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Abstract

Quantum incompatibility is a fundamental property in quantum physics and is considered as a resource in quantum
information processing tasks. Here, we construct a framework based on the incompatibility witness originated from
quantum state discrimination. In this framework, we discuss the geometrical properties of the witnesses with noisy
mutually unbiased bases and construct a quantifier of quantum incompatibility associated with geometrical
information. Furthermore, we explore the incompatibility of a pair of positive operator valued measurements, which
only depends on the information of measurements, and discuss the incompatibility of measurements which can be
discriminated by mutually unbiased bases. Finally, if we take a resource-theory perspective, the new-defined quantifier
can characterize the resource of incompatibility. This geometrical framework gives the evidence that vectors can be
utilized to describe resourceful incompatibility and make a step to explore geometrical features of quantum resources.

Keywords: Quantum incompatibility, Quantum state discrimination, Framework, Quantum resource

1 Introduction
Quantum incompatibility is a fundamental property in
quantum physics, which is quite different from classi-
cal physics [1]. In quantum physics, some observables or
measurements cannot commute with each other, which
implies that we cannot acquire precise information from
them simultaneously. Quantum incompatibility is consid-
ered as an important resource for quantum phenomena
and information processing, including quantum nonlocal-
ity [2], measurement uncertainty relations [3, 4], uncertain
relation [4], contextuality [5, 6], and quantum steering
[7–9]. Therefore, it is important to witness and quan-
tify quantum incompatibility as a resource for developing
quantum applications.
In order to detect incompatibility, some methods based

on entanglement schemes have been proposed [3, 10–12].
In these entanglement-based schemes, spacelike sepa-
rated entanglement sources are required. Fortunately,
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entanglement is confirmed not necessarily needed for
quantum incompatibility features, which provides an
alternative for detecting quantum incompatibility. Recently,
quantum state discrimination (QSD) tasks, applied in
detecting quantum coherence [13, 14], entropic uncer-
tainty relations, accessible information [14, 15], have
been applied in witnessing quantum incompatibility
[8, 13, 14, 16–22].
In order to investigate incompatibility witnesses quan-

tificationally, it is convenient to prepare two disjoint
state ensembles as two sets of mutually unbiased bases
(MUBs) under different noise levels. MUB measurements
are among of the most representative incompatible mea-
surements and have been applied in many quantum infor-
mation protocols [23–26].
Recently, incompatibility witnesses based on hyper-

planes have been established [16], linear incompatibility
witnesses (LIWs) have been verified [18] and the robust-
ness of incompatibility has been proposed [8]. However,
the geometrical properties of the witnesses need to be dis-
cussed and the robustness of incompatibility is difficult
to calculate. For example, it is difficult to find the opti-
mal ensembles for practical QSD scenarios and contrast
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the incompatibility of two pairs of positive operator val-
ued measurements (POVMs), which indicates a need for
a framework to describe quantum incompatibility pro-
cesses.
In this paper, we construct a geometrical framework

for quantum incompatibility processes. Firstly, we discuss
the incompatibility witness based on the gap of prior-
and post-measurement guessing probabilities in a two-
part QSD scenario of noisy MUBs. Secondly, we discuss
the unified and geometrical explanations for the witness
and define a new quantifier associated with geometri-
cal properties to quantify incompatibility. Furthermore,
we explore the incompatibility of POVMs only using the
information of given POVMs in the first application and
the incompatibility of POVMswhich can be discriminated
by MUB. Finally, we show advantages of the framework
in describing incompatibility and associate the quantifier
with quantum resources.

2 Nonlinear witnesses based on quantum state
discrimination tasks

In this section, we pave the way to a geometrical frame-
work for incompatibility. Firstly, we introduce quantum
state discrimination tasks, which are the basic physical
process for the incompatibility witness. Secondly, we dis-
cuss the incompatibility witnessed based on noisy MUBs,
where the geometrical properties of the witnesses appear,
and discuss the witnesses varying with dimensions and
three cases for detecting incompatibility.

