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Implication of pulsar timing array
experiments on cosmological gravitational
wave detection
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Abstract

Gravitational waves provide a new probe of the Universe which can reveal a number of cosmological and
astrophysical phenomena that cannot be observed by electromagnetic waves. Different frequencies of gravitational
waves are detected by different means. Among them, precision measurements of pulsar timing provides a natural
detector for gravitational waves with light-year scale wavelengths. In this review, first a basic framework to detect a
stochastic gravitational wave background using pulsar timing array is introduced, and then possible interpretations of
the latest observational result of 12.5-year NANOGrav data are described.
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1 Introduction
Gravitational waves are ripples of spacetime first pre-
dicted by Einstein in his theory of general relativity in
1916. In Newtonian theory of gravitation and mechanics,
both space and time are rigid in the sense that they are not
affected by any material content existing in the Universe,
and gravity is a nonlocal force. In contrast, Einstein advo-
cated that matter and energy make the spacetime curved
and the curvature itself is the essence of gravitation.
In his theory,a massive body curves the surrounding

space and another particle moves in the curved space
approaching the former as if it is directly attracted by
the body. This is in close analogy of the electromag-
netism of Faraday and Maxwell, where a moving charged
particle produces electric and magnetic fields in the sur-
rounding space, and another charged particle feels a force
from these fields. In the case of gravity, the spacetime
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curvature is characterized by a metric tensor, gμν(x),
with which the spacetime interval is expressed as ds2 =
gμν(x)dxμdxν where repeated Greek indices are summed
over spacetime coordinates 0 to 3. Without any gravita-
tional effect, gμν(x) coincides with the Minkowski metric
ημν = diag(−1, 1, 1, 1), taking the speed of light unity.
Gravitational waves can be expressed by a small per-

turbation around the Minkowski metric in terms of the
transverse-traceless gauge as

ds2 = −dt2 +
(
δij + hTTij (t, x)

)
dxidxj (1)

which satisfies ∂ihTTij = 0, hTTii = 0. Here, repeated Latin
indices are summed over the spatial coordinates 1 to 3.
In the linearized weak-gravity limit of general relativity,
the tensor perturbation hTTij (t, x) satisfies the same wave
equation as the electromagnetic field, which is also equiv-
alent to the Klein-Gordon equation for a massless scalar
field, so that the gravitational wave propagates with the
speed of light.
One can easily see that propagating gravitational waves

do not change the position of whatever body initially at
rest whose motion obeys the geodesic equation:
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where τ is the proper time. Since �i
00 = 0 for the metric

(1), a star or a particle initially at rest does not feel any
acceleration by the tensor perturbation and so remains at
rest. Thus, the only effect gravitational wave causes is the
change of the light path or distance between two objects
at rest.
In the case of a ground-based detector such as the

advanced LIGO (aLIGO) [1] in the USA, advanced Virgo
(aVirgo) [2] in Europe, and KAGRA [3] in Japan, two
reflective laser lines are set with a rectangular configu-
ration whose interference measures modulations of their
relative path length to detect gravitational waves. Their
baseline is 3–4 km long, and these detectors are sensitive
to gravitational waves in deca- to hecto-Hertz band.
While they were originally designed to detect gravita-

tional wave event from binary neutron star coalescence,
the first direct detection of gravitational waves, which was
achieved by aLIGO on September 17, 2015, was from coa-
lescence of two massive black holes around 30 solar mass
[4]. Up to then, even the existence of such a massive black
hole had not been appreciated in the community. This
manifests another example of common practice of the his-
tory of astronomy that every time the mankind obtained
a new means of observation, a new unexpected event had
been discovered.
The first discovery of gravitational waves from binary

neutron star coalescence was made on August 17, 2017
[5] which led to joint observation of multiband photons
ranging from gamma-ray to infrared [6]. We note that this
epoch making discovery was successfully made only by
the GstLAL pipeline jointly developed by Kipp Cannon at
RESCEU and ChadHanna at Penn State University among
the six pipelines of gravitational wave burst detection at
work.
In order to detect lower frequency gravitational waves

by a laser interferometer, we must extend the baseline,
which may be achieved by launching a set of three satellite
to form a laser interferometer of triangular configuration.
This idea was first put into serious investigation by the
Laser Interferometer Space Antenna (LISA) project which
aims at launching three spacecrafts separated by 2.5 mil-
lion km in a triangular formation orbiting around the Sun
following the Earth in the same orbit [7]. It will have the
best sensitivity at milli-Hertz frequency range and can
probe black holes with much larger masses than those dis-
covered by aLIGO and aVirgo in the range 102−7 solar
mass. The path-finder satellite was launched in Decem-
ber 3, 2015 which was one day after the centennial of
the publication of the Einstein equation [8]. The satel-
lite exhibited much better performance than originally

planned providing a hope to launch the full mission in
2034 [9].
DECIGO in Japan, on the other hand, sets a goal of

the direct detection of the stochastic gravitational wave
background which was produced quantum mechanically
during inflation in the early Universe, observing a deci-
hertz range of gravitational waves [10]. In fact, DECIGO
will ultimately be able to measure the reheating temper-
ature after inflation which indicates when the Big Bang
happened [11]. While it has been shown that the base-
line should be as long as 1500km with a Fabry-Perot
cavity [12], which induces a resonance of laser by reflect-
ing the light many times by mirrors at both ends of
the cavity, current plan under discussion is to realize
its degraded version called B-DECIGO whose baseline is
only 150km first which is still in a phase of conceptual
study.
In contrast, Chinese space-based projects are advanc-

