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Abstract
Neural networks functions are supposed to be able to encode the desired solution of an
inverse problemvery efficiently. In this paper,we consider the problemof solving linear
inverse problemswith neural network coders. First we establish some correspondences
of this formulation with existing concepts in regularization theory, in particular with
state space regularization, operator decomposition and iterative regularization meth-
ods. A Gauss–Newton method is suitable for solving encoded linear inverse problems,
which is supported by a local convergence result. The convergence studies, however,
are not complete, and are based on a conjecture on linear independence of activation
functions and its derivatives. Some numerical experiments are presented to support
the theoretical findings.
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1 Introduction

We start the discussion by considering a general nonlinear operator equation

N ( �p ) = y, (1.1)

where N : �P → Y is a nonlinear operator between Hilbert spaces �P andY. Particular
emphasis is placed on the case when the numerical solution of Eq. (1.1) is ill-posed or
ill-conditioned. In this situation regularization methods need to be implemented (see
[15]) to guarantee stable solvability. Essentially two classes of methods exist as the
basis for solving inverse problems numerically, which are variational methods (see
for instance [3, 15, 23, 33, 45, 46]) and iterative methods (see for instance [4, 30]).

Modern coding theory (see for instance [6, 6, 8, 14, 44]) assumes that natural
images can be represented efficiently by a combination of neural network functions.
Therefore the set of natural images is given by the range of a nonlinear mapping �,
which maps neural network coefficients to images. In coding theory very often the
considered operator equation is assumed to be linear and ill-posed. Let us consider
therefore the equation

Fx = y, (1.2)

where F : X → Y is a bounded linear operator with non-closed range mapping
between the Hilbert spaces X and Y such that x and y are elements of X and Y,
respectively. Combining this with the assumption that the solution of Eq. (1.2) is a
natural image, or in other words that it can be represented as a combination of neural
network functions, we get the operator equation

N ( �p ) = F�( �p ) = y, (1.3)

where � : �P → X is the before mentioned nonlinear operator that maps neural
network parameters to image functions. We call

• X the image space and
• Y the data space, in accordance with a terminology, which we generated in [1, 2].
X and Y should be considered spaces of functions or discretizations of such.

• �P is called the parameter space. We make a different notation for �P , because it
represents parametrizations, and is often considered a space of vectors below.

The advantage of this ansatz is that the solution of Eq. (1.2) is sparsely coded.However,
the price to pay is that the reformulated Eq. (1.3) is nonlinear. Operator equations of the
form of Eq. (1.3) are not new: They have been studied in abstract settings for instance
in the context of

• state space regularization [9] and
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• in the context of the degree of ill-posedness [16, 21, 22, 25, 26] as well as of the
degree of nonlinearity [25].

• Another related approach is finite dimensional approximation of regularization in
Banach spaces (see for instance [43]). Particularly, finite dimensional approxima-
tions of regularization methods with neural network functions (in the context of
frames and deep synthesis regularization) have been studied in [39].

In this paperwe aim to link the general regularization of the degree of ill-posedness and
nonlinearity with coding theory. We investigate generalized Gauss–Newton methods
for solving Eq. (1.3); Such methods replace the inverse of standard Newton method
by outer inverses or by approximations of such (see [38]).

The outline of the paper is as follows: In Sect. 2 we review two decomposition
cases as stated in [22] first, one of them is Eq. (1.3). The study of decomposition cases
follows the work on classifying inverse problems and regularization (see [34]). For
operators associated to Eq. (1.3), Newton methods seem to be better suited than gra-
dient descent methods in terms of convergence analysis (see Sect. 3). However, this
does not necessarily apply to practice (see Sect. 4). Section3.4 is devoted to solving
Eq. (1.3), where � is a shallow neural network synthesis operator. In Sect. 4 some
simple numerical experiments are presented, which, in particular, show the advantage
of the Gauss–Newton in terms of a simple analysis in comparison with gradient meth-
ods. On the other hand one practical problem appears, which is related to stability (see
Remark 4.1).

2 Decomposition cases

We start with a definition for nonlinear operator equations possessing forward opera-
tors that are compositions of a linear and a nonlinear operator. Precisely, we distinguish
between a first decomposition case (i), where the linear operator is the inner operator
and the nonlinear is the outer one, and a second decomposition case (ii), where the
nonlinear operator is the inner operator and the linear is the outer operator.

Definition 2.1 (Decomposition cases) Let �P,X,Y be Hilbert-spaces.

(i) An operator N is said to satisfy the first decomposition case in an open, non-
empty neighborhood B( �p †; ρ) ⊆ �P of some point �p † if there exists a linear
operator F : �P → X and a nonlinear operator � : X → Y such that

N ( �p ) = �(F �p ) for �p ∈ B( �p †; ρ).

(ii) N is said to satisfy the second decomposition case in a neighborhoodB( �p †; ρ) ⊆
�P of some point �p † if there exists a linear operator F : X → Y and a nonlinear
operator � : �P → X such that

N ( �p ) = F�( �p ) for �p ∈ B( �p †; ρ). (2.1)

Typically it is assumed that the nonlinear operator � is well-posed.
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Remark 2.2 (First decomposition case) In [22], this decomposition case has been stud-
ied under structural conditions, relating the second derivative of N with the first
derivative. Under such assumptions convergence rates conditions (see [22, Lemma
4.1]) could be proven. The first decomposition case also arises in inverse option pric-
ing problems in math finance (see [20] and [24, Sect.4]), where the ill-posed compact
linear integration operator occurs as inner operator and a well-posed Nemytskii oper-
ator as outer operator.

Remark 2.3 (Second decomposition case)Regularizationmethods for solving operator
equations with operators satisfying the second order decomposition case, see Eq. (2.1),
were probably first analyzed in [9] under the name of state space regularization.
They considered for instance Tikhonov-type regularization methods, consisting in
minimization of

Jλ( �p ) = ‖F�( �p ) − y‖2Y + λ ‖�( �p ) − x̃‖2X , (2.2)

where x̃ is a prior and λ > 0 is a regularization parameter. In [9] they derived estimates
for the second derivative of Jλ( �pλ)(h,h), where h ∈ �P , that is for the curvature
of Jλ. If the curvature can be bounded from below by some term ‖h‖�P

2, then, for
instance, a locally unique minimizer of Jλ can be guaranteed and also domains can be
specified where the functional is convex. Conditions, which guarantee convexity are
called curvature to size conditions. Subsequently, these decomposition cases have been
studied exemplarily in [22]. The theory developed there directly applies to Eq. (1.3).

Instead of Jλ researchers often study direct regularization with respect to �p . For
instance in [14] functionals of the form

Jλ( �p ) = ‖F�( �p ) − y‖2Y + λL( �p ), (2.3)

where L is some functional directly regularizing the parameter space. Typically L is
chosen to penalize for sparsity of parameters. The main difference between Eqs. (2.2)
and (2.3) is that in the prior regularization is performed with respect to the image
space X and in the later with respect to the parameter space �P . Well-posedness of
the functional Jλ in Eq. (2.2) follows if F ◦ � is lower-semicontinuous, which in turn
follows if � is invertible.

In the following we study the solution of decomposable operator equations, such as
Eq. (1.3), with Gauss–Newton methods. Decomposition cases have been used in the
analysis of iterative regularization methods as well (see [30]):

Definition 2.4 (Strong tangential cone condition) Let N : D(N ) ⊂ �P → Y with
D(N ) its domain be a nonlinear operator.

(i) Then N is said to satisfy the strong tangential cone condition, originally intro-
duced in [18], if

N ′( �p2) = R �p2, �p1N
′( �p1) for all �p1, �p2 ∈ D(N ). (2.4)
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where

∥
∥R �p2, �p1 − I

∥
∥ ≤ CT ‖ �p2 − �p1‖ �P . (2.5)

(ii) In [5] the range invariance condition,

N ′( �p2) = N ′( �p1)R �p2, �p1 for all �p1, �p2 ∈ D(N ), (2.6)

together with Eq. (2.5), has been introduced.

Remark 2.5 Equation (2.4) has been used for analyzing gradient descent methods (see
for instance [18, 30]). For the analysis of Newton methods Eq. (2.6) has been used
(see [5, 30]).