2.1 Quantum state discrimination
Consider a pair of POVMs M and N labeled {Mx}x and
{Ny}y, satisfying �xMx = I and �yNy = I with out-
comes x and y, respectively. M and N are compatible if
there exists a joint or parent measurement J labeled Jx,y
satisfying �yJx,y = Mx and �xJx,y = Ny.
In a two-party QSD scenario, Alice prepares two ensem-

bles of quantum states EX = {p(x),�x}x and EY =
{p(y),�y}y, where p(x) and p(y) are the probability dis-
tributions of states �x and �y, respectively. Then Bob
receives a merged ensemble E with a proportion parame-
ter q as follows:

E = qEX + (1− q)EY = {qp(x),�x; (1− q)p(y),�y}x,y,
(1)

where q ∈ (0, 1].
Bob has two strategies to guess the label of the state

sent from Alice. If the information of given ensemble EX
or EY is announced before the measurement, the guesser
Bob will perform corresponding measurement M or N
to detect the state from ensembles EX or EY , respec-
tively. The probability of guessing the correct label for one
ensemble is Pguess(EX ;M) = ∑

x p(x)Tr(Mx�x). Then the

total guessing probability with prior information can be
written out as follows:

Ppriorguess(E ;M,N)=qPguess(EX ;M)+(1−q)Pguess (EY ;N) .
(2)

In contrast, if the information of the given set EX or
EY is announced after the measurement, Bob has to use
a fixed measurement J labeled with a cartesian product
(X,Y ), which is the outcome of measuring two ensembles
simultaneously, and adjust J after each round to match the
optimal joint measurement. Then the post information
guessing probability can be written out as follows:

Ppostguess(E) = max
J

Pguess(E ; J). (3)

If POVMs M and N are compatible, their observation
(X,Y ) will be divided into compatible pairs Ocom

X,Y , else
into the incompatible pairs Oinc

X,Y ≡ Ocom
X,Y . It has been

proven that for incompatible measurements, there always
exists a partitioned state ensemble E such that Ppostguess (E) <

Ppriorguess (E ;M,N). Hence the incompatibility witnesses sep-
arating Ocom

X,Y and Oinc
X,Y in the form of hyperplanes can be

written as follows [16]:

W = Ppostguess (E) − Ppriorguess (E ;M,N) . (4)

2.2 Incompatibility witnesses based on noisy MUBs
Here, we explore the incompatibility of d-dimension noisy
MUB measurements (M,N) with corresponding ensem-
bles (EX , EY ) with noises:

M :
{
sx
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣+ (1 − sx) I/d

}

i
,

N :
{
sy
∣
∣
∣φB

j

〉 〈
φB
j

∣
∣
∣+ (

1 − sy
)
I/d

}

j
,

(5)

where i, j ∈ (1, 2, · · · , d) and sx, sy ∈ (0, 1].
Parameters sx and sy represent the sharpness of MUB

measurements, and the corresponding ensembles under
noise levels labeled (rx, ry) are:

EX :
{
1
d
, rx
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣+ (1 − rx) I/d

}

i
,

EY :
{
1
d
, ry
∣
∣
∣φB

j

〉 〈
φB
j

∣
∣
∣+ (

1 − ry
)
I/d

}

j
,

(6)

where i, j ∈ (1, 2, · · · , d) and rx, ry ∈ (0, 1].
In this QSD task, we set a balanced proportion param-

eter q = 1
2 and the probability for every state in the

ensembles is 1
d . The optimal joint measurement J(A,B) for

a pair of MUBs is given in Ref. [27]:

Ji,j =b(rx|ψi〉〈ψi| + ry|φj〉〈φj|) − dc
d − 1

(|ψi〉〈ψi|
+ |φj〉〈φj| − |ψi〉〈ψi||φj〉〈φj| − |φj〉〈φj||ψi〉〈ψi|),

(7)
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where

b = 1
√
r2x + r2y − 2d−4

d rxry
, c = 1

2

⎛

⎜
⎝

rx + ry
√
r2x + r2y − 2d−4

d rxry
− 1

⎞

⎟
⎠ .

