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Abstract

Quantummachine learning is one of the most promising applications of quantum computing in the noisy
intermediate-scale quantum (NISQ) era. We propose a quantum convolutional neural network(QCNN) inspired by
convolutional neural networks (CNN), which greatly reduces the computing complexity compared with its classical
counterparts, with O((log2M)6) basic gates and O(m2 + e) variational parameters, whereM is the input data size,m is
the filter mask size, and e is the number of parameters in a Hamiltonian. Our model is robust to certain noise for image
recognition tasks and the parameters are independent on the input sizes, making it friendly to near-term quantum
devices. We demonstrate QCNN with two explicit examples. First, QCNN is applied to image processing, and
numerical simulation of three types of spatial filtering, image smoothing, sharpening, and edge detection is
performed. Secondly, we demonstrate QCNN in recognizing image, namely, the recognition of handwritten numbers.
Compared with previous work, this machine learning model can provide implementable quantum circuits that
accurately corresponds to a specific classical convolutional kernel. It provides an efficient avenue to transform CNN to
QCNN directly and opens up the prospect of exploiting quantum power to process information in the era of big data.
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1 Introduction
Machine learning has fundamentally transformed the way
people think and behave. Convolutional neural network
(CNN) is an important machine learning model which
has the advantage of utilizing the correlation information
of data, with many interesting applications ranging from
image recognition to precision medicine.
Quantum information processing (QIP) [1, 2], which

exploits quantum-mechanical phenomena such as quan-
tum superpositions and quantum entanglement, allows
one to overcome the limitations of classical computa-
tion and reaches higher computational speed for certain
problems [3–5]. Quantum machine learning, as an inter-
disciplinary study between machine learning and quan-
tum information, has undergone a flurry of developments
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in recent years [6–15]. Machine learning algorithm con-
sists of three components: representation, evaluation and
optimization, and the quantum version [16–20] usually
concentrates on realizing the evaluation part, the funda-
mental construct in deep learning [21].
A CNN generally consists of three layers, convolu-

tion layers, pooling layers, and fully connected layers.
The convolution layer calculates new pixel values x(�)

ij
from a linear combination of the neighborhood pixels
in the preceding map with the specific weights, x(�)

i,j =
∑m

a,b=1 wa,bx(�−1)
i+a−2,j+b−2, where the weights wa,b form a

m × m matrix named as a convolution kernel or a fil-
ter mask. Pooling layer reduces feature map size, e.g., by
taking the average value from four contiguous pixels, and
is often followed by application of a nonlinear (activa-
tion) function. The fully connected layer computes the
final output by a linear combination of all remaining pix-
els with specific weights determined by parameters in a
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fully connected layer. The weights in the filter mask and
fully connected layer are optimized by training on large
datasets.
In this article, we demonstrate the basic framework

of a quantum convolutional neural network (QCNN) by
sequentially realizing convolution layers, pooling layers,
and fully connected layers. Firstly, we implement convolu-
tion layers based on linear combination of unitary opera-
tors (LCU) [22–24]. Secondly, we abandon some qubits in
the quantum circuit to simulate the effect of the classical
pooling layer. Finally, the fully connected layer is real-
ized bymeasuring the expectation value of a parametrized
Hamiltonian and then a nonlinear (activation) function to
post-process the expectation value. We perform numeri-
cal demonstrations with two examples to show the validity
of our algorithm. Finally, the computing complexity and
trainability of our QCNNmodel are discussed followed by
a summary.