ing much more rapidly with two independent projects
of space-based gravitational wave detection, namely, Taiji
[13] and TianQin [14]. Both projects have successfully
launched the initial path finder satellites already.
The scope of this article is to focus on a set of grav-

itational wave detectors with by far the longer baseline
prepared by nature, namely, timing observation of mil-
lisecond pulsars, or pulsar timing arrays.
Pulsars are rotating neutron stars with a strong mag-

netic field whose axis is not identical to the rotation axis,
so that pulse-like periodic electromagnetic radiation is
observed with the rotational period. So far about 2.5 thou-
sand pulsars have been discovered since its first discovery
in 1967 by Bell and Hewish [15], and their rotation period
spans from a millisecond to about 10 s. Among them, the
rotation period of millisecond pulsars with their period
less than 30 ms is especially stable, most of which exist
in a binary system and have a relatively weak magnetic
field of order of 108 G [16]. They are so stable that by
observing possible modulation of the arrival times of their
pulses, we can in principle detect stochastic gravitational
wave background using observational timing data of many
pulsars.
Let us first summarize how the time of arrival (TOA)

of the pulsar’s signal is modulated due to the propagating
gravitational waves. For more detailed introduction, one
may consult e.g. [17].

2 Detection of gravitational waves using pulsar
timing

2.1 Effects of gravitational waves on the timing of a
single pulsar

Suppose that an observer is at rest at the origin of the
spacetime (1) and receive a signal emitted at tem from the
a-th pulsar at the distance da and directional cosine na.
The observer receives the signal at
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Fig. 1 Distribution of rotation period and its time variation rate of known pulsars together with the contours of characteristic age and magnetic
field. Taken from [16]

tobs= tem+da+
nian

j
b

2

tem+da∫

tem

dt′hTTij
[
t′,

(
tem+da−t′

)
na

]
.

(3)

Repeating the same calculation one cycle (Ta) later and
subtracting (2), the modulation of pulsar period observed
is given by


Ta
Ta

= nian
j
b

2

tem+da∫

tem

dt′ ∂

∂t′
hTTij [ t′, x] , (4)

where the integral is calculated along the unperturbed
photon path x = (tem + da − t′)na.
For a plane gravitational wave propagating along the

direction n, hTTij (t, x) ≡ Aij(n) cos [ω (t − n · x)], we find


Ta
Ta

= nian
j
aAij(n)

2(1 + n · na) {cos [ωtobs]−cos [ω(tem−τan · na)]} ,

with τa ≡ tobs − tem. In general, it can be expressed as

za(t)≡
Ta
Ta

= nian
j
b

2(1+n· na)
{
hTTij [t, x=0]−hTTij [t−τa, xa]

}
.

(5)

The first term in the right-hand side is called the earth
term and the second term the pulsar term. In the actual

data analysis, the earth term is calculated at the barycen-
ter of the solar system to remove seasonal and other
modulations associated with the dynamics of the solar
system.
Choosing the coordinate frame so that the gravitational

wave propagates along the z direction, n = (0, 0, 1), hTTij
reads

hTTij (t − z) =
⎛
⎝

h+ h× 0
h× −h+ 0
0 0 0

⎞
⎠ . (6)

If the a-th pulsar is located in the angular direction in
terms of the polar coordinate, we find


Ta
Ta

≡za(t)

= 1
2
(1−cos θa){cos 2 φa[h+(t)−h+(t−τa−τacos θa)]

+ sin 2φa [h×(t) − h×(t − τa − τa cos θa)]} . (7)

The dependence on 2φa manifests the spin 2 nature of the
graviton.
We now apply it to the case of isotropic stochastic back-

ground of gravitational wave radiation where hTTij (x, t)is
expressed in terms of the stochastic mode function
h̃A(f ,n) as
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hTTij (t, x) =
∑

A=+,×

∞∫

−∞
df

∫
d�nh̃A(f ,n)eAij (n)e−2π if (t−n·x)

(8)

where eAij (n) is the symmetric polarization tensor which
satisfies nieAij (n) = 0 and eAij (n)eA′ij(n) = 2δAA′ . We
will return to their explicit form shortly. The stochastic
background is characterized by the power spectrum Sh(f )
which satisfies

〈
h̃∗
A(f ,n)h̃A′(f ′,n′)

〉
= 1

2
Sh(f )δ(f −f ′) δ(n,n

′)
4π

δAA′ . (9)

The modulation of pulsar’s period is then expressed as

za(t)=
∑

A=+,×

∞∫

−∞
df

∫
d�nh̃A(f,n)FA

a(n)
[
1−e−2π if τa(1+n·na)

]
,

(10)

with

FA
a (n) = nian

j
aeAij (n)

2(1 + n · na) .

The first term in the square bracket represents the earth
term of (5). The primary quantity of observational impor-
tance is the time integral of (5) and (10), ra(t) ≡
t∫

tini
za(t′)dt′, which is called the timing residual.