The relation to the decomposition cases is as follows:

Lemma 2.6 Let N : D(N ) ⊆ �P → Y with D(N ) = B( �p †; ρ) satisfy the second
decomposition case and assume that � ′( �p ) is invertible for �p ∈ D(N ). Then N
satisfies Eq. (2.6).

Proof If N satisfies the second decomposition case, Eq. (2.1), then N ′( �p ) = F� ′( �p )

for all �p ∈ D(N ). Note, that because F is defined on the whole space X, D(N ) =
D(�). By using the invertability assumption on � we get

N ′( �p2) = F� ′( �p2) = F� ′( �p1)� ′( �p1)−1� ′( �p2)
︸ ︷︷ ︸

=:R �p2, �p1

= N ′( �p1)R �p2, �p1 ,

which gives the assertion. ��
As we have shown, decomposition cases have been extensively studied in the reg-
ularization literature. One conclusion out of these studies is that the range invariant
condition Eq. (2.6) is suitable for analyzing Newton methods [5, 30] and thus in turn
for the coded linear operator Eq. (1.3) because of Lemma 2.6. The standard tool for
analyzing Newton methods is the Newton–Mysovskii condition as discussed below.

3 The Newton–Mysovskii conditions

In this sectionwe put abstract convergence conditions forNewton typemethods in con-
text with decoding.We consider first Newtonmethods for solving the general operator
Eq. (1.1). Decomposition cases of the operator N will be considered afterwards.

3.1 Newtonmethod with invertible linearizations

For Newton methods local convergence is guaranteed under affine covariant condi-
tion. We refer to them as generalized Newton–Mysovskii to attribute to the inventors,
which figured out that structural properties of operators are important for proving
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convergence. For comparison reasons, we first recall a simple Newton method anal-
ysis in finite dimensional spaces if the nonlinear operator has derivatives which are
invertible. The proof of more general results, such as Theorem 3.6 below, is contained
in the paper, and thus for this standard result the proof is omitted. Several variants of
Newton–Mysovskii conditions have been proposed in the literature (see for instance
[12, 13, 38]). Analysis of Newton method was an active research area in the last
century, see for instance [40, 47].

Theorem 3.1 (Finite dimensional Newton method) Let N : D(N ) ⊆ Rn → Rn be
continuously Fréchet-differentiable on a non-empty, open and convex set D(N ). Let
�p † ∈ D(N ) be a solution of Eq. (1.1). Moreover, we assume that

(i) N ′( �p ) is invertible for all �p ∈ D(N ) and that
(ii) the Newton–Mysovskii condition holds: That is, there exist some CN > 0 such

that
∥
∥
∥N ′(�q )−1(N ′( �p + s(�q − �p )) − N ′( �p ))(�q − �p )

∥
∥
∥ �P

leqsCN ‖ �p − �q ‖2�P for all �p , �q ∈ D(N ), s ∈ [0, 1].
(3.1)

Let �p 0 ∈ D(N ) which satisfies

B( �p 0; ρ) ⊆ D(N ) with ρ :=
∥
∥
∥ �p † − �p 0

∥
∥
∥ �P and h := ρCICL

2
< 1. (3.2)

Then the Newton iteration with starting point �p 0,

�p k+1 = �p k − N ′( �p k)−1(N ( �p k) − y) k ∈ N0, (3.3)

satisfies that the iterates
{ �p k : k = 0, 1, 2, . . .

}

belong to B( �p 0; ρ) and converge

quadratically to �p † ∈ B( �p 0, ρ).

Now, we turn to the case that N is a decomposition operator.

3.2 Newton–Mysovskii conditions with composed operator

Now, we study the case of convergence of Gauss–Newton methods where N : �P → Y
with �P = Rn∗ and Y is an infinite dimensional Hilbert space, where F : X → Y
is linear and bounded and � : �P = Rn∗ → X is differentiable. In this case the
Moore–Penrose inverse, or even more general the outer inverse, replaces the inverse
in a classical Newton method (see Eq. (3.3)), because linearizations of N cannot be
invertible as a simple count of dimensions show. We refer now to Gauss–Newton
methods if the linearizations might not be invertible to distinguish between classical
Newton methods also by name.

Before we phrase a convergence result for Gauss–Newton methods we recall and
introduce some definitions:
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Notation 3.2 (Inner, outer andMoore–Penrose inverse) (see [35, 37]) Let L : �P → Y
be a linear and bounded operator mapping between two vector spaces �P and Y. Then

(i) the operator B : Y → �P is called a left inverse to L if

BL = I .

(ii) B : Y → �P is called a right inverse to L if

LB = I .

Left and right inverses are used in different context:

• For a left inverse the nullspace of L has to be trivial, in contrast to B.
• For a right inverse the nullspace of B has to be trivial.

(iii) B : �P → �P is called a inverse to L if B is a right and a left inverse.
(iv) B : �P → Y is an outer inverse to L if

BLB = B. (3.4)

(v) Let �P and Y be Hilbert-spaces, L : �P → Y be a linear bounded operator. We
denote the orthogonal projections P and Q ontoN (L), the nullspace of L (which
is closed), and R(L), the closure of the range of L: That is for all �p ∈ �P and
y ∈ Y we have

P �p = argmin
{‖ �p1 − �p ‖ �P : �p1 ∈ N (L)

}

and

Qy = argmin
{

‖y1 − y‖Y : y1 ∈ R(L)
}

. (3.5)

We therefore have

P : �P → N (L)+̇N (L)⊥

�p �→ P �p + 0
and

Q : Y → R(L)+̇R(L)⊥.

y → Qy + 0

B : D(B) ⊆ Y → �P withD(B) := R(L)+̇R(L)⊥ is called theMoore–Penrose
inverse of L if the following identities hold

LBL = L,

BLB = B,

BL = I − P,

LB = Q|D(B).

(3.6)

In coding theory it is often stated that the range of a neural network operator � forms
a manifold in X, a space, which contains the natural images. This is the basis of the
following definition making use of the Moore–Penrose inverse.



25 Page 8 of 29 O. Scherzer et al.

Definition 3.3 (Lipschitz-differentiable immersion) Let� : D(�) ⊆ �P = Rn∗ → X
where D(�) is open, non-empty, convex and X is a separable (potentially infinite
dimensional) Hilbert-space.

(i) We assume that M := �(D(�)) is a n∗-dimensional submanifold in X:

• Let for all �p = (pi )
n∗
i=1 ∈ D(�) denote with � ′( �p ) the Fréchet-derivative

of �:

� ′( �p ) : �P → X,

�q = (qi )
n∗
i=1 �→ (

∂pi �( �p )
)

i=1,...,n∗ �q .

Here
(

∂pi �( �p )
)

i=1,...,n∗ denotes the vector of functions consisting of all
partial derivatives with respect to �p . In differential geometry notation this
coincides with the tangential mapping T �p �. However, the situation is
slightly different here because X can be infinite dimensional.

• The representation mapping of the derivative

� ′ : D(�) → Xn∗ ,

�p �→ (

∂pi �( �p )
)

i=1,...,n∗ .

has always the same rank n∗ inD(�), meaning that all elements of ∂ �p �( �p )

are linearly independent. This assumption means, in particular, that � is an
immersion and M is a submanifold.

(ii) We define

P�p : X → X �p := span
{

∂pi �( �p ) : i = 1, . . . , n∗
}

,

x �→ P�p x := argmin
{‖x1 − x‖X : x1 ∈ X �p

} (3.7)

as the projection from

X = X �p +̇X �p⊥

onto X �p , which is well-defined by the closedness of the finite dimensional sub-
space X �p .
Next we define the inverse of � ′( �p ) on X �p :

� ′( �p )−1 : span {∂pi �( �p ) : i = 1, . . . , n∗
} → �P,

x =
n∗∑

i=1

xi∂pi �( �p ) �→ (xi )
n∗
i=1

which is extended to X as follows

� ′( �p )† : X = X �p +̇X �p⊥ → �P,

x = (x1, x2) �→ � ′( �p )−1x1
(3.8)
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which are both well-defined because we assume that � is an immersion. Note
that xi , i = 1, . . . , n∗ are not necessarily the coordinates with respect to an
orthonormal system in span

{

∂pi �( �p ) : i = 1, . . . , n∗
}

. We also note that a-
priori we do not know that this is a Moore–Penrose inverse, but since this is
proven below (see Lemma 3.4), we use the notation of a Moore–Penrose inverse
already here.

