k + δkj)�

|Det�ψ
(V)
mσ (k)|ψ

(V)
mσ (k + δkj)�|

,

maximum of 2q non-overlapping bands and a maximum 
of 2q Chern numbers.

Chern numbers are properties of bands Emσ (k) or band 
bundles with degeneracy V and are independent of the 
location of the chemical potential µ. However, Chern 
numbers are defined only within band gaps and their 
values are dependent on the  gap where the chemical 
potential locates. If the chemical potential µ is located in 
a band gap corresponding to  the filling factor ν = r/2q , 
then the Chern number is the sum of Chern numbers of 
bands with energies E < µ

Furthermore, via the bulk-edge correspondence [67], the 
Chern number Cr calculated from the torus geometry 
(bulk system without edges) measures the total chirality 
of edge states that are present in the gap for the cylindri-
cal geometry.

In Fig.  4, Chern number Cr calculated from the torus 
geometry are shown as a function of photon momentum 
parameter kT . It can be seen that the Chern numbers for 
r = 1 and r = 5 possess the same dependence on kT . On 
the contrary, the Chern numbers for r = 2 shows the 
opposite dependence with respect to the case for r = 4 . 

(26)Cr =

ν=r/2q
∑

mσ ,E<µ

Cmσ .

Fig. 4 Chern numbers Cr calculated from the torus geometry are shown for different filling factors ν = r/2q (r =1,2,3,4,5,6). Taking r = 2 as an 
example, it can be seen that a step change occurs at the critical point kT ∼ 0.84 . The other parameters chosen are α = 1/3 , β = 0.2π , a = 1 , 
g = 0.5 , and W = 9
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Considering the case of r = 2 , the Chern number has a 
step change at the critical photon momentum kT ∼ 0.84 . 
This indicates that the topology of the system changes at 
this point, and the system goes from one  non-trivial top-
ological phase to the other  non-trivial topological phase 
as the momentum kT increases.

Now, we are in order to  analyze the connection 
between the band structures (Fig.  5) and the phases in 
Fig.  4. Energy bands as a function of kT are shown in 
Figs. 5a–c, where Fig. 5a, b, and c correspond to differ-
ent photon momentum kT = ki , kT = kc , and kT = kf  , 
respectively. Taking r = 2 as an example, we need to 
examine only the second and the third bulk bands 
(arranged from the bottom to the top). Noticing that the 
energy of six bulk bands with kT = kc possess touching 
points at the second and third bulk bands, i.e., the band 
gap is closed at kT = kc for the second and third bulk 
bands, we then claim that the system with ki is a non-triv-
ial gaped phase, labeled by C2 = 2 (see the green region 
in Fig. 5). While the system with kf  is a non-trivial phase 
which can be labeled by its Chern number C2 = −1 (see 
the pink region in Fig. 5).

We show the enlarged energy corresponding to  the 
edge states in the band gap between the second and 
the third bulk bands marked by the blue lines in Fig. 5d 
and   e. Open boundaries are considered along the x 
direction, with L and R denoting the left and right 
boundaries, respectively. The green region with two pairs 
of chiral edge states and the Chern number 2 are shown 
respectively in Fig. 5d and 4c. The pink region with a pair 
of chiral edge states and Chern number − 1 are shown in 
Fig. 5e and 4c, respectively.

The energy dispersions in x direction are similar to the 
case of periodic boundaries, the spectra (Fig. 5a and  c) 
are plotted for comparison with the corresponding peri-
odic cases (Fig. 5d and  e). As the increase of the photon 
momentum kT , the gap is closed and two pairs of chiral 
edge states disappear (Fig.  3d) at critical point kc . This 
means the chiral edge states are merged into the bulk 
eigenstates,  the gap opens, and a pair of chiral edge 
state appears again. In addition, the gapped phases for 
all kT are characterized by the Chern number that deter-
mines the chiral edge states in agreement with the phase 
diagram.

Fig. 5 Energy dispersions vs Bloch vector k with photon momentum kT  . ki , kc , and kf  are three special kT  chosen for a, b, and c, respectively. d and 
e are enlarged energy dispersion vs photon momentum kT  in order to illustrate edge bands and their location along x direction. The left and right 
boundaries are marked as L and R, respectively. The photon momentum chosen are in a and d kT = 0.3 , in b kT = 0.84 , and in c and e kT = 1.2 . 
Other parameters chosen are α = 1/3 , β = 0.2π , a = 1 , and W = 9
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Lastly, we discuss the mechanism of the topological 
phase transition induced by a quantized field in Fig. 2b. 
The coupling of the internal states of the site to the extra 
quantum field are characterized by the coupling strength 
g, this coupling leads to the splitting of a site on the lat-
tice. The hopping between spin up and down in differ-
ent lattices are described by a phase teikT a (or te−ikT a ). 
In such a lattice model, modulating the momentum kT 
is equivalent to adjusting the coupling strength of next-
nearest neighbor hopping in the lattices, so that the topo-
logical structure of the lattice changes, which induces 
topological phase transition characterized by the chang-
ing of topological invariants (Chern number). In this 
sense, we conclude that the quantum field indeed can 
induce topological phase transition.