2.2 Effects of gravitational waves on the timing of a pair
of pulsars

In order to detect stochastic gravitational wave back-
ground in terms of pulsar timing array, it is important to
study the correlation of the timing residual of two or more
pulsars. The primary quantity is the equal-time correla-
tion function of the timing residual of pulsars a and b,

〈za(t)zb(t)〉= 1
2

∞∫

−∞
df Sh(f )

∫ d�n
4π

Kab(f ,n)
∑

A=+,×
FA
a(n)FA

b(n)

(11)

with Kab(f ,n)≡ [
1− e−2π if τa(1+n·na)] [

1− e−2π if τb(1+n·nb)]
which is well approximated by unity as the other terms are
highly oscillatory. Let us express the directional vector of
gravitational waves as n = (sin θ cosφ, sin θ sinφ, cos θ).
Then, introducing orthogonal vectors u = (sinφ,

− cosφ, 0) and v = (cos θ cosφ, cos θ sinφ,− sin θ), we
can express the polarization tensors as

e+ij (n) = ui ⊗ uj − vi ⊗ vj (12)

e×ij (n) = ui ⊗ vj + uj ⊗ vi (13)

with which we find

F+
a (n) = (na · u)2 − (na · v)2

2(1 + n · na) , F×
a (n) = (na · u) (na · v)

2(1 + n · na) .

(14)

Thanks to the assumed isotropy of the stochastic back-
ground, (11) depends only on the relative angle between
pulsars a and b, θab. Then, we may choose the z axis along
the direction to the a-th pulsar, so that na = (0, 0, 1) and
take nb = (sin θab, 0, cos θab). Inserting them to (11) to
calculate (10) we find

〈za(t)zb(t)〉 = C (θab)

∞∫

0

df Sh(f ), (15)

where

C (θab)≡
∑

A=+,×

∫ d�n
4π

FA
a (n)FA

b (n)= xab ln xab−1
6
xab+1

3

(16)

with xab ≡ sin2 θab
2 . The most important feature of (11) is

the fact that the form of the angular part is independent of
the spectrum of gravitational radiation, Sh(f ),which was
first found by Hellings and Downs [18] and the functional
form of C (θab) is often called the Hellings-Downs curve.
The correlation function of the timing residual reads

〈ra(t)rb(t)〉=C(θab)

∞∫

0

df
Sh(f )(
2π f

)2 ×2
[
1−cos

(
2π f(t−tini)

)]
.

(17)

We can extend the above to the case of unequal time but
the result is always proportional to the Hellings-Downs
function C (θab) which reflects the quadrupole nature of
gravitational radiation.

Fig. 2 Hellings-Downs curve C (θab) as a function of θab [degree]
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2.3 Characteristic strain and density parameter of
gravitational wave background

The characteristic strain, hc(f ), is defined by

h2c (f ) ≡ 2f Sh(f ). (18)

It is often modeled by a single power law:

hc(f ) = AGW

(
f
fyr

)α

(19)

where it is convenient to take the characteristic frequency
at fyr = 1yr−1when we analyze observation using pulsar
timing.
To discuss cosmological implication of stochastic grav-

itational wave background, it is convenient to express the
energy density of gravitational waves, which is naturally
defined by

ρgw(t) = 1
32πG

〈
ḣijḣij

〉
, (20)

in terms of its contribution to the density parameter
per logarithmic frequency interval, �gw(f ). Since (20) is
expressed as

ρgw(t) = 4
32πG

∞∫

0

df (2π f )2Sh(f ) = π

2G

∫
d ln f f 3Sh(f ),

(21)

�gw(f ) reads

�gw(f ) ≡ 1
ρcr

dρgw(f )
d ln f

= 4π2

3H2
0
f 3Sh(f ) = 2π2

3H2
0
f 2h2c (f ),

(22)

where ρcr = 3H2
0

/
(8πG) is the critical density with H0

being the current Hubble parameter.

2.4 Observables and data analysis
The observed quantity is a time sequence of timing resid-
uals of all the observed pulsars denoted as ra(ti), a =
1, 2, ...Np; i = 1, 2, 3, ... with Np being the total number
of pulsars regularly monitored. The observables may be
decomposed into the deterministic part and noise part as

ra(ti) = rdeta (ti, ξa) + na(ti) (23)

where collectively denotes the parameters characteriz-
ing the nature of the a-th pulsar and other deterministic
parameters modeling the observational setup [19].
Assuming that noises are Gaussian distributed, we can

perform statistical analysis once the two-point correlation
function of noises is obtained. The auto-correlation func-
tion of noises of the same pulsar, Naa;ij = 〈

na(ti)na(tj)
〉
,

consists of a frequency- independent white noise part
such as instrumental errors and frequency dependent
red noise term with excess power at lower frequencies
such as spin noise, pulse profile changes, and imperfectly

modeled dispersion measure variations. The stochastic
gravitational wave background also contributes to the lat-
ter. Noises acting on different pulsars at different time,
Nab;ij = 〈

na(ti)nb(tj)
〉
, is subdominant compared with

Naa;ij but plays an important role to detect the stochastic
background of gravitational waves, as their effect appear
as its quadrupole term, while their monopole and dipole
terms are mainly due to the errors in the reference clock
on the earth and solar system modeling, respectively.
In order to measure the amplitude of stochastic grav-

itational wave background, we first marginalize over the
pulsar parameters ξa assuming that gravitational waves
are absent and then write down the likelihood function
incorporating it. The log-likelihood function has a form

logP (r̄| AGW ) = −1
2
t r̄aN̄−1

ab r̄b − 1
2
log

[
det(2πN̄)