(iii) Finally, we assume that the operators � ′( �p ) are locally bounded and locally
Lipschitz-continuous in D(�). That is

∥
∥� ′( �p ) − � ′(�q )

∥
∥ �P→X ≤ CL ‖ �p − �q ‖ �P

∥
∥� ′( �p )

∥
∥ �P→X ≤ CI for �p , �q ∈ D(�).

(3.9)

If� satisfies these three propertieswe call it aLipschitz-differentiable immersion.

The following lemma is proved by standard means:

Lemma 3.4 For a Lipschitz-differentiable immersion

• the function � ′( �p )† : X → �P is in fact the Moore–Penrose inverse of � ′( �p ) and
• for every point �p ∈ D(�) ⊆ �P there exists a non-empty closed neighborhood
where � ′( �p )† is uniformly bounded and it is Lipschitz-continuous; That is

∥
∥
∥�

′( �p )† − � ′(�q )†
∥
∥
∥
X→ �P ≤ CL ‖ �p − �q ‖ �P ,

∥
∥
∥�

′( �p )†
∥
∥
∥
X→ �P ≤ CI for �p , �q ∈ D(�).

(3.10)

• Moreover, the operator P�p from Eq. (3.7) is bounded.

Proof • We verify the four conditions Eq. (3.6) with

– L = � ′( �p ) : �P = Rn∗ → X, B = � ′( �p )† : X → �P , with D(B) =
D(� ′( �p )†) = X and

– P : �P → �P the zero-operator and Q = P�p : X → X �p , the projection
operator onto X �p (see Eq. (3.7)).

– First we prove the third identity with P = 0 in Eq. (3.6): This follows from
the fact that for all �q = (qi )

n∗
i=1 ∈ �P we have

� ′( �p )†� ′( �p )�q = � ′( �p )−1

(
n∗∑

i=1

qi∂pi �( �p )

)

= (qi )
n∗
i=1 = �q . (3.11)

– For the forth identity we see that for all x = (x1, x2) ∈ X there exists xi ,
i = 1, . . . , n∗ (because ∂pi �( �p ), i = 1, . . . , n∗ is a basis) such that

x =
n∗∑

i=1

xi∂pi �( �p ) + x2 with x2 ∈ X �p⊥
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and thus

P�p x =
n∗∑

i=1

xi∂pi �( �p )

and therefore

�( �p )†x = (xi )
n∗
i=1 = �x . (3.12)

Consequently, we have

� ′( �p )� ′( �p )†x = � ′( �p )�x = P�p x. (3.13)

– For the second identity we use that for all x ∈ X

� ′( �p )†� ′( �p )� ′( �p )†x =
︸︷︷︸

Eq. (3.12)

� ′( �p )†� ′( �p ) (�x) =
︸︷︷︸

Eq. (3.11)

�x =
︸︷︷︸

Eq. (3.12)

�( �p )†x.

(3.14)

– The first identity is proven analogously.

Thus the Moore–Penrose inverse exists.
• For the proof of the boundedness we argue as follows: First note that

∥
∥
∥�

′( �p )†
∥
∥
∥
X→ �P = sup

{x∈X:‖x‖X=1}

∥
∥
∥�

′( �p )†x
∥
∥
∥ �P = sup

{x1∈X �p :‖x1‖=1}
∥
∥
∥�

′( �p )−1x1
∥
∥
∥ �P

= sup
{x1∈X �p :‖x1‖=1}

‖�x1‖ �P ,

where we used the representation

x1 =
n∗∑

i=1

xiei ∈ X �p with E

:= (e1 = ∂p1�( �p ), . . . , en∗ = ∂pn∗ �( �p )). (3.15)

It remains to derive a uniform bound and the continuity for ‖�x1‖ �P with respect to
variations of �p . For this purpose we use the Gram–Schmidt inductive procedure
to obtain the QR-decomposition of the function valued matrix E.

– Because of the assumption Eq. (3.9), each vector e j , j = 1, . . . , n∗, depends
continuously of �p .

– The Gram–Schmidt procedure performs only additions, multiplications, divi-
sion and inner products calculations of vectors of functions, which are all
locally Lipschitz-continuous on the parameter �p as long as the resulting out-
put vectors of each Gram–Schmidt iteration are linearly independent. Thus by
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chain-rule the Gram–Schmidt algorithm is Lipschitz-continuous with respect
to �p as long as the vectors e j , j = 1, . . . , n∗ are linearly dependent. Or in
other word, Gram–Schmidt produces an orthogonal family ê j , j = 1, . . . , n∗,
which are Lipschitz-continuously dependent on �p .

– Calculating the QR-decomposition of E we get

x1 = �xTE = �xT QR where R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈

ê1, e1
〉

Y · · · · · · · · · 〈

ê1, en
〉

Y
0

〈

ê2, e2
〉

Y · · · · · · 〈

ê2, en
〉

Y
...

. . .
. . .

...
. . .

. . .

0 · · · · · · 0
〈

ên, en
〉

Y

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

or in other word

x1R−1QT = �xT .

The QR-algorithm is also Lipschitz-continuous with respect to perturbations
in the entries of the matrix to be decomposed, that means with respect to �p ,
as long as the vectors do not get linearly dependent during the decomposi-
tion algorithm, which cannot happen because of our assumption on the linear
dependence of our vectors ei , i = 1, . . . , n∗. Therefore Q and R are Lipschitz-
continuous as well, and since R is a triangular matrix with diagonal entries
different from 0, also R−1 is Lipschitz-continuous with respect to �p . This
guarantees a local uniformly bound and local Lipschitz-continuity for �.

• The boundedness of P�p is obvious because it is an orthogonal projector.
��

In the following we study a Gauss–Newton method for solving Eq. (1.3), where � :
D(�) ⊆ Rn∗ → X is a Lipschitz-continuous immersion (see Definition 3.3), F :
X → Y is bounded and N = F ◦ �.

Lemma 3.5 Let F : X → Y be linear, bounded, with trivial nullspace and dense
range. Moreover, let � : D(�) ⊆ Rn∗ → X be a Lipschitz-differentiable immersion;
see Definition 3.3, and let N = F ◦ �.

Note that by the definition of N ,D(N ) = D(�), and therefore for every �p ∈ D(N )

the derivative of the operator N at a point �p has a Moore–Penrose inverse N ′( �p )†,
which satisfies:

• Decomposition property of the Moore–Penrose inverse:

N ′( �p )†z = � ′( �p )†F−1z for all �p ∈ D(N ), z ∈ R(F) ⊆ Y. (3.16)

In particular this means that

N ′( �p )†N ′( �p ) = I on Rn∗ and N ′( �p )N ′( �p )† = Q|R(FP�p ), (3.17)
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where I denotes the identity operator onRn∗ and Q : Y → R(FP�p )+̇R(FP�p )⊥
is the orthogonal projection operator onto R(FP�p ). This means that P ≡ 0 in
Eq. (3.6).

• Generalized Newton–Mysovskii condition:

∥
∥
∥N ′( �p )†(N ′(�q + s( �p − �q ) − N ′(�q ))( �p − �q )

∥
∥
∥ �P ≤ sCICL ‖ �p − �q ‖2�P

�p , �q ∈ D(N ), s ∈ [0, 1].
(3.18)

We recall that the Lipschitz-constants CI and CL are defined in Eq. (3.9).

Proof First of all, we note that by the chain-rule

N ′( �p ) = F� ′( �p ) for all �p ∈ D(�) = D(N ).

To prove Eq. (3.16) we have to verify Eq. (3.6) with

L := N ′( �p ) = Fψ ′( �p ) : �P → Y and B := � ′( �p )†F−1 : R(F) ⊆ Y → �P .

Note that sincewe assume that F has dense rangewe do not need to define and consider
B onR(F)+̇R(F)⊥

︸ ︷︷ ︸

={0}
.

We state that with the notation of Eq. (3.6) we have for fixed �p :

D(B)=D(� ′( �p )†F−1) = R(F) and R(L)={F� ′( �p )�q : �q ∈ Rn∗}=R(FP�p ).