2 Results
2.1 Framework of quantum neural networks
2.1.1 Quantum convolution layer
The first step for performing quantum convolution layer
is to encode the image data into a quantum system. In this
work, we encode the pixel positions in the computational
basis states and the pixel values in the probability ampli-
tudes, forming a pure quantum state (Fig. 1). Given a 2D
image F = (Fi,j)M×L, where Fi,j represents the pixel value
at position (i, j) with i = 1, . . . ,M and j = 1, . . . , L. F is
transformed as a vector �f withML elements by putting the
first column of F into the firstM elements of �f , the second
column the nextM elements , etc. That is,

�f = (F1,1, F2,1, . . . , FM,1, F1,2, . . . , Fi,j, . . . , FM,L)
T . (1)

Accordingly, the image data �f can be mapped onto
a pure quantum state |f 〉 = ∑2n−1

k=0 ck|k〉 with n =

Fig. 1 Comparison of classical convolution processing and quantum convolution processing. F and G are the input and output image data,
respectively. On the classical computer, aM × M image can be represented as a matrix and encoded with at least 2n bits [n = �log2(M2)�]. The
classical image transformation through the convolution layer is performed by matrix computation F ∗ W , which leads to
x(�)i,j = ∑m

a,b=1 wa,bx
(�−1)
i+a−2,j+b−2. The same image can be represented as a quantum state and encoded in at least n qubits on a quantum computer.

The quantum image transformation is realized by the unitary evolution U on a specific quantum state
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�log2(ML)� qubits, where the computational basis |k〉
encodes the position (i, j) of each pixel, and the coefficient
ck encodes the pixel value, i.e., ck = Fi,j/

(∑
F2
i,j

)1/2
for

k < ML and ck = 0 for k ≥ ML. Here,
(∑

F2
i,j

)1/2
is a

constant factor to normalizing the quantum state.
Without loss of generality, we focus on the input image

with M = L = 2n pixels. The convolution layer trans-
forms an input image F = (Fi,j)M×M into an output image
G = (Gi,j)M×M by a specific filter mask W. In the quan-
tum context, this linear transformation, corresponding to
a specific spatial filter operation, can be represented as
|g〉 = U|f 〉 with the input image state |f 〉 and the output
image state |g〉. For simplicity, we take a 3 × 3 filter mask
as an example

W =
⎡

⎣
w11 w12 w13
w21 w22 w23
w31 w32 w33

⎤

⎦ . (2)

The generalization to arbitrary m × m filter mask is
straightforward. Convolution operation will transform the
input image F = (Fi,j)M×M into the output image as G =
(Gi,j)M×M with the pixel Gi,j = ∑3

u,v=1 wuvFi+u−2,j+v−2
(2 ≤ i, j ≤ M − 1). The corresponding quantum evolu-
tionU|f 〉 can be performed as follows.We represent input
image F = (Fi,j)M×M as an initial state

|f 〉 =
M2−1∑

k=0
ck|k〉, (3)

where ck = Fi,j/
(∑

F2
i,j

)1/2
. TheM2 × M2 linear filtering

operator U can be defined as [25]:

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E
V1 V2 V3

. . . . . . . . .
. . . . . . . . .

V1 V2 V3
E

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

where E is an M dimensional identity matrix, and V1, V2,
V3 areM × M matrices defined by

V1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
w11 w21 w31

. . . . . . . . .
w11 w21 w31

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

V2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
w12 w22 w32

. . . . . . . . .
w12 w22 w32

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

V3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
w13 w23 w33

. . . . . . . . .
w13 w23 w33

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

.

(5)

Generally speaking, the linear filtering operator U is
non-unitary that can not be performed directly. Actually,
we can embed U in a bigger system with an ancillary
system and decompose it into a linear combination of
four unitary operators [26]. U = U1 + U2 + U3 +
U4, where U1 = (U + U†)/2 + i

√
I − (U + U†)2/4,

U2 = (U + U†)/2 − i
√
I − (U + U†)2/4, U3 = (U −

U†)/2i + i
√
I + (U − U†)2/4 and U4 = (U − U†)/2i −

i
√
I + (U − U†)2/4. However, the basic gates consumed

to perform Ui scale exponentially in the dimensions of
quantum systems, making the quantum advantage dimin-
ishing. In [25], the efficient decomposition or the gate
complexity of U is an open question. However, the
gate complexity is the fundamental standard for mea-
suring algorithm efficiency. Therefore, we present a new
approach to construct the filter operator to reduce the
gate complexity. For convenience, we change the elements
of the first row, the last row, the first column, and the last
column in the matrix V1,V2, and V3, which is allowable in
imagining processing, to the following form

V ′
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w21 w31 w11
w11 w21 w31

. . . . . . . . .
w11 w21 w31

w31 w11 w21

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

V ′
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w22 w32 w12
w12 w22 w32

. . . . . . . . .
w12 w22 w32

w32 w12 w22

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

V ′
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w23 w33 w13
w13 w23 w33

. . . . . . . . .
w13 w23 w33

w33 w13 w23

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

.