5  Conclusion
In conclusion, we have studied the topological features of 
an extended Harper-Hofstadter model which describes 
atoms in square optical lattices coupled to a single-mode 
quantized field. We have manipulated the topological 
features of matter by coupling the systems to quantized 
fields. The quantum light field is actually used to cou-
ple different atomic internal states to induce topological 
phase transition, which is different from the previous lit-
erature on coupling the internal states of atoms [68–70].

We calculated the energy band structure of the system 
and showed it as a function of the magnetic and single-
mode quantized field. We find that the topological prop-
erties might be modulated by the single-mode quantized 
field, and topological quantum phase transitions could 
be induced by the single-mode quantized field. We have 
performed this analysis by computing the Chern number 
and comparing it with the case without quantized fields. 
Differences in the topological features of the system 
with and without a single-mode quantized field for fixed 
magnetic flux ratio are found and discussed. In addition, 
constructing phase diagrams by the Chern number and 
analyzing its dependence on the filling factor and the 
momentum of a single-mode quantized field, we found 
that Chern numbers are dramatically modified by the 
momentum of the single-mode quantized field.

Appendix A: The Hamiltonian Ĥ0

In this Appendix, we give the specific second quantiza-
tion form of the Hamiltonian Eq. (1) in real space repre-
sentation as

(27)Ĥ0 = −t
∑

<i,j>

(

ĉ†
i,↑

ĉ†
i,↓

)

(

ei(2𝜋m𝛼−𝛽∕W ) 0

0 ei(2𝜋m𝛼−𝛽∕W )

)(

ĉj,↑

ĉj,↓

)

,

We might rewrite the total Hamiltonian Ĥ0 = Ĥ↑↑ + Ĥ↓↓
 

as

By employing the Fourier transformation along y-direc-
tion, the Eq. (27) in mixed-space representation as

where Ky = 2παm− β/W .

Appendix B: The Hamiltonian Ĥtotal

In this Appendix, we derive the Hamiltonian matrix 
given in Eq. 16. Firstly, we write the Eq. (6) in real space 
as

Then, we divide the jumping path after adding photons 
into two simultaneous path contributions as shown in 
Fig.  2. And we obtain the the following five parts in a 
real-space representation

Then we write the Hamiltonian matrix for ultracold 
atoms in a mixed-space representation as

where the kinetic energy operator along the x direction is

(28)Ĥ↑↑ = −
∑

m,n

tĉ
†

m,n,↑
(ĉm+1,n,↑ + e

i(2𝜋m𝛼−𝛽∕W )
ĉm,n+1,↑) + h.c.

(29)Ĥ↓↓ = −
∑

m,n

tĉ
†

m,n,↑
(ĉm+1,n,↓ + e

i(2𝜋m𝛼−𝛽∕W )
ĉm,n+1,↓) + h.c.

(30)

Ĥ0 = − 2t
∑

m,ky

(

Φ̂
†

m,ky ,↑
Φ̂

†

m,ky ,↓

)

×

(

cos k̂xa − cos [(ky +Ky)a] 0

0 cos k̂xa − cos [(ky +Ky)a]

)(

Φ̂m,ky ,↑

Φ̂m,ky ,↓

)

,

(31)ĤI = −(g∗
∑

m,n

eikTmĉ†
m,n,↓

b̂†
q
ĉm,n,↑ + g

∑

m,n

e−ikTmĉ†
m,n,↑

b̂q ĉm,n,↓),

(32)Ĥ↑↑ = −
∑

m,n

tĉ
†

m,n,↑
(eikT ax ĉm+1,n,↑ + e

i(2𝜋m𝛼−𝛽∕W )
ĉm,n+1,↑) + h.c.

(33)Ĥ↓↓ = −
∑

m,n

tĉ
†

m,n,↓
(e−ikT ax ĉm+1,n,↓ + e

i(2𝜋m𝛼−𝛽∕W )
ĉm,n+1,↓) + h.c.

(34)Ĥ↑↓ = −
∑

m,n

gĉ†m,n,↑b̂q ĉm,n,↓,

(35)Ĥ↓↑ = −
∑

m,n

g∗ĉ†m,n,↓b̂
†
q ĉm,n,↑,

(36)Ĥl = �ωq b̂
†
qb̂q .

(37)Ĥ =

(

ε↑(k̂) − g

−g∗ ε↓(k̂)+ �ωq

)

,
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and the spin-down (↓) kinetic energy is

It is easily to find that Ĥ consists of two matrices T  and 
Dm . The matrix indexed by position x = ma is

where the kinetic energy operator of the system is given 
by according to Euler’s formula

with

and

The matrix containing the momentum of light parameter 
kTax as phase factors is

In mixed-space representation, we finally write Harper’s 
Hamiltonian
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