Since Q is the orthogonal projector ontoR(FP�p )we see that for z = Fx = FP�p x+
F(I − P�p )x we have

Qz = Q(FP�p x + F(I − P�p )(x)) = FP�p x. (3.19)

Applying Lemma 3.4 and the invertability of F on the range of F shows that

LBL = F� ′( �p )� ′( �p )†F−1F� ′( �p )

= F� ′( �p )� ′( �p )†� ′( �p ) =
︸︷︷︸

Eq. (3.11)

F� ′( �p ) = L,

BLB = � ′( �p )†F−1F� ′( �p )� ′( �p )†F−1

= � ′( �p )†� ′( �p )� ′( �p )†F−1 =
︸︷︷︸

Eq. (3.14)

� ′( �p )†F−1 = B,

BL = � ′( �p )†F−1F� ′( �p ) =
︸︷︷︸

Eq. (3.11)

I − P = I on Rn∗ .
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For the forth identity we take some z ∈ R(F). Therefore, there exists some x ∈ X
such that Fx = z and thus

LBz = F� ′( �p )� ′( �p )†F−1z = F� ′( �p )� ′( �p )†x =
︸︷︷︸

Eq. (3.13)

FP�p x =
︸︷︷︸

Eq. (3.19)

Qz.

Thus Eq. (3.6) holds and we know that N ′( �p )† from Eq. (3.16) is the Moore–Penrose
of N ′( �p ). The last two identities in fact show Eq. (3.17).

From Eq. (3.9) it follows that

∥
∥
∥N ′( �p )†(N ′(�q + s( �p − �q ) − N ′(�q ))( �p − �q )

∥
∥
∥ �P

=
∥
∥
∥�

′( �p )†F−1(F� ′(�q + s( �p − �q ) − F� ′(�q ))( �p − �q )

∥
∥
∥ �P

=
∥
∥
∥�

′( �p )†(� ′(�q + s( �p − �q ) − � ′(�q ))( �p − �q )

∥
∥
∥ �P

≤ CICLs ‖ �p − �q ‖2�P for all �p , �q ∈ D(�) = D(N ),

thus Eq. (3.18). ��
We have now all ingredients to prove a local convergence rates result for a Gauss–
Newton method, where the operator N is the composition of a linear bounded operator
and a Lipschitz-differentiable immersions:

Theorem 3.6 Let F : X → Y be linear, bounded, with trivial nullspace and dense
range. Moreover, let � : D(�) ⊆ �P → X be a Lipschitz-differentiable immersion
with D(�) open, non-empty, and convex. Moreover, N = F ◦ � : D(�) → Y. We
assume that there exist �p † ∈ D(�) that satisfies

N ( �p †) = y. (3.20)

Moreover, we assume that there exists �p 0 ∈ D(�), which satisfies Eq. (3.2). Then, the
iterates of the Gauss–Newton iteration,

�p k+1 = �p k − N ′( �p k)†(N ( �p k) − y) k ∈ N0 (3.21)

are well-defined elements in B( �p 0, ρ) and converge quadratically to �p †.

Proof First of all note, that D(�) = D(N ) since F is defined all over X.
Let ρ = ∥

∥ �p † − �p 0
∥
∥ �P : We prove by induction that �p k ∈ B( �p †; ρ) for all k ∈ N0.

• For k = 0 the assertion is satisfied by assumption Eq. (3.2).
• Let �p k ∈ B( �p †; ρ). Using the first condition of Eq. (3.6), which aMoore–Penrose
inverse satisfies, we see that

N ′( �p k)N ′( �p k)†N ′( �p k)( �p k+1 − �p †) = N ′( �p k)( �p k+1 − �p †).
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The definition of Gauss–Newton method, Eq. (3.21), and Eq. (3.20) then imply
that

N ′( �p k)( �p k+1− �p †)=N ′( �p k)N ′( �p k)†(N ( �p †)−N ( �p k)−N ′( �p k)( �p † − �p k)),

and consequently, using the third identity of Eq. (3.6) (note that under the assump-
tions of this theorem P = 0, see the proof prior to Eq. (3.11)), the second identity
of Eq. (3.6) and that F is injective, we get

�p k+1 − �p † = N ′( �p k)†N ′( �p k)( �p k+1 − �p †)

= N ′( �p k)†(N ( �p †) − N ( �p k) − N ′( �p k)( �p † − �p k))

= � ′( �p k)†(�( �p †) − �( �p k) − � ′( �p k)( �p † − �p k)).

From the Newton–Mysovskii condition Eqs. (3.18) and (3.2) it then follows that
∥
∥
∥ �p k+1 − �p †

∥
∥
∥ �P ≤ CICL

2

∥
∥
∥ �p k − �p †

∥
∥
∥

2

�P ≤ CICLρ

2

∥
∥
∥ �p k − �p †

∥
∥
∥ �P <

∥
∥
∥ �p k − �p †

∥
∥
∥ �P

or
∥
∥
∥ �p k+1 − �p †

∥
∥
∥ �P =

∥
∥
∥ �p k − �p †

∥
∥
∥ �P = 0.

(3.22)

This, in particular shows that �p k+1 ∈ B( �p †; ρ), thus the well-definedness of the
Gauss–Newton iterations in the closed ball.

• Using Eq. (3.22) we then get, since h = CICLρ/2 < 1, that

∥
∥
∥ �p k+1 − �p †

∥
∥
∥ �P ≤ hk+1

∥
∥
∥ �p 0 − �p †

∥
∥
∥ �P ≤ hk+1ρ,

which converges to 0 for k → ∞.
• Convergence and the first inequality of Eq. (3.22) imply quadratic convergence.

��
Remark 3.7 Based on the assumption of an immersion we have shown in Lemma
3.5 that �( �p )†F−1 is the Moore–Penrose inverse of N = F�( �p ). In order to
prove (quadratic) convergence of Gauss–Newton methods one only requires an outer
inverse (see Notation 3.2). Following [38] (see also [19]) the analysis of Gauss–
Newton method could be based on outer inverses, which is more general than for the
Moore–Penrose inverse (compare Eqs. (3.4) and (3.6)). However, it is nice to actually
see that N ′( �p )† is a Moore–Penrose inverse, which is the novelty compared to the
analysis of [38]. For excellent expositions on Kantorovich and Mysovskii theory see
[31, 41, 47]—here we replace the Newton–Mysovskii conditions by properties of an
immersion. For aspects related to Newton methods for singular points see [11, 17].
For applications of generalized inverses in nonlinear analysis see [35, 36].

3.3 Neural networks

We want to apply the decomposition theory to Gauss–Newton methods for solving
Eq. (1.3), where � is a shallow neural network operator.
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Definition 3.8 (Shallow neural network operator) Let N1 ∈ N be fixed. We consider
the operator

� : �P := RN1 × Rn×N1 × RN1 → C1([0, 1]n) ⊆ X := L2([0, 1]n),

(�α,w, �θ) �→
⎛

⎝�x →
N1∑

j=1

α jσ
(

wT
j �x + θ j

)

⎞

⎠

where α j , θ j ∈ R and �x,w j ∈ Rn .

(3.23)

Here σ : R → R is called activation function (see Example 3.9 below).
Note, that with our previous notation, for instance in Definition 3.3, we have n∗ =

(n + 2) ∗ N1.

We summarize the notation, because it is quite heavy:

(i) �· denotes a vector in Rn or RN1 ,
(ii) w denotes a matrix: The only exception is Definition 3.10, where it is a general

tensor.w j denotes a vector, aside fromDefinition 3.10, where it is again a tensor.

Example 3.9 (Examples of activation functions) documented in the literature:

• the sigmoid function, defined by

σ(t) = 1

1 + e− 1
ε
t

for all t ∈ R. (3.24)

Note, we omit the ε dependence for notational convenience.
• The hyperbolic tangent

t → tanh(t) = e2t − 1

e2t + 1
. (3.25)

• The ReLU activation function,

σ(t) = max {0, t} for all t ∈ R. (3.26)

• The step function, which is the pointwise limit of the sigmoid function,with respect
to ε → 0,

σ(t) =
⎧

⎨

⎩

0 for t < 0,
1
2 for t = 0,
1 for t > 0.

t ∈ R. (3.27)

In this paper ReLU and step activation functions are not used.
We only consider shallow neural networks in contrast to deep neural networks,

which consist of several layers of shallow neural networks (see for instance [27]):
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Fig. 1 Three different activation functions: Sigmoid, tanh and ReLU. O-th derivative with green ∗, first
derivative with blue−◦ andwithmagenta× is the derivativemultiplied by x , 2nd derivative with continuous
black line. The ReLU function is scaled by a factor 1/10 and the derivative is plotted in original form,
derivative times x is again scaled by 1/10 for visualization purposes; 2nd derivative is of course omitted

Definition 3.10 (Deep neural networks) Let

�Pl := RNl × Rn×Nl × RNl for l = 1, . . . , L and �P :=
L
∏

l=1

�Pl .