(6)
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Defining the adjusted linear filtering operator U ′ as

U ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V ′
2 V ′

3 V ′
1

V ′
1 V ′

2 V ′
3

. . . . . . . . .
. . . . . . . . .

V ′
1 V ′

2 V ′
3

V ′
3 V ′

1 V ′
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

Next, we decompose V ′
μ(μ = 1, 2, 3) into three unitary

matrices without normalization, V ′
μ = V ′

1μ + V ′
2μ + V ′

3μ,
where

V ′
1μ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w1μ
w1μ
. . . . . . . . .

w1μ
w1μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

V ′
2μ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w2μ
w2μ
. . . . . . . . .

w2μ
w2μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

V ′
3μ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w3μ
w3μ
. . . . . . . . .

w3μ
w3μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

.

(8)

Thus, the linear filtering operator U ′ can be expressed
as

U ′ =
3∑

μ=1

3∑

v=1

(
V ′

μμ/wμμ

) ⊗ V ′
vμ. (9)

which can be simplified to

U ′ =
9∑

k=1
βkQk , (10)

where Qk = (
V ′

μμ/wμμ

) ⊗ V ′
vμ/wvμ is unitary, and βk is a

relabelling of the indices.
Now, we can performU ′ through the linear combination

of unitary operators Qk . The number of unitary operators
is equal to the size of filter mask. The quantum circuit to
realizeU ′ is shown in Fig. 2. The work register |f 〉 and four
ancillary qubits |0000〉a are entangled together to form a
bigger system.
Firstly, we prepare the initial state |f 〉 using amplitude

encoding method or quantum random access memory

(qRAM). Then, performing unitary matrix S on the ancil-
lary registers to transform |0000〉a into a specific superpo-
sition state |ψ〉a

S|0000〉a = |ψ〉a =
9∑

v=1
βk/N |k〉 (11)

where Nc =
√∑9

k=1 β2
k and S satisfies

Sk,1 =
{

βk/Nc if k ≤ 9
0 if k > 9. (12)

S is a parameter matrix corresponding to a specific filter
mask that realizes a specific task.
Then, we implement a series of ancillary system con-

trolled operations Qk ⊗ |k〉〈k| on the work system |f 〉 to
realize LCU. Nextly, Hadamard gatesHT = H⊗4 are acted
to uncompute the ancillary registers |ψ〉a. The state is
transformed to

|g′〉 =
16∑

i=1

1
Nc

|i〉
9∑

k=1
HT

(ik)S(k1)Qk|f 〉, (13)

where HT
(ik) is the ith row and kth column in matrix HT

and S(k1) is kth row and the first column in matrix S. The
first term equals to

1
Nc

|0〉
9∑

k=1
βkQk|f 〉, (14)

which corresponds to the filter mask W. The ith term
equals to filter maskWi(i = 2, 3, . . . , 16), where

Wi =

⎡

⎢
⎢
⎣

HT
i1w11 HT

i4w12 HT
i7w13

HT
i2w21 HT

i5w22 HT
i8w23

HT
i3w31 HT

i6w32 HT
i9w33

⎤

⎥
⎥
⎦ . (15)

Totally, 16 filter masks are realized, corresponding to
ancilla qubits in 16 different state |i〉(i = 1, 2, . . . , 16).
Therefore, the whole effect of evolution on state |f 〉 with-
out considering the ancilla qubits, is the linear combina-
tion of the effects of 16 filter masks.
If we only need one filter mask W, measuring the ancil-

lary register and conditioned on seeing |0000〉. We have
the state 1

Nc
|0000〉U ′|f 〉, which is proportional to our

expected result state |g〉. The probability of detecting the
ancillary state |0000〉 is Ps =‖ ∑9

k=1 βkQk|f 〉 ‖2 /N2
c .