Here, we can give the mathematical forms of Ppostguess and
Ppriorguess, which are detailed in Appendix A:

Ppostguess = 1
4

√

r2x + r2y − 2d − 4
d

rxry + d − 2
4d

(rx + ry) + 1
d
,

Ppriorguess = d − 1
2d

(
rxsx + rysy

)+ 1
d
.

(8)

Recalling Eq. (4), we can write out the incompatibil-
ity witness W, which represents the boundary between
compatibility and incompatibility:

W =1
4

√

r2x + r2y − 2d − 4
d

rxry + d − 2
4d

(rx + ry)

− d − 1
2d

(
rxsx + rysy

)
.

(9)

In a mathematical perspective, this function is a nonlin-
ear witness of four parameters (rx, ry, sx, sy). When param-
eters (rx, ry) are fixed, the function will become a linear
function for (sx, sy), which is the form of linear witnesses
corresponding to the hyperplanes separating Ocom

X,Y and
Oinc

X,Y [18].
Note that the special case that W = 0 implies the

boundary curve between compatibility and incompatibil-
ity in Fig. 1. According to Eq. (9), we can write out the
coordinate of the boundary curve in Eq. (10), which we

discuss detailly in the next section for the construction of
the geometrical framework.
We discuss the properties of the boundary curve varying

with dimensions in Fig. 1a. Intuitively, when the dimen-
sion increases, the incompatibility between two MUBs
also increases [28]. The red point implies the same noise
levels of MUB measurements show compatible or incom-
patible due to dimensions.
There are three possible cases in practical QSD scenario

in Fig. 1b.

1. W < 0: Incompatibility is detected existent for this
four parameters (rx, ry, sx, sy), which corresponds to
the orange point in Fig. 1b.

2. W = 0: Ppostguess = Ppriorguess, which is the boundary
between compatibility and incompatibility.

3. W > 0: Compatibility is detected existent even
though the joint measurement performed is not
optimal, which corresponds to the olive and purple
points in Fig. 1b.

In conclusion, we have discussed the properties of
the nonlinear incompatibility witness (NLIW) with four
parameters (rx, ry, sx, sy). The boundary between com-
patibility and incompatibility for a pair of noisy MUB
ensembles labeled with (rx, ry) can be represented as a
two-dimension convex curve, which implies geometrical
properties in the model originated from incompatibility
witnesses. Here, we name the model for convex model
because the model is essentially originated from the con-
vex combination of partitioned information. In the follow-
ing contents, we will inspect the model and construct a
more intuitive framework for its geometrical properties.

Fig. 1 The witnesses for several dimensions have been shown as convex curves and the cases for the incompatibility witness are discussed. a The
cases d = 2, 3, 4, 6, 100 and ∞. The curves of the boundary forW = 0 are ellipses. The case d = 2 and d = ∞ are special, which are a quadrant and
line, respectively. The red point shows compatible POVMs in the case d = 6, but incompatible POVMs in the case d = 100. b There are cases for the
incompatibility witness. In the case d = 5, the yellow point and red line are tangent point and its tangent line. There are three cases in
incompatibility witnesses: olive point: inside the curve; purple: outside the curve but inside the line; orange point: outside the line
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3 The geometrical framework for quantum
incompatibility

In this section, we start to construct a framework for
incompatibility. Firstly, we give unified and geometri-
cal explanations for incompatibility witnesses in order
to discuss the properties in a framework. Secondly, we
construct a quantifier of incompatibility based on these
explanations, which is associated with the geometrical
properties in the framework. Thirdly, we discuss two
applications to show the applicability of this framework.
Finally, we confirmed that the new-defined quantifier can
characterize the resource of incompatibility.