Then a deep neural network consisting of L layers is written as

� : �P → L2([0, 1]n),

(�αl ,wl , �θl )Ll=1 �→
⎛

⎝�x →
NL∑

jL=1

α jL ,LσεL ,L

⎛

⎝p jL ,L

⎛

⎝

NL−1∑

jL−1=1

· · ·
⎛

⎝

N1∑

j1=1

α j1,1σε1,1
(

p j1,1(�x)
)

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠ ,

(3.28)

where

p j,l(�x) = wT
j,l �x + θ j,l with α j,l , θ j,l ∈ R and �x,w j,l ∈ Rn for all l = 1, . . . , L.

Note that the values εk , k = 1, . . . , L can be chosen differently for activation
functions at different levels of the deep network (cf. Eq. (3.24)).

The success of neural network is due to the universal approximation properties, proven
for the first time in [10, 28]. The universal approximation result states that shallow neu-
ral networks are universal, that is, that each continuous function can be approximated
arbitrarily well by a neural network function. We review this result now.

Theorem 3.11 ([27]) In dependence of the smoothness of the activation function σ

there exist two classes of results.

• Theorem 2 from [27]: Let σ : R → R+ be a continuous, bounded and non-
constant function. Then, for every function g ∈ C(Rn) and every ν > 0, there
exists a function

�x → G(�x) =
N1∑

j=1

α jσ(wT
j �x + θ j ) with N ∈ N, α j , θ j ∈ R,w j ∈ Rn,

(3.29)
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satisfying

|G(�x) − g(�x)| < ν uniformly for all compact subsets K ⊆ Rn .

• Theorem 1 from [27]: Let σ : R → R+ be unbounded and non-constant. Then
for every measure μ on Rn and every constant ν > 0 and p ≥ 1 there exists a
function G of the form Eq. (3.29) that satisfies

∫

Rn
|G(�x) − g(�x)|pdμ(�x) < ν.

The first result applies for instance to the sigmoid and hyperbolic tangent function (see
Eqs. (3.24) and (3.25)). The second result applies to theReLU function (seeEq. (3.26)).
In particular all approximation properties also hold on the compact set [0, 1]n , which
we are considering.

3.4 Newton–Mysovskii condition with shallow neural networks coders

In the following we verify Newton–Mysovskii conditions for � being the encoder
of Eq. (3.23). First we calculate the first and second derivatives of � with respect to
�α,w and �θ . The computations can be performed for deep neural network encoders
as defined in Eq. (3.28) in principle analogously, but are technically and notationally
more complicated. To make the notation consistent we define

�p := (�α,w, �θ) ∈ R
N1 × R

n×N1 × R
N1 = R

n∗ .

Lemma 3.12 Let σ : R → R be a two times differentiable function with uniformly
bounded function values and first, second order derivatives, such as the sigmoid,
hyperbolic tangent functions (see Fig.1).1 Then, the derivatives of � with respect to
the coefficients �p are given by the following formulas:

• Derivative with respect to αs , s = 1, . . . , N1:

∂�

∂αs
[ �p ](�x) = σ

(
n
∑

i=1

wi
s xi + θs

)

for s = 1, . . . , N1. (3.30)

• Derivative with respect to wt
s where s = 1, . . . , N1, t = 1, . . . , n:

∂�

∂wt
s
[ �p ](�x) =

N1∑

j=1

α jσ
′
⎛

⎝

n
∑

i=1

wi
j xi + θ j

⎞

⎠ δs= j xt = αsσ
′
⎛

⎝

n
∑

i=1

wi
s xi + θs

⎞

⎠ xt .

(3.31)

1 This assumption is actually too restrictive, and only used to see that � ∈ L2([0, 1]n).
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• Derivative with respect to θs where s = 1, . . . , N1:

∂�

∂θs
[ �p ](�x) =

N1∑

j=1

α jσ
′
(

n
∑

i=1

wi
j xi + θ j

)

δs= j = αsσ
′
(

n
∑

i=1

wi
s xi + θs

)

.

(3.32)

Note, that all the derivatives above are functions in X = L2([0, 1]n). In particular,
maybe in a more intuitive way, we have

D�[ �p ](�x)�h =
(

∂�
∂ �α [ �p ](�x) ∂�

∂w [ �p ](�x) ∂�

∂ �θ [ �p ](�x)
)T �h for all �h =

⎛

⎝

�h �α
hw
�h �θ

⎞

⎠

∈ Rn∗ and �x ∈ Rn . (3.33)

Moreover, let s1, s2 = 1, . . . , N1, t1, t2 = 1, . . . , n, then we have in a formal way:

∂2�

∂αs1∂αs2
(�x) = 0,

∂2�

∂αs1∂w
t1
s2

(�x) = σ ′
(

n
∑

i=1

wi
s1xi + θs1

)

xt1δs1=s2 ,

∂2�

∂αs1∂θs2
(�x) = σ ′

(
n
∑

i=1

wi
s1xi + θs1

)

δs1=s2 ,

∂2�

∂w
t1
s1∂w

t2
s2

(�x) = αs1σ
′′
(

n
∑

i=1

wi
s1xi + θs1

)

xt1xt2δs1=s2 ,

∂2�

∂w
t1
s1∂θs2

(�x) = αs1σ
′′
(

n
∑

i=1

wi
s1xi + θs1

)

xt1δs1=s2 ,

∂2�

∂θs1∂θs2
(�x) = αs1σ

′′
(

n
∑

i=1

wi
s1xi + θs1

)

δs1=s2 ,

(3.34)

where δa=b = 1 if a = b and 0 else, that is the Kronecker-delta.

The notation of directional derivatives with respect to parameters might be confusing.
Note, that for instance ∂�

∂θs
[ �p ](�x) denotes a directional derivative of the functional

� with respect to the variable θs and this derivative is a function, which depends on
�x ∈ Rn .
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Remark 3.13 • In particular Eq. (3.34) shows that

(�h �α hw �h �θ
)

D2�[ �p ](�x)
⎛

⎝

�h �α
hw
�h �θ

⎞

⎠ is continuously dependent on �p for fixed �x .

(3.35)

• We emphasize that under the assumptions of Lemma 3.12 the linear space (for
fixed �p )

R(D�[ �p ]) =
{

D�[ �p ]�h : �h = (�h �α,hw, �h �θ ) ∈ R(n+2)∗N1
}

⊆ L2([0, 1]n).

• In order to prove convergence of the Gauss–Newton method, Eq. (3.21), by apply-
ing Theorem 3.1, we have to prove that � is a Lipschitz-continuous immersion.
Below we lack proving one important property so far, namely, that

∂k�[ �p ], k = 1, . . . , n∗ = (n + 2) ∗ N1 (3.36)

are linearly independent functions. In this paper, this will remain open as a con-
jecture, and the following statements are valid modulo this conjecture.

In the following we survey some results on linear independence with respect to the
coefficients �α,w, �θ of the functions �x → σ

(∑n
i=1 wi

s xi + θs
)

, which match the func-
tions �x → ∂�

∂αs
[ �p ](�x), that is with respect to the first N1 variables of the neural network

operator.

3.5 Linear independence of activation functions and its derivatives

The universal approximation results from for instance [10, 27, 28] do not allow to
conclude that neural networks function as in Eq. (3.23) are linearly independent. Linear
independence is a non-trivial researchquestion:We recall a result from [32] fromwhich
linear independence of a shallow neural network operator, as defined in Eq. (3.23), can
be deduced for a variety of activator functions. Similar results on linear independence
of shallow network functions based on sigmoid activation functions have been stated
in [29, 48], but the discussion in [32] raises questions on the completeness of the
proofs. In [32] it is stated that all activation functions from the Pytorch library [42]
are linearly independent with respect to almost all parameters w and θ .