]

(24)

where r̄a and N̄ collectively denotes the sequence of
observed data with the deterministic part subtracted,
ra(ti) − rdeta (ti, ξa), and the covariance matrix of noises
both after marginalization of deterministic parameters,
respectively.
We assume r̄a and r̄b with a 	= b has a vanishing

correlation apart from the quadrupolar one due to the
gravitational waves. We may express the marginalized
noise covariance matrix as N̄ = P + A2

GWS where the
matrix S is estimated as Sab = 〈

r̄at r̄b
〉
with temporal

coefficients being suppressed [20]. Since AGW is a tiny
quantity if not zero, the inversematrix is easily obtained as
N̄−1 = P−1 − A2

GWP−1SP−1 to the lowest order in AGW .
We therefore find the log-likelihood ratio as

log� = log
P (r̄| AGW )

P (r̄| AGW = 0)
= 1

2
A2
GW

t r̄P−1SP−1r̄.

(25)

We thus find the optimal statistic to calculate the ampli-
tude of gravitational waves as

Â2 ≡
t r̄P−1SP−1r̄

tr
[
P−1SP−1S

] , (26)

which yields 〈Â2〉 = A2
GW . If the signal is weak, the stan-

dard deviation is given by , so that the signal-to-noise ratio
reads S/N = Â2/σ0 [21, 22].
In order to judge if nonvanishing stochastic gravita-

tional wave background is present, one may adopt the
Baysian analysis to obtainP(Mi|d), the probability of the
model Mi being correct for a given set of observational
data d. The Bayes theorem tells us

P(Mi|d)

P(Mj|d)
= P(d|Mi)

P(d|Mj)

P(Mi)

P(Mj)
≡ Bij

P(Mi)

P(Mj)
= Bij (27)
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where Bijis the Bayes factor and the last equality applies
for the flat prior case. If it is larger than unity the data
prefers model i to j, and its degree of preference has been
classified by Jeffreys as follows. For log10Bij = 0 − 0.5,
the preference is not worth more than a bare mention, for
log10Bij = 0.5 − 1, it is substantial, for log10Bij = 1 − 2,
strong, and finally for log10Bij > 2, it is decisive [23].
As the observation continues, sensitivity to the gravi-

tational wave background improves and we obtain more
stringent upper bound on its amplitude with the fre-
quency range extending toward lower frequencies. If
there exist a nonvanishing background, we would first
encounter stagnation of improvement in the upper limit,
followed by emergence of spatially uncorrelated common-
spectrum red noises to all the pulsars being monitored.
Finally, we would find the quadrupolar signature in
the spatial correlation described by the Hellings-Downs
curve, which would serve as the final confirmation of the
very existence of the gravitational wave background.

3 Latest 12.5-year observation by NANOGrav
collaboration

3.1 NANOGrav observation
There are three major pulsar timing array [24] (PTA)
experiments worldwide, the European Pulsar Timing
Array (EPTA) [25], Parkes Pulsar Timing Array (PPTA)
[26], and the North American Nanohertz Observa-
tory for Gravitational Waves (NANOGrav) [27], which
constitute the International Pulsar Timing Array (IPTA)
[28]. Accumulation of observation for more than a

Fig. 3 Posterior spectrum of timing residual recovered from
NANOGrav 12.5-year data with four models, namely, free spectrum
(gray plots), broken power law (solid blue line), 5 lower frequency
power-law fit (orange broken line), and 30 frequency power law fit
(green dot-dashed line). Dotted vertical line marks the frequency
fyr = 1yr−1. Reproduced from “The NANOGrav 12.5-year Data Set:
Search for an Isotropic Stochastic Gravitational-wave Background”
[30] by permission of the AAS

decade now, the upper bound on the amplitude of
the stochastic gravitational wave background has been
improving to the frequency reaching . Recently, how-
ever, the 12.5-year NANOGrav data [29] has found
a strong evidence of a common-spectrum stochastic
process [30].
The data consists of observation of 47 ms pulsars made

from July 2004 to June 2017 by 305m Arecibo Observa-
tory in Puerto Rico and 100m Green Bank Telescope in
West Virginia [29], and 45 pulsars observed for more than
3 years among them were used in the gravitational wave
analysis.

3.2 Latest result of NANOGrav observation
The 12.5-year NANOGrav data set shows possible exis-
tence of common-spectrum process as depicted in Figs. 1,
2,and 3 and fitted by a power law model in analogy with
(15):

hc(f ) = ACP

(
f
fyr

)α

with γCP ≡ 3 − 2α. (28)

Figures 3 and 4 indicate evidence for common red pro-
cess at lower frequencies. Indeed the Bayes factor (BF) of
the model with and without it reads log10 BF = 4.5 for
the case the solar system ephemeris is fixed to DE436 pro-
vided by Jet Propulsion Laboratory and log10 BF = 2.4
for the case uncertainties in solar system ephemeris are
marginalized using an algorithm called BayesEphem. The
latter provides a more conservative result but in both
cases, the existence of red noise is decisive.