After obtaining the final result 1
Nc
U ′|f 〉, we can multiply

the constant factor Nc to compute |g′〉 = U ′|f 〉. In con-
clusion, the filter operator U ′ can be decomposed into a
linear combination of nine unitary operators in the case
that the general filter mask is W . Only four qubits or a
nine energy level ancillary system is consumed to realize
the general filter operatorU ′, which is independent on the
dimensions of image size.
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Fig. 2 Quantum circuit for realizing the QCNN. |f 〉 denotes the initial state of work system after encoded the image data, and the ancillary system is
a four qubits system in the |0000〉a state. The squares represent unitary operations and the circles represent the state of the controlling system.
Unitary operations Q1,Q2, · · · , Q9, are activated only when the auxiliary system is in state |0000〉, |0001〉 · · · , |1000〉 respectively

The final stage of our method is to extract useful infor-
mation from the processed results |g′〉. Clearly, the image
state |g〉 is different from |g′〉. However, not all elements in
|f 〉 are evaluated, the elements corresponding to the four
edges of original image remain unchanged. One is only
interested in the pixel values which are evaluated byW in
|f 〉. These pixel values in |g′〉 are as same as that in |g〉 (see
details in Appendix C). So, we can obtain the information
of G = (Gi,j)M×M (2 ≤ i, j ≤ M − 1) by evaluating the |f 〉
under operator U ′ instead of U.

2.1.2 Quantum pooling layer
The function of pooling layer after the convolutional layer
is to reduce the spatial size of the representation so as to
reduce the amount of parameters. We adopt average pool-
ing which calculates the average value for each patch on
the feature map as pooling layers in our model. Consider
a 2 ∗ 2 pixel pooling operation applied with a stride of 2
pixels. It can be directly realized by ignoring the last qubit
and the mth qubit in quantum context. The input image
|g′〉 = (g1, g2, g3, g4, . . . , . . . , gM2)T after this operation can
be expressed as the output image

|p〉 =
(√

g21 + g22 + g2M+1 + g2M+2,
√
g23 + g24 + g2M+3 + g2M+4, . . . ,

√
g2M2−M−1 + g2M2−M + g2M2−1 + g2M

)T
.

(16)

2.1.3 Quantum fully connected layer
Fully connected layers compile the data extracted by pre-
vious layers to form the final output; it usually appears at
the end of the convolutional neural networks. We define a
parametrized Hamiltonian up to a seconder order corre-
lation as the quantum fully connected layer. This Hamil-
tonian consists of identity operators I and Pauli operators
σz,

H = h0I +
∑

i
hiσ i

z +
∑

i,j
hijσ i

zσ
j
z (17)

where h0, hi, hij are the parameters, and Roman indices i, j
denote the qubit on which the operator acts, i.e., σ i

z means
Pauli matrix σz acting on a qubit at site i. We measure the
expectation value of the parametrizedHamiltonian f (p) =
〈p|H|p〉. As shown in [27], the local cost function f (p) is
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more trainable than global cost function. f (p) is the final
output of the whole quantum neural network. Then, we
add an active function to nonlinearly map f (p) to R(f (p)).
The parameters in Hamiltonian matrix H are updated

by gradient descent method, i.e., are calculated by ∂ f (p)
∂hi =

〈
p|σ i

z|p
〉
and ∂ f (p)

∂hij =
〈
p|σ i

zσ
j
z|p

〉
. We rewrite the cost

function as

f (p) = Tr
(

1
N2
c

16∑

i=1
|i〉

9∑

k=1
HT

(ik)S(k1)Qk |f 〉〈f |
16∑

i′=1
〈i′|

9∑

k′=1
HT

(i′k′)S(k′1)Q†
k′H

)

= Tr
(

1
N2
c

16∑

i=1

9∑

k=1
HT

(ik)S(k1)Qkρi

9∑

k′=1
HT

(ik′)S(k′1)Q†
k′H

)

,

(18)

here ρi = |f 〉|i〉〈i|〈f |. From Eq.(18), the cost function
partial derivative with respect to wk is

∂f (p)
∂wk

= 1
N2
c
Tr

( 16∑

i=1

9∑

k′=1
HT

(ik)H
T
(ik′)S(k′1)

(
Q†
k′HQk + Q†

kHQk′
)

ρi

)

.