Theorem 3.14 ([32]) For all activation functions HardShrink, HardSigmoid, Hard-
Tanh, HardSwish, LeakyReLU, PReLU, ReLU, ReLU6, RReLU, SoftShrink, Thresh-
old, LogSigmoid, Sigmoid, SoftPlus, Tanh, and TanShrink and the PyTorch functions
CELU, ELU, SELU the shallow neural network functions Eq. (3.23) formed by ran-
domly generated vectors (w, �θ) are linearly independent.

Remark 3.15 (i) Theorem 3.14 states that the functions ∂�
∂αs

(taking into account

Eq. (3.30)) are linearly independent for almost all parameters (w, �θ) ∈ Rn×N1 ×
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RN1 . In other words, the first block of the matrix is D� in Eq. (3.33) consists
of functions, which are linearly independent for almost all parameters (w, �θ).
For our results to hold we need on top that the functions ∂�

∂wt
s
and ∂�

∂θs
from

the second and third block (see Eq. (3.34)) are linearly independent within the
blocks, respectively, and also across the blocks. So far this has not been proven
but can be conjectured already from Fig. 1.

(ii) For the sigmoid function we have obvious symmetries because

σ ′ (wT
j �x + θ j

)

= σ ′ (−wT
j �x − θ j

)

for every w j ∈ Rn, �θ ∈ RN1 , j ∈ {1, . . . , N1} , (3.37)

or in other words for the function � from Eq. (3.23) we have according to
Eq. (3.32) that

∂�

∂θs
[�α,w, �θ ](�x) = αsσ

′(wT
j �x + θ j ) = αsσ

′(−wT
j �x − θ j ) = ∂�

∂θs
[�α, −w, −�θ ](�x),

(3.38)

or again in other words ∂�
∂θs

[�α,w,−�θ ] and ∂�
∂θs

[�α,−w,−�θ ] are linearly depen-
dent.

Conjecture 3.16 We define by D(�) a maximal set of vectors (�α,w, �θ) such that the
n∗ = (n + 2) ∗ N1 functions in �x

�x → ∂�

∂αs
[�α,w, �θ ](�x), �x → ∂�

∂wt
s
[�α,w, �θ ](�x),

�x → ∂�

∂θs
[�α,w, �θ ](�x), s = 1, . . . , N1, t = 1, . . . , n,

are linearly independent. We assume thatD(�) is open and dense inX ∈ L2([0, 1])2.
The later is guaranteed by Theorem 3.11. Recall the discussion above: The differen-
tiation variables and the arguments coincide notationally, but are different objects.

Remark 3.17 • It can be conjectured that for every element from D(�) only one
element in Rn∗ exists, which satisfies obvious symmetries such as formulated in
Eq. (3.38). These “mirrored” elements are a set ofmeasure zero in �P .We conjecture
that this corresponds to the set of measure zero as stated in [32].

• Equation (3.34) requires that all components of the vector �α are non-zero. This
means in particular that for “sparse solutions”, with less that n∗ = (n + 2) ∗ N1
coefficients, convergence is not guaranteed, because of a locally degenerating
submanifold. We consider the manifold given by the function

F : R2 → R2.
(

x
y

)

�→
(

xy
x2 + y2

)
(3.39)
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Fig. 2 The function F from
Eq. (3.39). We have plotted
F(x, y) via its polar coordinates,
I.e. r = |F(x, y)| and
θ = tan−1

(
xy

x2+y2

)

. The colors

correspond to identical angles θ

(color figure online)

Then

∇F(x, y) =
(

y x
2x 2y

)

.

We have det∇F(x, y) = 2(y2 − x2), which vanishes along the diagonals in
(x, y)-space. That is of the diagonals the function is locally a submanifold (see
Fig. 2):

3.6 Local convergence of Gauss–Newtonmethod with coding networks

In the following we prove a local convergence result for a Gauss–Newton method, for
solving operator equations Eq. (1.3) where F is complemented by a shallow neural
network coder �. In order to apply Theorem 3.1 we have to verify that the shallow
neural network operator (see Eq. (3.23)) is a Lipschitz-differentiable immersion.

Lemma 3.18 Let F : X = L2([0, 1]n) → Y be linear, bounded, with trivial nullspace
and closed range, and let σ be strictly monotonic (like sigmoid or hyperbolic tangent)
and satisfy the assumptions of Lemma 3.12. Moreover, assume that Conjecture 3.16
holds. Then

(i) For every element �p = (�α,w, �θ) ∈ Rn∗ in the maximal setD(�) (see Conjecture
3.16), R(D�[ �p ]) is a linear subspace of the space X of dimension n∗ = (n +
2) ∗ N1.

(ii) There exists an open neighborhood U ⊆ R(n+2)∗N1 of vectors (�α,w, �θ) such that
� is a Lipschitz-differentiable immersion in U .

Proof • It is clear that for each fixed �p , D�[ �p ] ∈ L2([0, 1]n) because of the
differentiability assumptions of σ , see Eq. (3.35). Conjecture 3.16 implies that
R(D�[ �p ]) is a linear subspaces ofX of dimension (n+2)∗N1 (note the elements
are functions).
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• D2�[ �p ] : R(n+2)∗N1 → L2([0, 1]n) is continuous (see Eq. (3.35)) since we
assume that the activation function σ is twice differentiable. Now we consider a
non-empty open neighborhood U of a vector �p , with a compact closure.

– Then, from the continuity of D2� with respect to �p , it follows that D� is a
Frèchet-differentiable with Lipschitz-continuous derivative on U . In particular
this means that item (i) in Definition 3.3 holds. Moreover, Eq. (3.9) holds for
� ′. That is, there exists constants CL and CI such that

∥
∥� ′( �p ) − � ′(�q )

∥
∥ �P→Y ≤ CL ‖ �p − �q ‖ �P and

∥
∥� ′( �p )

∥
∥ �P→Y ≤ CI for �p , �q ∈ D(�). (3.40)

��
Note that � ′(p)† as defined in Eq. (3.8) is also uniformly bounded and Lipschitz-

continuous as a consequence of Lemma 3.4.

Theorem 3.19 (Local convergence of Gauss–Newton method) Let F : X =
L2([0, 1]n) → Y be a linear, bounded operator with trivial nullspace and dense
range and let N = F ◦ �, where � : D(�) ⊆ R(n+2)∗N1 → X is a shallow neural
network operator generated by an activation function σ which satisfies the assump-
tions of Lemma 3.18 and Conjecture 3.16. Let �p 0 ∈ D(�) be the starting point of
the Gauss–Newton iteration Eq. (3.21) and let �p † ∈ D(�) be a solution of Eq. (3.20),
which satisfy Eq. (3.2). Then the Gauss–Newton iterations are locally, that is if �p 0 is
sufficiently close to �p †, and quadratically converging.

Proof The proof is an immediate application of Lemma 3.18 to Theorem 3.6. ��
Remark 3.20 We have shown that a nonlinear operator equation, where the operator
is a composition of a linear compact operator and a shallow neural network operator,
can be solved with a Gauss–Newton method with guaranteed local convergence in the
parameter space.

4 Simple numerical experiments

In this section we present very simple, but hopefully illustrating numerical examples,
where N = F ◦ � with � is a shallow neural network coder as in Eq. (3.23) with the
sigmoid function from Eq. (3.24) with ε = 1,

x ∈ R → σ(x) = 1

1 − e−x
.

We assumed in the analysis that the data y is attainable through the operator N (see
Theorem 3.19) which means that we can write y = F(�†) with �† = �( �p †), or in
other words y = N ( �p †), such that Eq. (3.21) rewrites to

�p k+1 = �p k − � ′( �p k)†(�( �p k) − �†) k ∈ N0; (4.1)
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Note that the operator F is annihilated because we assume it is injective. Therefore the
Gauss–Newton finds the coefficients �p † of the given neural network function �†. In
practice one would not work like this because the ill-posedness of inverting F hinders
to calculate �† without regularization. Alternative strategies can be found in [30].

In the iterative reconstruction we represent a neural network function �( �p ) :
[0, 1]2 → R by a matrix of dimension 10 × 10. The vector �p represents a shal-
low network with N1 = 2 ansatz functions, thus has dimension 8. I.e.