Fig. 4 1 and 2 σ contours of posterior fit to the models described in
Fig 4. Green dot dashed curve is not a good model driven by higher
frequency noises, while blue broken power-law contours refer to the
fit at lower frequencies which is practically identical to the orange
broken contours. The vertical broken line marks γCP = 13/3
corresponding to α = −2/3. Reproduced from [30] by permission of
the AAS
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Fig. 5 Posterior distribution of the optimal statistic (upper panel) and S/N ratio (lower panel) for Hellings-Downs correlation (blue), monopolar
(orange), and dipolar (green) angular correlations. Reproduced from [30] by permission of the AAS

The next question is if the correlation among differ-
ent pulsars satisfies the Hellings-Downs curve, or has
monopolar or dipolar features.
The monopolar correlation is strongly disfavored as

log10 BF = −2.3 with DE438 and −1.3 with BayesEphem.
The dipolar correlation is also strongly disfavored as
log10 BF = −2.4 with DE438 and −2.3 with BayesEphem.
On the other hand, the Bayes factor of the Hellings-Downs
curve has been calculated as log10 BF = 0.64 with DE438
and 0.37 with BayesEphem, andmixtures with either com-
mon, monopole, or dipole process do not yield any higher
BF. Hence, it is premature to conclude that they have
observed stochastic gravitational wave background yet.
Figure 5 depict the posterior distributions of opti-

mal statistic (16) for three types of correlations as well
as the common-spectrum amplitudeA2

CP. Although the
monopolar distribution shows somewhat higher S/N
ratio, the central value is lower than the case of Hellings-
Downs correlation, and so the result is consistent with the
Bays factor analysis.
Thus, their result as a whole indicates a possible hint of

the existence of stochastic gravitational wave background
but by no means confirms it at this stage. We should still
wait for the good news patiently. It is remarkable, how-
ever, a number of hasty theorists have already written
many papers on many kinds of exotic interpretations of
the result assuming that the result actually originates from
gravitational wave background besides the more conven-
tional possibility that it is from supermassive black hole
binaries. In the next section we overview some of them in
turn.

4 Possible interpretations assuming the
existence of gravitational wave background

4.1 Generation of gravitational waves
Before discussing specific sources of gravitational wave
background, let us introduce the generic quadrupole for-
mula to provide the order-of-magnitude relation between
the parameters of the source and the resultant amplitude
of gravitational radiation. In this subsection we recover
the dependence on the speed of light c. The linearized

Einstein equation reads

�hμν =
(

− 1
c2

∂2

∂t2
+ ∇2

)
hμν = −16πG

c4
Tμν , (29)

with being the energy-momentum tensor. The solution
can easily be found with the retarded Green function as
with the electromagnetism as

hμν(ct, r) = 4G
c4

∫ Tμν(ct − ∣∣r − r′
∣∣ , r′)

|r − r′| d3r′, (30)

Thanks to the conservation law, ∂μTμν = 0, one can
express it in terms of the quadrupole moment as

hij(ct, r) = 2G
c4r

Ï(ct − r), (31)

with

Ï(ct − r) =
∫

ρ(ct,r′)
(
r′r′j −

1
3
r′kr

′k
)
d3r′. (32)

Thus, in terms of the mass,M, size, R, time scale, T, of the
source, we can express it as

h(r) ∼ G
c4r

MR2

T2 ≤ G
c4r

Mc2 ∼ GM
c2r

∼ rg
r
, rg ≡ 2GM

c2
,

where rg is the Schwarzschild radius of the source.
To discuss gravitational wave background of cosmo-

logical origin, the D’Alembert operator of (29) must be
replaced by the one in the Lemaitre-Robertson- Walker
metric, and we must take relativistic effects in the energy
momentum tensor into account to solve the Einstein
equation instead of adopting slow-motion approximation
used in (31).

4.2 Binary supermassive black holes (SMBH)
It is known that supermassive black holes exist ubiqui-
tously in galactic nuclei [31], and in their evolution history,
it is expected that a number of coalescence took place of
binary black holes. Their inspiral motion generates grav-
itational wave background which may be observed by
pulsar timing [32]. The spectrum of stochastic gravita-
tional wave background generated by their superposition
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Fig. 6 The redshift-integrated mass function of the chirp massMc = M of SMBHs inferred from 12.5-year NANOGrav observation. Dark and light
orange (green) regions represent 50 and 90% credible regions of M16 (C19) models. Taken from Fig. 3 of “Massive black hole binary systems and the
NANOGrav 12.5-year results” [36]

was calculated by Enoki et al [33] based on a semiana-
lytic model of galaxy and quasar formation based on the
hierarchical clustering scenario.
Suppose a pair of black holes with masses M1 and M2

forming a binary system in a circular orbit whose orbital
radius is R. The frequency, fr , of the gravitational waves
emitted by this system is twice the orbital frequency,
so from the Kepler’s law, it satisfies f 2r = π2GMR−3

where M is the total mass. From the quadrupole formula
(31), we can estimate the amplitude of gravitational waves
observed at a distance r as

h(r) ∼ Gμ

c4r

(
GM
f 2r

)2/3
f 2r ∼ 1

r

(
GMc
c2

)5/3( fr
c

)2/3
(33)

where μ is the reduced mass and Mc is the chirp mass
defined by Mc ≡ μ3/5M2/5. Then, the power emitted by
gravitational radiation scales as