Therefore, the parameters can be updated by measuring
the expectation values of specific operators.
Now, we have constructed the framework of quantum

neural networks. We demonstrate the performance of our
method in image processing and handwritten number
recognition in the next section.

2.2 Numerical simulations
2.2.1 Image processing: edge detection, image smoothing,

and sharpening
In addition to constructing QCNN, the quantum convo-
lutional layer can also be used to spatial filtering which

is a technique for image processing [25, 28–30], such as
image smoothing, sharpening, edge detection, and edge
enhancement. To show the quantum convolutional layer
can handle various image processing tasks, we demon-
strate three types of image processing, edge detection,
image smoothing, and sharpening with fixed filter mask
Wde,Wsm andWsh respectively

Wde =
⎛

⎝
−1 −1 −1
−1 8 −1
−1 −1 −1

⎞

⎠ ,Wsm = 1
13

⎛

⎝
1 1 1
1 5 1
1 1 1

⎞

⎠ ,

Wsh = 1
16

⎛

⎝
−2 −2 −2
−2 32 −2
−2 −2 −2

⎞

⎠ .

(19)

In a spatial image processing task, we only need one
specific filter mask. Therefore, after performing the above
quantum convolutional layer mentioned, we measure the
ancillary register. If we obtain |0〉, our algorithm succeeds
and the spatial filtering task is completed. The numerical
simulation proves that the output images transformed by
a classical and quantum convolutional layer are exactly the
same, as shown in Fig. 3.

2.2.2 Handwritten number recognition
Here, we demonstrate a type of image recognition task
on a real-world dataset, called MNIST, a handwritten
character dataset. In this case, we simulate a complete
quantum convolutional neural network model, including
a convolutional layer, a pooling layer, and a full-connected
layer, as shown in Fig. 2. We consider the two-class image
recognition task(recognizing handwritten characters ′1′
and ′8′) and ten-class image recognition task(recognizing

Fig. 3 Three types of image processing, edge detection, image smoothing, and sharpening, are implemented on an image by classical method and
quantummethod respectively



Wei et al. AAPPS Bulletin            (2022) 32:2 Page 7 of 11

handwritten characters ′0′-′9′). Meanwhile, considering
the noise on NISQ quantum system, we respectively sim-
ulate two circumstances that are the quantum gate Qk
is a perfect gate or a gate with certain noise. The noise
is simulated by randomly acting a single qubit Pauli gate
in [ I,X,Y ,Z] with a probability of 0.01 on the quan-
tum circuit after an operation implemented. In detail, the
handwritten character image of MNIST has 28 × 28 pix-
els. For convenience, we expand 0 at the edge of the initial
image until 32 × 32 pixels. Thus, the work register of
QCNN consists of 10 qubits, and the ancillary register
needs 4 qubits. The convolutional layer is characterized
by 9 learnable parameters in matrix W that is the same
for QCNN and CNN. In QCNN, by abandoning the 4-
th and 9-th qubit of the work register, we perform the
pooling layer on quantum circuit. In CNN, we perform
average pooling layer directly. Through measuring the
expected values of different Hamiltonians on the remain-
ing work qubits, we can obtain the measurement values.
After putting them in an activation function, we get the
final classification result. In CNN, we perform a two-
layer fully connected neural network and an activation
function. In the two-classification problem, the QCNN’s
parametrized Hamiltonian has 37 learnable parameters,
and the CNN’s fully-connected layer has 256 learnable
parameters. The classification result that is close to 0 are
classified as handwritten character ′1′, and the result that
is close to 1 are classified as handwritten character ′8′. In
the ten-classification problem, the parametrized Hamil-
tonian has 10 × 37 learnable parameters and the CNN’s
fully-connected layer has 10 × 256 learnable parameters.
The result is a 10-dimension vector. The classification
results are classified as the index of the max element
of the vector. Details of parameters, accuracy, and gate
complexity are listed in Table 1.