3.1 Unified and geometrical explanations for the witness
In practical QSD scenario, the function of NLIW has
four parameters (rx, ry, sx, sy), where four parameters
(rx, ry, sx, sy) can be adjusted independently.
It is necessary for the four parameters to have a unified

explanation. Recalling Eq. (5), the MUB part in mea-
surements represents the incompatibility part and the
white noise represents the compatibility part of POVMs.
Recalling Eq. (6), the MUB part in ensembles represents
distinguishing POVMs, which leads to the gap of guess-
ing probability of different strategies, and the white noise
represents no operation with outcomes of average proba-
bility distributions. In one word, (sx, sy) labels POVMs and
(rx, ry) scales the incompatibility.
It is worth noting that the operators in Eq. (5) are pos-

itive if and only if sx, sy ∈
[

1
1−d , 1

]
[16], while in the

practical incompatibility framework, we restrict them to
positive values sx, sy ∈ (0, 1] as noisy versions of the sharp
measurements [29].
Then we start to discuss the geometrical explanation for

the four parameters. In Fig. 1b, an arbitrary fixed (rx, ry)
corresponds to a fixed hyperplane, and all (rx, ry) is sup-
posed to draw corresponding hyperplanes which together
form the convex curve. Therefore, we can write out the
coordinate of the point on the boundary curve, which is
detailed in Appendix B:

sx = 1
2(d − 1)

⎡

⎢
⎣

dk − (d − 2)
√
k2 + 1 − 2d−4

d k
+ (d − 2)

⎤

⎥
⎦ ,

sy = 1
2(d − 1)

⎡

⎢
⎣

d − (d − 2)k
√
k2 + 1 − 2d−4

d k
+ (d − 2)

⎤

⎥
⎦ ,

(10)

where k = rx
ry .

The curve as a boundary on (sx, sy) is a function of k and
not directly relevant to the value of (rx, ry). Obviously, a
set of (sx, sy) can be described by a point in the cartesian
coordinate system, while a set of (rx, ry) corresponds to a
k. A fixed k in Eq. (10) can be seen as a point (sx0 , sy0) on

the curve. The transformation from k to (sx0 , sy0) implies
the optimal joint measurement can be replaced by two
equivalent measurements (sx0 , sy0) geometrically.
Then the post-measurement guessing probability can

be replaced by a point on the convex curve as PPost =
P(sx0 , sy0) with (sx0 , sy0) satisfying Eq. (10). What’s more,
the prior-measurement guessing probability of parti-
tioned measurements can replaced by a point (sx, sy) as
PPrior = P(sx, sy). As a result, the four parameters are
unified as points in the geometrical convex model.

3.2 Quantifying the degree of incompatibility
The degree of incompatibility has been characterized
by the robustness of incompatibility and confirmed as
a quantifier of incompatibility resources [8]. However,
the geometrical property for four parameters disappears
because the robustness is defined as the ability of the
system to resist noises, which eliminates interaction infor-
mation among the four parameters.
Therefore, we start to construct a new quantifier of the

degree of incompatibility in the QSD scenario. The new
quantifier has two desirable properties:

1. It needs to be related or mapped to the geometrical
property of the convex model.

2. It needs to be relevant to the noise levels of
ensembles prepared by Alice and geometrical
distance in the convex model, for example
D = S × m, m = rx + ry, where D is the new
quantifier, S represents the geometrical distance in
the convex model and m is a function of (rx, ry).

In Fig. 2, (sx, sy) and (sx0 , sy0) represent prior- and post-
measurement guessing probabilities, respectively. If there
exists a new definition of the degree of incompatibility
as D, we hope D can satisfy D ∝ P(sx − sx0 , sy − sy0).
In this way, we can convert D into a geometrical vector
in a two-dimension cartesian coordinate system. Fortu-
nately, considering Eq. (10), it is convenient to construct
D satisfying the two requests above:

D(rx, ry, sx, sy) = PPrior − PPost

= d − 1
2d

[
rx
(
sx − sx0

)+ ry
(
sy − sy0

)]

= d − 1
2d

[
rx�x + ry�y

]
.