P ∼ 4πr2

16πG
f 2r h

2(r)c ∼ 1
G

(
GMc
c2

)10/3
f 10/3r (34)

which also gives the energy loss rate of the binary system.
Since the orbital energy is given by E = −GM1M2

/
(2R) ,

we find Ė = P = −ṘE /R = 2ḟrE
/
(3fr) , so E ∝ f 2/3r and

ḟr ∝ f 11/3r . We therefore find

dE
d ln fr

= f
Ė
ḟr

= 1
3
(Gπ)2/3M5/3

c f 2/3r (35)

The observed frequency of gravitational waves emitted
by a binary system at the redshift z is f = (1 + z)−1fr , so
the total energy density spectrum received by an observer
today is

dEgw(f )
d ln f

=
∫ dN(Mc, z)

dMcdz
dE(fr = (1 + z)f )

d ln fr
dz

1 + z
dMc,

(36)

where N(Mc, z) is the mass function of the black hole
binary with the chirp massMc. The left-hand side may be
expressed as πc2f 2h2c (f )

/
(4G) in terms of the character-

istic strain h(f )
c . Hence, it has a dependence h(f )

c = Af −2/3,
namely, α = −2 /3 [34, 35].
This simple dependence is a nice feature of the binary

SMBH scenario to identify the origin of the stochastic
background on one hand, but this also means that we can
extract information on their mass function only through
the overall amplitude , which indicates it is difficult to
translate the result to the differential mass spectrum in
this simple treatment with circular orbits.
In [36], two models of SMBH evolution have been

compared with the NANOGrav 12.5-year data. One is
the model studied by Middleton et al (referred to M16),
where the mass function of binary black hole system
is assumed to be described by a Schechter function
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in terms of the chirp mass with the redshift evolu-
tion also having a Schechter type dependence on with
different sets of parameters [37]. Their model has five
parameters, namely, power index and exponential scale
height for both chirp mass and the redshift to determine
the shape of Schechter function as well as the overall
amplitude.
The other model studied by Chen et al. (referred to C19)

is more sophisticated as it incorporates eccentricity of the
orbit and interaction with environment. It depends on 18
model parameters and has more complicated frequency
dependence than a simple power law [38].
Figure 6 [36] represents the redshift-integrated mass

function of the SMBH chirp mass fitted to these two
models, showing that the mass function in the simpler
model with a single power-law frequency dependence is
less constrained than the more sophisticated one.

4.3 Cosmic strings
The power index of the gravitational wave background
inferred by 12.5-year NANOGrav is also consistent with
smaller values than α = −2 /3 which may be preferred by
cosmological gravitational wave background.
Among them, cosmic strings are line-like topological

defects created by a cosmological phase transition when
the vacuum state after the symmetry breaking allows
a nontrivial mapping to a unit circle such as the case
U(1) symmetry is broken [39]. The simplest field theo-
retic model allowing a string solution is the Abelian Higgs
model described by the Lagrangian with a complex scalar
field �,

L=Dμ�(Dμ�)†− 1
4
FμνFμν +m2��†−λ(��†)2− λ

4
v4

(37)
Fμν = ∂μAν − ∂νAμ, Dμ� = ∂μ� − igAμ�, m2 = λv2.

(38)

The cosmic string is characterized by the dimensionless
tension Gμ where μis related to the symmetry breaking
scale of the theory by μ = bπv2 with b being a function
of g2 /λ [40]. It takes a value between 0.5 and 3 as g2 /λ is
varied from 100 to 0.01 [41].
Production of cosmic strings is usually attributed to a

thermal phase transition which takes place due to the
high-temperature correction to the potential [42]. The
critical temperature of the above Abelian Higgs model is

Tc = 7 × 1012b−1/2
(

Gμ

10−10

)1/2
GeV (39)

which is fairly high compared with typical reheating tem-
perature after cosmic inflation [43].
For models with lower reheating temperature, one can

still produce strings after inflation if is nonminimally cou-
pled to scalar curvature R with the term ξR��† [44].

Then, symmetry is restored during inflation if 12ξH2 >

λv2 [45], or the tensor-to-scalar ratio satisfies

r > 4 × 10−3
(

λ

0.1

) (
ξ

1 /6

)
b−1

(
Gμ

10−10

)
. (40)

It is known that 80% of the energy of strings are in
infinitely long ones and they evolve in the expanding uni-
verse intersecting with each other to form loops [46]. As
a result they evolve according to the scaling solution in
which there always exists fixed number of infinitely long
strings in the horizon volume at each time and loops are
formed with the constant comoving rate with the initial
length proportional to the formation time as αt. Numer-
ical simulations show that has an extended spectrum up
to α ≈ 0.1 [47]. We take α = 0.1 hereafter as corre-
sponding loops make most important contributions to the
gravitational wave background. Loops oscillate and decay
by emitting gravitational waves with an energy-loss rate
independent of its size, Ė = �Gμ2, where � is a constant
around 50 [48]. As a result, a loop formed at ti has a length
�(t) = αti − �Gμ(t − ti)at t and emits gravitational wave
with a frequency f (t) = 2k