For the 2 class classification problem, the training set
and test set have a total of 5000 images and 2100 images,
respectively. For the 10 class classification problem, the
training set and test set have a total of 60000 images and
10000 images, respectively. Because in a training process,
100 images are randomly chosen in one epoch, and 50
epochs in total, the accuracy of the training set and the test
set will fluctuate. So, we repeatedly execute noisy QCNN,
noise-free, and CNN 100 times, under the same construc-
tion. In this way, we obtain the average accuracy and the
field of accuracy, as shown in Fig. 4. We can conclude
that from the numerical simulation result, QCNN and
CNN provide similar performance. QCNN involves fewer
parameters and has a smaller fluctuation range.

3 Algorithm complexity and trainability analysis
We analyze the computing resources in gate complex-
ity and qubit consumption. (1) Gate complexity. At the
convolutional layer stage, we could prepare an initial
state in O(poly(log2(M2)) steps. In the case of preparing
a particular input |f 〉, we employ the amplitude encod-
ing method in [31–33]. It was shown that if the ampli-
tude ck and Pk = ∑

k |ck|2 can be efficiently calcu-
lated by a classical algorithm, constructing the log2

(
M2)-

qubit X state takes O
(
poly

(
log2

(
M2)) steps. Alterna-

tively, we can resort to quantum random access mem-
ory [34–36]. Quantum random access memory (qRAM)
is an efficient method to do state preparation, whose
complexity is O

(
log2

(
M2)) after the quantum memory

cell established. Moreover, the controlled operations Qk

can be decomposed into O
((
log2M

)6
)
basic gates (see

details in Appendix A). In summary, our algorithm uses
O
((
log2M

)6
)

basic steps to realize the filter progress
in the convolutional layer. For CNN, the complexity of

Table 1 The important parameters of models

Models Problems Data set Parameters

Learnable parameters Average accuracy Gate complexity

Noisy QCNN ′1′ or ′8′ Training set 46 0.948 O((log2M)6)

Test set 0.960
′0′ ∼′ 9′ Training set 379 0.742

Test set 0.740

Noise-free QCNN ′1′ or ′8′ Training set 46 0.954

Test set 0.963
′0′ ∼′ 9′ Training set 379 0.756

Test set 0.743

CNN ′1′ or ′8′ Training set 265 0.962 O(M2)

Test set 0.972
′0′ ∼′ 9′ Training set 2569 0.802

Test set 0.804
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Fig. 4 The performance of QCNN based on MNIST. The blue, red, and green curves denote the average accuracy of the noisy QCNN, noise-free
QCNN, and CNN, respectively. The shadow areas of the corresponding color denote the accuracy fluctuation range in the 100 times simulation
results. The insets are the typical images from MNIST set. a, b The curves representing the result from the training set and the test set for the 2 class
classification problem respectively. c, d The result from the training set and the test set for the 10 class classification problem respectively

implementing a classical convolutional layer is O
(
M2).

Thus, this algorithm achieves an exponential speedup
over classical algorithms in gate complexity. Themeasure-
ment complexity in fully connected layers is O(e), where e
is the number of parameters in the Hamiltonian.
(2) Memory consumption. The ancillary qubits in the
whole algorithm are O

(
log2

(
m2)), where m is the

dimension of the filter mask, and the work qubits are
O
(
log2

(
M2)). Thus, the total qubits resource needed is

O
(
log2

(
m2) + O

(
log2

(
M2) .