(11)

We call Eq. (11) the vector form ofD. In Fig. 2a, (�x,�y)
represents the vector from PPost to PPrior .
Here we construct a linear map from geometrical space

to the quantifierDwith coefficients associated with (rx, ry)
and the dimension d. Moreover, using this form, we can
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Fig. 2 The blue curve represents the boundaryW = 0 in the plane (sx , sy) varying the value of k and the newly defined D has two forms as Eqs. (11)
and (12). a The vector form of D is an effective tool to describe incompatibility by vector connecting equivalent optimal joint measurement (sx0 , sy0 )
and measurements (sx , sy), which is also able to describe incompatibility between different measurements (sx , sy) and (sx1, sy1) in the case of (rx , ry)
fixed. S represents geometrical distance. b The distance form of D is a more intuitive tool to describe incompatibility by distance h between
measurements implemented and linear witnesses. All measurements on the parallel of one linear witness have the same degree of incompatibility

compare different (sx, sy) under a common given ensem-
bles (rx, ry) by a vector from (sx, sy) to (sx1 , sy1). In addi-
tion, if (sx, sy) is exactly at the special point (sx0 , sy0),
there appears an interesting phenomenon that compati-
bility always exists whatever the value of (rx, ry) is, as long
as its ratio k is fixed.
Further more, the value of D can be given as

D = d − 1
2d

√
r2x + r2y × h, (12)

where h is the distance from (sx, sy) to the tangent, which
is tangent to the boundary curve in the point (sx0 , sy0).
We call Eq. (12) the distance form of D, which repre-

sents the ordinary product of the function of (rx, ry) and
the geometrical distance h. In Fig. 2b, the red tangent is
actually the LIW with a fixed (rx, ry), and the direction of
h represents whether it is incompatible or not. The value
|h| can also be linearly mapped into the quantifier D with
a coefficient related to the noise levels of ensembles.
Obviously, all points on one parallel of the tangent have

a common D, which implies that different (sx, sy) can
achieve the same observation. Similarly, the tangent in the
point (sx0 , sy0) is the special line, where all points on this
line are detected compatible as long as (rx, ry) maintains
the fixed ratio k.
In Fig. 2, the region inside convex curve for (sx, sy) rep-

resents the observation is compatible regardless of (rx, ry),
because no matter what k is, (sx, sy) is always inside the
linear witness. But if (sx, sy) is in the region outside the
convex curve, the specific question about whether incom-
patible or not should be considered as two cases of purple
and orange points in Fig. 1b.

3.3 Two applications of this framework
The geometrical incompatibility framework provides
good tools to describe incompatibility phenomena, which
leads to two applications.
For the first application, we consider the case for one

who does not care about ensembles in QSD scenario and
wants to witness incompatibility between two POVMs.
It implies a need to reduce four parameters (rx, ry, sx, sy)
to two parameters (sx, sy), which label noisy MUB mea-
surements and are not relevant to ensembles. In this case,
we restrict (rx = sx, ry = sy), which means one designs
ensembles with the same noise levels as POVMs and in
this situation detects incompatibility only depending on
the information of given POVMs.
It is easy to prove that the line connecting (rx, ry) and

(0, 0) is exactly vertical to the corresponding tangent in
Fig. 3, which is the LIW of (rx, ry). If a pair of POVMs
labeled with (sx, sy) is given, we can obtain the corre-
sponding optimal joint measurement (sx0 , sy0) and D via
the following steps. Firstly, We need to draw a line con-
necting (sx, sy) and (0, 0) and draw parallels of its vertical
lines. Then, if we find one parallel which is tangent to
the convex curve, it is exactly the LIW of (rx = sx, ry =
sy), and the tangent point will be the equivalent optimal
joint measurement (sx0 , sy0). Finally, the value of D can be
obtained via the linearmap from (sx, sy), h and d according
to Eq. (12).
For the second application, we consider the case that