/
�(t) , where k is a positive

integer. It is known that k-th harmonics has an emission
rate proportional to k−4/3 [49].
Noting that the string loop contributing to the current

gravitational wave frequency f through k-mode emitted at
time t′ was created at

tk(t′, f ) = 1
α + �Gμ

[
2k
f

a(t′)
a(t0)

+ �Gμt′
]

(41)

and summing up all the contribution throughout the cos-
mic evolution, we find the current spectrum of stochastic
gravitational wave background

�gw(f ) ∼=
∑
k

4πk1/3 �(Gμ)2

27H2
0 f

t0∫
tf
dt′ Ceff (tk)

t4k

(
a(t′)
a(t0)

)5( a(tk)
a(t′)

)3
�

(
tk − tf

)

(42)

where tf is the onset of the scaling regime. Ceff is a factor
representing the dependence of the scaling solution on the
cosmic expansion law [50]. We find Ceff = 5.4(0.39) in
radiation (matter) dominated regime.
Figure 7 shows the energy spectrum of stochastic back-

ground fitted to the 12.5-year NANOGrav data assuming
that they are entirely from cosmic string signals, where it is
found that 68 If we allow variation of α, even wider range
of tension is consistent [52].
The stochastic background extended to higher fre-

quencies as seen in Fig. 7 will cause big noise sources
for the future space-based laser interferometers such as
LISA, TianQin, Taiji, and DECIGO as well as to the
Einstein Telescope [53]. Before reaching the era of the
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Fig. 7 Spectrum of stochastic gravitational wave back ground generated by cosmic string networks in the scaling regime fitted to the 12.5-year
NANOGrav data assuming that their signal entirely comes from strings. Taken from [51]

next and next-to-next detectors, however, once the world-
wide network of currently available ground-based detec-
tors, namely, aLIGO, aVirgo, and KAGRA (LVK) are in
full operation with their respective design sensitivity, we
can probe stochastic background to the level well below
�gw(f ) < 10−9 [54] and touch the “NANOGrav curve”
in Fig. 7. Thus the cosmic string scenario may be verified
even with the current technology.
Even if LVK did not observe the stochastic signal, how-

ever, it would not necessarily mean that cosmic string
scenario would not work, because Fig. 7 is depicted under
the assumption that waves relevant to LVK observation
were created under radiation domination. If the reheat-
ing temperature after inflation is sufficiently low, they
would have been created during the inflaton’s oscillation
regime when the cosmic expansion law was the same as
in the matter domination, and the energy spectrum would
acquire suppression factor proportional to f −2 [55]. I esti-
mate the upper bound on the reheating temperature is
around 400GeV in the case NANOGrav observation is
entirely due to cosmic strings but LVK in full operation
does not find any stochastic background.

4.4 Tensor perturbation from inflation
Cosmic inflation in the early universe is an indispens-
able ingredient of modern cosmology to realize big and
old universe filled with hierarchical structures [43]. Dur-
ing inflation, each Fourier mode of tensor perturba-
tion defined in (6), h̃A(f ,n), satisfies the Klein-Gordon
equation for a massless field, and can be quantized in the
same way as a massless scalar field minimally coupled

to gravity. As a result, it acquires nearly scale-invariant
dispersion given by

4πk3

(2π)3

〈∣∣∣h̃A(f ,n)

∣∣∣
2
〉

≡ PT (k) = 64πG
(
H(tk)
2π

)2
, (43)

where the pre-factor on the left-hand side is the phase
space density with k = 2π f and 64πG originates from
the normalization factor of the Einstein-Hilbert action
through canonical quantization procedure [56]. The spec-
tral index of the tensor perturbation is defined by

nt ≡ dPT (k)
d ln k

= −2εH , εH ≡ − Ḣ
H2 . (44)

Here, H(tk) is the Hubble parameter during inflation
when the comoving wavenumber k = 2π f left the Hubble
horizon during inflation.
In the exact de Sitter background we find a scale-

invariant spectrum with nt = 0. In vast majority of
inflation models nt takes a small negative value as nt >

0 means violation of null energy condition. Since CMB
imposes a stringent constraint on the amplitude of gravi-
tational waves or tensor perturbations on large scales we
need a positive tensor spectral index if we wish to account
for the NANOGrav observation in terms of inflationary
tensor perturbation. At the same time, we must suppress
higher frequency stochastic background as aLIGO has
already obtained a constraint more stringent than that
imposed by successful big bang nucleosynthesis (BBN),
namely, �gw < 6× 10−8 for a flat spectrum [57]. This can
be achieved by prolonged reheating phase after inflation
with a low reheating temperature as mentioned in the last
subsection.
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Parametric analysis blind to specific models has been
done in [58] and we can read off range of parameters
required to explain the NANOGrav data by focusing on
the border line of pulsar constraints. As a result, the pos-
sible positive detection can be explained by an inflation
model with a large tensor spectral index nt ≈ 0.9 and low
reheating temperature TR ≤ O(102) GeV.
Such a blue tensor spectrum may be realized in G-

inflation [59–61] or Gauss-Bonnet inflation [62]. Both of
them can be analyzed using the generalized G-inflation
framework [63]. A relatively simple model to explain 12.5-
year NANOGrav data by tensor perturbation of quantum
origin has been proposed by Tahara and Kobayashi mak-
ing use of only G2 and G3 generalized galileon functions
[64].