According to [27, 37–39], we can analyze the trainability
of the parameters in our QCNN model by studying the
scaling of the variance

Var
[

∂f (p)
∂w

]

=
〈(

∂f (p)
∂w

)2

S

〉

−
〈
∂f (p)
∂w

〉2

S
, (20)

where the expectation value 〈· · · 〉 is taken over the param-
eters in S [39, 40]. The cost will exhibit a barren plateau
in the case the variance is exponentially small, and hence

leads to the circuit untrainable. In contrast, large vari-
ances (polynomial small) indicate the absence of barren
plateaus and that the trainability of the parameters can be
guaranteed.
The variance in our model is (see details in Appendix C)

Var
[

∂f (p)
∂w

]

=
〈(

∂f (p)
∂w

)2

S

〉

−
〈
∂f (p)
∂w

〉2

S
(21)

= 1
N4
c

⎛

⎝ 1
17

⎛

⎝2α2
0 +

∑

i
α2
i +

∑

ij
α2
ij

⎞

⎠− α2
0

⎞

⎠

If
(
2α2

0+
∑

i α
2
i +

∑
ij α

2
ij

)
−α2

0
N4
c

∈ O(poly(log(n)), then Var
[

∂ f (p)
∂w

]
∝ O(1/poly(log(n)). This assumption is reason-

able and easy to be satisfied, because parameters N4
c in

a convolutional kernel which is usually a 3 × 3 or 5 × 5
matrix are independent on input image size . This implies
that the cost function landscape does not present a bar-
ren plateau,and hence that this QCNN architecture is
trainable under a convolutional kernel.
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4 Discussion
In summary, we designed a quantum neural network
which provides exponential speed-ups over their classi-
cal counterparts in gate complexity. With fewer parame-
ters, our model achieves similar performance compared
with classical algorithm in handwritten number recog-
nition tasks. Therefore, this algorithm has significant
advantages over the classical algorithms for large data.
We present two interesting and practical applications,
image processing and handwritten number recognition,
to demonstrate the validity of our method. The mapping
relations between a specific classical convolutional ker-
nel to a quantum circuit is given that provides a bridge
between QCNN to CNN. We analyze the trainability and
the existence of barren plateaus in our QCNN model. It
is a general algorithm and can be implemented on any
programmable quantum computer, such as superconduct-
ing, trapped ions, and photonic quantum computer. In the
big data era, this algorithm has great potential to outper-
form its classical counterpart, and works as an efficient
solution.

Appendix A: Adjusted operator U′ can provide
enough information to remap the output imagine
Proof .- The different elements of image matrix after
implementing operator U ′ compared with U are in the
edges of image matrix. We prove that the evolution under
operatorU ′ can provide enough information to remap the
output image. The different elements between U ′ and U
are included in

U ′
k,n �= Uk,n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 ≤ k ≤ M; 1 ≤ n ≤ 2M,M2 − M ≤ n ≤ M2)

(M2 −M≤ k≤ M2; 1≤ n≤ M,M2−3M≤ n≤ M2−M)

(k = sM + 1; n = 1 + (s − 1)M, 2 + (s − 1)M, sM, sM
+1, sM + 2, (s+1)M, (s+1)M+1, (s+1)M+2, (s+2)M)

(k = (s + 1)M; n =1, sM − 1, sM, sM + 1, (s + 1)M− 2,
(s + 1)M − 1, (s +1)M + 1, (s + 2)M − 2, (s + 2)M− 1)

(22)

where 1 ≤ s ≤ M − 2.
After performingU ′ andU on quantum state |f 〉 respec-

tively, the difference exits in the elements |g′
k〉 �= |gk〉(k =

1, 2, · · · ,M, sM+1, (s+1)M,M2−M+1, · · · ,M2), where
1 ≤ s ≤ M − 2. Since |g′〉 can be remapped to G′, U ′
will give the output image G′ = (G′

i,j)M×M. The elements
in U ′ which is different from U only affect the pixel i, j �∈
2, · · · ,M − 1. Thus, only and if only i, j �∈ 2, · · · ,M − 1,
the matrix elements satisfy Gi,j �= G′

i,j. Namely, the output
imagine G′

i,j = Gi,j(2 ≤ i, j ≤ M − 1).