POVMs are not noisy MUBs while the ensembles are
noisy MUBs, which needs a change in the QSD protocol.
Recalling the protocol, there are three main ingredi-

ents for the incompatibility detecting process: (i) a pair of
POVMs, whose incompatibility is to be detected, (ii) a pair
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Fig. 3 d = 5. In the case (rx = sx , ry = sy , sx , sy), D can be worked out
only using geometrical information from the picture, which is an
effective and intuitive tool to detect and quantify incompatibility of a
pair of POVMs. The olive line connects the (0, 0) and (rx , ry). The red
line and its parallel represent LIW and they are vertical to the olive line

of ensembles, which are designed to obtain the guessing
probability with prior information, and (iii) constructing
the optimal joint measurement of ensembles to obtain the
guessing probability with post information.
In one word, Alice are requested to design ensembles

to obtain Ppriorguess and Ppostguess according to POVMs given by
Bob. If the case Ppostguess < Ppriorguess occurs, we can claim
that the incompatibility phenomena of the two POVMs
appears under the designed ensembles.
If two POVMs E = {Ei}i=1,···d and F = {Fj}j=1,···d can

recover the labels of two ensembles (A,B) as MUBs, or in
another word, can be distinguished by two ensembles as
MUBs, satisfying:

Tr
[
Em

∣
∣
∣ψA

m

〉 〈
ψA
m

∣
∣
∣
]

> Tr
[
Em

∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣
]
, i �= m,

Tr
[
Fn
∣
∣φB

n
〉 〈

φB
n
∣
∣
]

> Tr
[
Fn
∣
∣
∣φB

j

〉 〈
φB
j

∣
∣
∣
]
, j �= n.

(13)

Using MUBs as ensembles, we transfer the discrimina-
tion of states to the discrimination of POVMs. In this
situation, Alice needs to send the information of not
only the ensembles but also the labels of the state deliv-
ered. Bob does not care about what the density matrixes
of (E, F) are but makes sure the probability distribution
satisfies Eq. (13).
The prior-measurement guessing probability under

ensembles as noisy MUBs is:

Ppriorguess =1
2

{
∑

i

1
d
Tr
[

Ei
(

rx
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣+ 1 − rx

d
I

)]

+
∑

j

1
d
Tr
[

Fj
(

ry
∣
∣
∣φB

j

〉 〈
φB
j

∣
∣
∣+ 1 − ry

d
I

)]
⎫
⎬

⎭
.

(14)

While the post-measurement guessing probability only
depends on the ensembles according to Eq. (8). It is nat-
ural to convert Ppriorguess of (E, F) to an equivalent form as
P(sx, sy), which is detailed in Appendix C:

sx = 1
d − 1

(
∑

i
Tr
[
Ei
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣
]

− 1
)

,

sy = 1
d − 1

⎛

⎝
∑

j
Tr
[
Fj
∣
∣
∣φB

j

〉 〈
φB
j

∣
∣
∣
]

− 1

⎞

⎠ .

(15)

It is convenient for the POVMs to be rewritten as the
form of P(sx, sy), which implies the geometrical properties
also apply for this kind of POVMs.
Here, we change the protocol for detecting the incom-

patibility of a pair of POVMs. This protocol provides
a pair of ensembles as noisy MUB which constitute a
convenient ensembles with geometrical information for
POVMs to detect or contrast incompatibility. What’s
more, the measurements (sx, sy) provide the equivalent
Ppriorguess for (E, F), which implies the same advantage of
incompatible POVMs (E, F) to ensembles (rx, ry) as the
gap between prior-measurement and post-measurement
guessing probability. In this way, we construct a geo-
metrical framework for a kind of POVMs which can be
discriminated by MUBs.