4.5 Tensor perturbation generated by second-order
scalar perturbations from inflation

During inflationary expansion in the early universe, cur-
vature perturbations are generated in a similar manner to
tensor perturbation [65]. Although the simplest canoni-
cal slow-roll models predict nearly scale-invariant spec-
trum, nontrivial dependence of curvature perturbation
on the scalar field model makes it possible to realize
much larger amplitudes on smaller scale while preserving
the consistency with CMB observations which determine
the amplitude of the curvature perturbations of order
of on large scale [66]. In particular, if slow-roll param-
eters satisfy a certain condition, the would-be decaying
mode of the curvature perturbation can grow even after
horizon exit and can result in an enhanced spectrum
on some specific scales [67]. If this happens, although
tensor and scalar perturbations are decoupled at the
level of linear perturbation, second-order effect may gen-
erate an appreciable amplitude of tensor perturbations
[68, 69]. This feature, pioneered in [70, 71], has been
extensively discussed recently in relation to the forma-
tion of primordial black holes (PBHs) [72, 73] which also
requires high amplitude density perturbation of order
of 0.1.
PBHs are produced when a region with a large density

perturbation of order of unity falls in the horizon in the
early universe dominated by radiation [74, 75]. Its mass is
of order of the horizon mass

MPBH ∼ c3t
G

∼ M�
(

t
10−5 sec

)
(45)

at formation. Spectrum of density perturbation with a
peak realizing formation of PBHs with mass creates
stochastic gravitational wave background at the typical
frequency

fGW ∼= 9
(
MPBH
M�

)−1/2
nHz. (46)

Hence, gravitational wave background of nano-hertz
range is an important probe of PBHs around the solar
mass. In particular, as the observation time gets longer, we
will be able to constrain lower frequency background, so
that we can eventually probe the mass range of the binary
black holes observed by advanced LIGO and advanced
Virgo.
The possible positive detection of the background by

NANOGrav collaboration has somewhat affected this
strategy as a number of authors have proposed to
attribute it to the positive signature of the existence of
PBHs. Among them, Kohri and Terada [76] argue that
NANOGravmay suggest the presence of PBHs around the
solarmass, while Luca, Franciolini, and Riotto [77] suggest
a spectrum of curvature perturbation predicting PBHs
with a wide range of masses which as a whole constitute
all the dark matter. Vaskonen and Veermäe [78] take into
account the effect of critical phenomenon on the mass
function of PBHs and obtained a comprehensive contour
constraining the average mass and the abundance of PBHs
in terms of the amplitude and slope of the gravitational
wave background. See also [79].
All these three works use a formula first obtained by

Carr [80], which is often called Press-Schechter type for-
mula even though it is not based on their theory [81],
to relate the abundance of PBHs and the amplitude of
density perturbations. It is desirable to reanalyze the prob-
lem under the improved mass function recently proposed
[82, 83] including the dependence on the choice of the
window function [84, 85].

4.6 First-order phase transition
Quantum field theory with spontaneous symmetry break-
ing may induce a cosmological phase transition in the
early universe due to the high temperature or high cur-
vature effects. If a first-order phase transition takes place,
it provides several sources of gravitational waves, namely,
collisions of true vacuum bubbles, sound waves, and tur-
bulences [86]. In order to produce gravitational waves at
nano-hertz frequencies, the phase transition must have
taken at a temperature around 10–100MeV. In the stan-
dard model of particle physics, only QCD phase transition
is relevant in this energy scale, but it is already known to
be a cross over without appreciable production of gravi-
tational radiation. Hence, new theoretical input such as a
dark sector inducing a dark phase transition is required
[87–89].

4.7 Turbulence in magnetohydrodynamics
It is known that magnetohydrodynamics (MHD) turbu-
lence in the early universe may induce stochastic grav-
itational wave background. For example, turbulence in
the plasma and magnetic fields produced by a first-order
phase transition at the electroweak scale may generate
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gravitational waves detectable by LISA [90]. In order to
create gravitational waves relevant to NANOGrav obser-
vation in the same manner, we need a first-order QCD
phase transition. Although such a possibility is interest-
ing as wemay relate the observation of gravitational waves
with primordial magnetic fields, some new physics is
required to realize such a phase transition [91].

5 Conclusion
In this article, I have briefly introduced a basic framework
to observe gravitational waves by pulsar timing experi-
ments and possible interpretations of the latest 12.5-year
observation of NANOGrav collaboration which reports
a positive common spectrum signature that may be a
hint of finite stochastic gravitational wave background
in the nano-hertz frequency range. At present, it is not
guaranteed that the observed hint is due to the isotropic
stochastic background of gravitational waves as the char-
acteristic Hellings-Downs curve of angular correlation
[18] has not been confirmed. Furthermore, most of the
preferred amplitude of NANOGrav observation is in ten-
sion with the upper bound which has been obtained by
PPTA, although they turn out to be consistent with each
other allowing the uncertainties in ephemeris modeling.
Hence we should continue careful study both on observa-
tional and theoretical analyses [92].
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