Appendix B: Decomposing operator Q into basic
gates
Considering the nine operators Q1, Q2, · · · , Q9 consist of
filter operator U ′. Qk is the tensor product of two of the
following three operators

Fig. 5 Decomposition of operator E1 in the form of basic gates

E1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
. . . . . . . . .

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

M×M

E2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
. . . . . . . . .

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

M×M

E3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

. . . . . . . . .
1

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

M×M

.

(23)

E2 is a M × M identity matrix not need to be further
decomposed. For convenient, consider a n-qubits opera-
tor E1 with dimensionM×M, where n = log2(M2). It can
be expressed by the combination of O(n3) CNOT gates
and Pauli X gates as shown in Fig. 5. Consequently, E3 can
be decomposed into the inverse of combinations of basic
gate as shown in Fig. 5, because of the fact E3 = E†1. Thus,
Qk can be implemented by no more than O(n6) basic
gates. Totally, the controlled Qk operation can be imple-
mented by no more than O(n6) = O((log2M)6)(ignoring
constant number).

Appendix C: Trainable analysis of the QCNNmodel
Firstly, we recall the definition of a t-design. Consider a
finite set S = {Sy}y∈Y contains |Y | number d-dimensional
unitaries Sy. And Pt,t(S) is a polynomial function with
degree at most t in the matrix elements of S and at most
of degree t in those of S†. Then, we say that this finite set
is a t-design if

1
|Y |

∑

y∈Y
Pt,t(Sy) =

∫

dμ(S)Pt,t(S) , (24)

where the integral is over U(d) with respect to the Haar
distribution. In our QCNNmodel, S forms a 2-design and
for any function F(S), and for any unitary matrix A

∫

F(AS)dμ(S) =
∫

F(S)dμ(S). (25)
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The average of the partial derivative of the cost function
is
〈
∂f (p)
∂wk

〉

S
= 1

N2
c
Tr
( 9∑

k′=1
HT

(ik)H
T
(ik′)S(k′1)

(
Q†
k′HQk+Q†

kHQk′
)
)

Tr(|f 〉〈f |)

and Tr(|f 〉〈f |) = 1. Consider the fact that H main-
tains the property that being constructed by Pauli
product matrices under the transformation of Qk ,i.e.,∑9

k′=1HT
(ik)H

T
(ik′)S(k′1)(Q†

k′HQk+Q†
kHQk) = Hnew, where

Hnew = α0I + ∑
i αiσ i

z + ∑
i,j(αij)σ i

zσ
j
z. Then, we have

Tr(Hnew) = α0, and
〈
∂f (p)
∂wk

〉

= α0
N4
c
.

The expectation value of the squares of gradients is
〈(

∂f (p)
∂w

)2
〉

S
=
∫

dμ(S)
1
N4
c
Tr

( 16∑

i=1

9∑

k′=1
HT

(ik)H
T
(ik′)S(k′1)

(

Q†
k′HQk

+Q†
kHQk′

)

ρi

)2

= 1
N4
c

1
162 − 1

(
Tr(Hnew)Tr(|f 〉〈f |)Tr(Hnew)Tr(|f 〉〈f |)

+Tr((Hnew)2)Tr(|f 〉〈f |))

− 1
N4
c

1
16(162 − 1)

(
Tr((Hnew)2)Tr(|f 〉〈f |)Tr(|f 〉〈f |)

+Tr(Hnew)Tr(Hnew)Tr(|f 〉〈f |))

= 1
N4
c

(
1

162 − 1
(α2

0 + Tr((Hnew)2)) − 1
16(162 − 1)

(α2
0 + Tr((Hnew)2))

)

= 1
N4
c

⎛

⎝ 1
17

(2α2
0 +

∑

i
α2
i +

∑

ij
α2
ij)

⎞

⎠

Therefore, the variance is

Var[
∂f (p)
∂w

] =
〈(

∂f (p)
∂w

)2

S

〉

−
〈
∂f (p)
∂w

〉2

S
(26)

= 1
N4
c

⎛

⎝ 1
17

(2α2
0 +

∑

i
α2
i +

∑

ij
α2
ij) − α2

0

⎞

⎠
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