3.4 The geometrical framework for quantum
incompatibility resources

There are 3 main ingredients for a resource theory [30]: (i)
a set of free or resourceless objects, (ii) a set of expensive
or resourceful objects, and (iii) a set of allowed trans-
formations between objects, which is supposed unable to
create resourceful objects from resourceless objects.
In the geometrical framework, compatible pairs of mea-

surements correspond to the resourceless objects and
incompatible pairs correspond to resourceful objects.
Then, considering two forms of D, paths of vectors in the
convex model carry the information of transformations
of quantum incompatibility resources and are linearly
mapped into the degree of incompatibility as a quantifier
of incompatibility resources.
Obviously, for quantum incompatibility resources in

practical QSD tasks, the quantifier D decreases when
sharpness (rx, ry) declines maintaining a fixed ratio
k = rx

ry . Moreover, for quantum incompatibility between



Zhang et al. AAPPS Bulletin           (2022) 32:17 Page 7 of 9

two POVMs under ensembles satisfying (rx = sx, ry = sy),
when (sx, sy) decreases and drops inside the convex
curve as the olive point in Fig. 1b, the pair of POVMs
(sx, sy) is compatible and resourceless, which implies the
transformation from expensive objects to free objects
which is not able to observe incompatibility phenomena
between resourceless objects. It can be seen that D sat-
isfies the three ingredients, and captures the resource of
incompatibility.
This advantage of the new framework as a geometrical

model is different from the robustness of incompatibil-
ity, but they can be linearly correlated with each other in
QSD tasks. The robustness of incompatibility in the QSD
scenario can be as follows:

1 + R(A,B) ≥ PPrior

PPost
. (16)

D can be proven portioned to the lower bound of R in
the case of fixed (rx, ry) [8, 18].

4 Conclusion
We construct a geometrical framework for quantum
incompatibility resources based on QSD tasks. This
framework provides vectors to carry information of trans-
formations for resources, which is also advantageous in
describing the incompatibility processes geometrically.
We have shown that for incompatible measurements, it
is feasible to detect and quantify incompatibility under
noisy MUBs with vectors. Furthermore, the geometrical
properties in the convex model can be linearly mapped
into the quantifier of incompatibility and thus the incom-
patibility processes, like two applications discussed, are
able to be operated intuitively with corresponding vec-
tors. Finally, these properties can be verified by QSD
experiments requiring no entanglement.
Our characterization yields a geometrical interpretation

of incompatibility resources: the process of incompat-
ibility can be described with geometrical vectors with
path information and D is demonstrated as a quantifier
of incompatibility resource, which may have potential in
other quantum information processes.
Einstein-Podolsky-Rosen steering is related to quantum

incompatibility and able to be described in QSD tasks. If
two ensembles are compatible, there must exist a local-
hidden-state model which implies no steering. And every
set of incompatible measurements has the potential of
generating EPR steering [8, 31, 32]. These modifications
will be an interesting matter of investigation in the case of
incompatibility witnesses.

Appendix A: Prior- and post-measurement
guessing probability
In the two-party system, we have four MUBs labeled
with (rx, ry, sx, sy) defined in Eq. (6) and Eq. (5). We set

the proportion parameter q = 1
2 and mean probability

distribution p(x) = p(y) = 1
d :

Ppriorguess = 1
2
Pguess(EX ;M) + 1

2
Pguess(EY ;N)

= 1
2
∑

x
p(x)Tr

(
Mi
(
rx
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣+ (1 − rx)I/d

))

+ 1
2
∑

y
p(y)Tr

(
Nj
(
ry
∣
∣
∣φB

j

〉 〈
ψB
j

∣
∣
∣+ (1 − ry)I/d

))

= 1
2

(

rxsx + sx + rx − 2rxsx
d

+ 1 − sx − rx + rxsx
d

)

+ 1
2

(

rysy + sy + ry − 2rysy
d

+ 1 − sy − ry + rysy
d

)

= d − 1
2d

(
rxsx + rysy

)+ 1
d
.