�p = ((α1,w1, θ1); (α2,w2, θ2)) with wi ∈ R2.

4.1 An example with the Gauss–Newtonmethod

The first example concerns reconstructing the reconstruction of the coefficients of the
2D neural network function (see Eq. (3.29)) with

�p † = ((1.0, 1.0, 0.1, 0.1); (0.3, 0.1, 1.0, 0.8)).

That is,

�†(�x) = �((1.0, 1.0, 0.1, 0.1); (0.3, 0.1, 1.0, 0.8))(�x)

= 1.0 σ((1.0, 0.1)T �x + 0.1) + 0.3 σ((0.1, 1.0)T �x + 0.8),
(4.2)

which is represented by the left image in the middle subimage of Fig. 3. The vector �p †

is therefore the ground truth and it is represented in the left image in the left subimage
of Fig. 3.

The initialization vector �p 0 = ((0.8, 0.9, 0.05, 0.1), (0.7, 0.3, 0.5, 0.5) is plotted
on the right hand side of the left subimage. The according 2D neural network functions
are represented as the right images of the middle subimage.

The iterations of the Gauss–Newton iteration where stopped at ks + 1 when the
residual

∥
∥�( �p ks+1) − �†

∥
∥ < δ with δ = 0.001 (this is actually the stopping criterion

in all examples). Plotted are the results for ks , that is, �p ks and �( �p ks ), which are
represented in the middle of the two subimages on the left and in the middle of the
row.

In this example the Gauss–Newton method terminates after 6 iterations. The right
plot shows the residual decay

∥
∥�( �p k) − �†

∥
∥ and the rate

log

(∥
∥�( �p k+1) − �†

∥
∥

∥
∥�( �p k) − �†

∥
∥2

)

, (4.3)

which, if bounded by a constant, showing at least quadratic convergence (probably
very much faster).
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Fig. 3 Gauss–Newton method: Left: The neural network coefficients—ground truth ( �p †), reconstruction
( �p ks ) and initial guess ( �p 0) in the subimage. Middle: According neural network functions �†, �ks , �0.
Right: residual error and rate over the number of iterations

4.2 A degenerated example with the Gauss–Newtonmethod

The second example concerns the reconstruction of the coefficients of the 2D neural
network function (see Eq. (3.29)) with

�p † = ((1.0, 1.0, 0.1, 0.1); (0, 0.1, 1.0, 0.8)).

That is,

�†(�x) = �((1.0, 1.0, 0.1, 0.1); (0, 0.1, 1.0, 0.8))(�x) = 1.0σ((1.0, 0.1)T �x + 0.1),

(4.4)

which is represented by the left image in the middle subimage of Fig. 4. Note, because
α2 = 0, the rest of the coefficients, w2 and θ2 are irrelevant for representing �. The
vector �p † is represented in the left image in the left subimage of Fig. 4. The result
of the Gauss–Newton methods are represented in the middle of the two subimage in
the left and the middle. The Gauss–Newton method terminates after 4 iterations (left
plot in the right subimage). The right plot shows the rate from Eq. (4.3), which looks
also faster than quadratic. However, note that the coefficients are not recovered, which
is clear, because for α2 = 0, the remaining coefficients w2 and θ2 can be selected
arbitrary. We see that the first 5 coefficients can be reconstructed accurately, which are
the coefficients (α1,w1, θ1) and α2 = 0. This shows the necessity in Theorem 3.19
of the assumptions of Lemma 3.18, which in particular require that the coefficients of
the �p † do not vanish (see Remark 3.17). Clearly, if we have non-unique solutions, we
should consider a set-valued convergence, which we have not in our analysis so far.

4.3 An examples with the Landweber method

We consider the same problem as in Sect. 4.1 but use for the numerical solution the
Landweber iteration

�p k+1 = �p k − λ� ′( �p k)T (�( �p k) − �†) k ∈ N0. (4.5)
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Fig. 4 Gauss–Newton method: Left: The neural network coefficients—ground truth, reconstruction, initial
guess from left to right in the subimage. Middle: Neural network functions. Right: error and rate. What
should be noted here is that the fifth coefficient is α2 = 0 in the ground truth and so as a consequence 6th
to 8th coefficient are not uniquely determined. So it is a correct solution for �p †

Fig. 5 Landweber method: Left: The neural network coefficients—ground truth, reconstruction, initial
guess from left to right in the subimage. Middle: Neural network functions. Right: error and rate

The only formal difference is that instead of theMoore–Penrose inverse the transpose is
used in the iteration. Moreover, a parameter λ had to be selected: A choice λ = 1 leads
to divergence and a choice λ = 0.02 was sufficiently small to provide convergence. It
was found by trial and error, but an appropriate choice is consistent with the literature
(see for instance [30]). All other parameters where chosen as for the Gauss–Newton
method. To satisfy the stopping criterion the Landweber iteration required about 500
iterations (Fig. 5).

Here we plotted the rate

log

(∥
∥�( �p k+1) − �†

∥
∥

∥
∥�( �p k) − �†

∥
∥

)

, (4.6)

which indicates atmost linear convergence (see Fig. 5). Here an interesting observation
is that the Landweber iteration is not converging to the same solution as the Gauss–
Newton method in terms of parameters ( �p ), although the neural networks functions
(�) match quite well. Note however that Landweber iteration select solutions with
negative coefficients, which might be due to the non-uniqueness of the neural network
representation (see Remark 3.15).

We note that convergence of iterative methods, and in particular gradient descent
methods, for large scale machine learning problems can be found for instance in [7].
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Fig. 6 Left: The neural network coefficients—ground truth, reconstruction, initial guess from left to right
in the subimage. Middle: Neural network functions. Right: error and rate

4.4 A degenerated example with the Landweber method

The same observations as for the non-degenerated example Sect. 4.2 apply also here
for the Landweber iteration (see Fig. 6).

Remark 4.1 Note that the Landweber iteration for solving Eq. (1.3) with a composed
operator N = F ◦ � reads as follows:

�p k+1 = �p k − λ� ′( �p k)T F∗(F�( �p k) − y) k ∈ N0. (4.7)

Here F∗ denotes the adjoint of F . In fact a pre-processing consisting of solving
y = �( �p †) is not necessary. On the other hand a convergence analysis requires
verification of a weak-tangential cone condition (see [18], which is not so adequate to
Eq. (1.3) (see [30]).

Conclusion

We have shown that Gauss–Newton methods are efficient algorithms for solving
linear inverse problems, where the solution can be encoded with a neural network.
The convergence studies, however, are not complete, and are based on a conjecture on
linear independence of activation functions and its derivatives.
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8. Braunsmann, J., Rajković, M., Rumpf, M., Wirth, B.P.: Learning low bending and low distortion
manifold embeddings: theory and applications (2022). arxiv:2208.10193

9. Chavent, G., Kunisch, K.: Regularization in state space. Math. Model. Numer. Anal. 27, 535–564
(1993)

10. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.
2(4), 303–314 (1989). https://doi.org/10.1007/bf02551274

11. Decker, D.W., Keller, H.B., Kelley, C.T.: Convergence rates for Newton’s method at singular points.
SIAM J. Numer. Anal. 20(2), 296–314 (1983). https://doi.org/10.1137/0720020

12. Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newton’s method and extensions
to related methods. SIAM J. Numer. Anal. 16(1), 1–10 (1979)

13. Deuflhard, P., Potra, F.A.: Asymptotic mesh independence of Newton–Galerkin methods via a refined
Mysovskii theorem. SIAMJ.Numer. Anal. 29(5), 1395–1412 (1992). https://doi.org/10.1137/0729080

14. Duff, M., Campbell, N.D.F., Ehrhardt, M.J.: Regularising inverse problems with generative machine
learning models (2021). arXiv:2107.11191

15. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Mathematics and its Appli-
cations, vol. 375. Kluwer Academic Publishers Group, Dordrecht. viii+321. ISBN:0-7923-4157-0
(1996)

16. Gorenflo, R., Hofmann, B.: On autoconvolution and regularization. Inverse Probl. 10(2), 353–373
(1994). https://doi.org/10.1088/0266-5611/10/2/011

17. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)
18. Hanke,M.,Neubauer,A., Scherzer,O.:A convergence analysis of theLandweber iteration for nonlinear

ill-posed problems. Numer. Math. 72(1), 21–37 (1995). https://doi.org/10.1007/s002110050158
19. Häussler, W.: A Kantorovich-type convergence analysis for the Gauss–Newton-method. Numer. Math.