(17)

We recall Eq. (7), and write the result as follows:

Ppostguess = Pguess(E ; J)

=
∑

i,j
p(x)p(y)Tr

((
1
2
�x + 1

2
�y

)

Ji,j
)

= 1
2
Tr
(
Ji,j
(
rx
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣+ (1 − rx)I/d

))

+ 1
2
Tr
(
Ji,j
(
ry
∣
∣
∣φB

j

〉 〈
φB
j

∣
∣
∣+ (1 − ry)I/d

))

= 1
2
Tr
(
Ji,j
(
rx
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣
)

+ 1
2
Tr
(
Ji,j
(
ry
∣
∣
∣φB

j

〉 〈
φB
j

∣
∣
∣
)

+ 1
2
Tr
(
Ji,j
((
2 − rx − ry

)
I/d

)

= rx
2

(
b
(
rx + ry

d

)
− c

)
+ ry

2

(
b
(
ry + rx

d

)
− c

)

+ 2 − rx − ry
d

[ b(rx + ry) − 2c]

= 1
4

√

r2x + r2y − 2d − 4
d

rxry + d − 2
4d

(rx + ry) + 1
d
.

(18)

If we set d = 3 and (sx, sy) = (1, 1), the results both
accord with the experiment result in Ref. [18].

Appendix B: Points on the boundary curve
Exploring the geometrical properties in the case ofW = 0
in Eq. (9), we have:

d − 1
2d

(
rxsx + rysy

)= 1
4

√

r2x + r2y − 2d − 4
d

rxry + d − 2
4d

(rx + ry).

(19)

Obviously, it is a function of a straight line for (sx, sy),
and if we set k = rx

ry , we will obtain a new form:

d − 1
2d

(
ksx + sy

)= 1
4

√

k2+ 1− 2d − 4
d

k+d − 2
4d

(k+1).

(20)
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We utilize the intersection of two nearby lines to sim-
ulate the boundary curve, and when the variation of k
between two lines is small enough, we have:

sx = 2d
d − 1

∂

(
1
4

√
k2 + 1 − 2d−4

d k + d−2
4d (k + 1)

)

∂k

= 1
2(d − 1)

⎡

⎢
⎣

dk − (d − 2)
√
k2 + 1 − 2d−4

d k
+ (d − 2)

⎤

⎥
⎦ .

(21)

We can then obtain the form of sx by the function of the
straight line:

sy = 1
2(d − 1)

⎡

⎢
⎣

d − (d − 2)k
√
k2 + 1 − 2d−4

d k
+ (d − 2)

⎤

⎥
⎦ . (22)

It is interesting that (sx, sy) here is not directly relevant
to the value of (rx, ry), but a function of its ratio k.

Appendix C: The equivalent form for a kind of
POVMs
For a pair of POVMs can be discriminated by ensembles
consisting of noisy MUBs as Eq. (13), we can construct
equivalent noisy MUB measurements labeled sx and sy
respectively:

∑

i

1
d
Tr
[

Ei
(

rx
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣+ 1 − rx

d
I

)]

= rxsx + 1 − rxsx
d

,

∑

i

rx
d
Tr
[
Ei
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣
]

+ 1 − rx
d

= rxsx + 1 − rxsx
d

,

∑

i

1
d
Tr
[
Ei
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣
]

= sx + 1 − sx
d

,

sx = 1
d − 1

(
∑

i
Tr
[
Ei
∣
∣
∣ψA

i

〉 〈
ψA
i

∣
∣
∣
]

− 1
)

.

(23)

After the same process for sy, we convert the Ppriorguess of
(E, F) to an equivalent form as P(sx, sy).
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