48, 119–125 (1986)
20. Hein, T., Hofmann, B.: On the nature of ill-posedness of an inverse problem arising in option pricing.

Inverse Probl. 19(6), 1319–1338 (2003). https://doi.org/10.1088/0266-5611/19/6/006
21. Hofmann, B.: Mathematik Inverser Probleme. Teubner, Stuttgart (1999)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1201/9781003050575-13
https://doi.org/10.1201/9781003050575-13
https://doi.org/10.1088/1361-6420/abb61b
https://doi.org/10.1137/16m1080173
http://arxiv.org/abs/2208.10193
https://doi.org/10.1007/bf02551274
https://doi.org/10.1137/0720020
https://doi.org/10.1137/0729080
http://arxiv.org/abs/2107.11191
https://doi.org/10.1088/0266-5611/10/2/011
https://doi.org/10.1007/s002110050158
https://doi.org/10.1088/0266-5611/19/6/006


25 Page 28 of 29 O. Scherzer et al.

22. Hofmann, B.: On the degree of ill-posedness for nonlinear problems. J. Inverse Ill-Posed Probl. 2,
61–76 (1994)

23. Hofmann, B. (ed.): Regularization for Applied Inverse and Ill-Posed Problems. Leipzig (1986). https://
doi.org/10.1007/978-3-322-93034-7

24. Hofmann, B., Kaltenbacher, B., Pöschl, C., Scherzer, O.: A convergence rates result for Tikhonov
regularization in Banach spaces with non-smooth operators. Inverse Probl. 23(3), 987–1010 (2007).
https://doi.org/10.1088/0266-5611/23/3/009

25. Hofmann, B., Scherzer, O.: Factors influencing the ill-posedness of nonlinear problems. Inverse Probl.
10(6), 1277–1297 (1994). https://doi.org/10.1088/0266-5611/10/6/007

26. Hofmann, B., Tautenhahn, U.: On ill-posedness measures and space change in Sobolev scales. J. Anal.
Appl. 16(4), 979–1000 (1997). https://doi.org/10.4171/zaa/800

27. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–
257 (1991). https://doi.org/10.1016/0893-6080(91)90009-t

28. Hornik,K., Stinchcombe,M.,White,H.:Multilayer feedforward networks are universal approximators.
Neural Netw. 2, 359–366 (1989)

29. Huang, G.-B.: Learning capability and storage capacity of two-hidden-layer feedforward networks.
IEEE Trans. Neural Netw. 14(2), 274–281 (2003). https://doi.org/10.1109/tnn.2003.809401

30. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative regularization methods for nonlinear ill-posed
problems. Radon Series on Computational and Applied Mathematics, vol. 6. Walter de Gruyter, Berlin
(2008). ISBN:978-3-11-020420-9. https://doi.org/10.1515/9783110208276

31. Kantorowitsch, L., Akilow, G.: Funktionalanalysis in normierten Räumen. Akademie Verlag, Berlin
(1964)

32. Lamperski, A.: Neural network independence properties with applications to adaptive control. In: 2022
IEEE61stConference onDecision andControl (CDC) (2022). https://doi.org/10.1109/cdc51059.2022.
9992994

33. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)
34. Nashed, M.Z.: A new approach to classification and regularization of ill-posed operator equations.

Inverse Ill-Posed Probl. 4, 53–75 (1987). https://doi.org/10.1016/b978-0-12-239040-1.50009-0
35. Nashed, M.Z.: Inner, outer, and generalized inverses in Banach and Hilbert spaces. Numer. Funct.

Anal. Optim. 9(3–4), 261–325 (1987). https://doi.org/10.1080/01630568708816235
36. Nashed, M.Z.: On the perturbation theory of generalized inverse operators in Banach spaces. In:

Nashed, M.Z. (ed.) Functional Analysis Methods in Numerical Analysis, pp. 180–195. Springer, New
York (1979)

37. Nashed, M. (ed.) Generalized Inverses and Applications. Academic Press [Harcourt Brace Jovanovich
Publishers], New York, xiv+1054 (1976)

38. Nashed, M., Chen, X.: Convergence of Newton-like methods for singular operator equations using
outer inverses. Numer. Math. 66, 235–257 (1993)

39. Obmann, D., Schwab, J., Haltmeier, M.: Deep synthesis network for regularizing inverse problems.
Inverse Probl. 37(1), 015005 (2021). https://doi.org/10.1088/1361-6420/abc7cd

40. Ortega, J.M.: The Newton–Kantorovich theorem. Am. Math. Mon. 75(6), 658 (1968). https://doi.org/
10.2307/2313800

41. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic
Press, New York (1970)

42. Paszke,A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings
of the 33rd International Conference on Neural Information Processing Systems, vol. 721. Curran
Associates Inc. (2019)

43. Pöschl, C., Resmerita, E., Scherzer, O.: Discretization of variational regularization in Banach spaces.
In: Inverse Problems 26.10 (2010), p. 105017. issn: 0266-5611. https://doi.org/10.1088/ 0266-
5611/26/10/105017

44. Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., Glorot, X.: Higher order contrac-
tive auto-encoder. In: Machine Learning and Knowledge Discovery in Databases, pp. 645–660 (2011).
https://doi.org/10.1007/978-3-642-23783-6_41

45. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging.
Applied Mathematical Sciences, vol. 167. Springer, New York (2009). ISBN:978-0-387-30931-6.
https://doi.org/10.1007/978-0-387-69277-7

https://doi.org/10.1007/978-3-322-93034-7
https://doi.org/10.1007/978-3-322-93034-7
https://doi.org/10.1088/0266-5611/23/3/009
https://doi.org/10.1088/0266-5611/10/6/007
https://doi.org/10.4171/zaa/800
https://doi.org/10.1016/0893-6080(91)90009-t
https://doi.org/10.1109/tnn.2003.809401
https://doi.org/10.1515/9783110208276
https://doi.org/10.1109/cdc51059.2022.9992994
https://doi.org/10.1109/cdc51059.2022.9992994
https://doi.org/10.1016/b978-0-12-239040-1.50009-0
https://doi.org/10.1080/01630568708816235
https://doi.org/10.1088/1361-6420/abc7cd
https://doi.org/10.2307/2313800
https://doi.org/10.2307/2313800
https://doi.org/10.1007/978-3-642-23783-6_41
https://doi.org/10.1007/978-0-387-69277-7


Gauss–Newton method for solving linear inverse ... Page 29 of 29 25

46. Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization methods in Banach
spaces. Radon Series on Computational and AppliedMathematics, vol. 10. DeGruyter, Berlin. xii+283
(2012). https://doi.org/10.1515/9783110255720

47. Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen, vol. 17. Mathematik für Natur-
wissenschaft und Technik [Mathematics for Science and Technology]. VEB Deutscher Verlag der
Wissenschaften, Berlin, p. 346 (1979)

48. Tamura, S., Tateishi, M.: Capabilities of a four-layered feedforward neural network: four layers versus
three. IEEE Trans. Neural Netw. 8(2), 251–255 (1997). https://doi.org/10.1109/72.557662

https://doi.org/10.1515/9783110255720
https://doi.org/10.1109/72.557662

	Gauss–Newton method for solving linear inverse problems with neural network coders
	Abstract
	1 Introduction
	2 Decomposition cases
	3 The Newton–Mysovskii conditions
	3.1 Newton method with invertible linearizations
	3.2 Newton–Mysovskii conditions with composed operator
	3.3 Neural networks
	3.4 Newton–Mysovskii condition with shallow neural networks coders
	3.5 Linear independence of activation functions and its derivatives
	3.6 Local convergence of Gauss–Newton method with coding networks

	4 Simple numerical experiments
	4.1 An example with the Gauss–Newton method
	4.2 A degenerated example with the Gauss–Newton method
	4.3 An examples with the Landweber method
	4.4 A degenerated example with the Landweber method
	Conclusion

	Acknowledgements
	References




