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Abstract
Frames have been investigated frequently over the last few decades due to their valu-
able properties, which are desirable for various applications as well as interesting
for theory. Some applications additionally require distributed processing techniques,
which naturally leads to the concept of fusion frames and fusion frame systems. The
latter consists of a system of subspaces, equipped with local frames on each of them,
and a global frame. In this paper, we investigate the relations of the associated frame-
related operators on all those three levels. For that we provide a detailed investigation
on bounded block diagonal operators between Hilbert direct sums. We give the rela-
tion of the frame-related operators of the fusion frame and the corresponding frame
systems in terms of operator identities. By applying these identities we prove further
properties of fusion frame systems.

Keywords Fusion frame systems · Frame-related operators · Block diagonal
operators · Hilbert direct sums

Mathematics Subject Classification Primary 42C15; Secondary 47A05 · 47A67

1 Introduction

Frames are sequences of elements in a (separable) Hilbert space, which provide the
possibility to represent and reconstruct vectors in a non-unique, redundant and stable
way [1–3]. The study of frames led to many interesting theoretical results, such as
versions of the Balian-Low theorem [4, 5], or Feichtinger’s conjecture [6–8]. On the
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other hand, the properties of frames are desired for a vast number of applications,
e.g. signal processing [9], compressed sensing [10] and many more, see [3] and the
numerous references mentioned there.

Fusion Frames have been first introduced as frames of subspaces in order to give
necessary and sufficient conditions for piecing local frames together to a global frame
[11]. Since fusion frames generalize the notion of a (classical) frame, many concepts
from frame theory can be transferred to the fusion frame setting [11–13]. However,
the aspect of duality for fusion frames is non-trivial as it cannot be directly extended
from the classical frame case, which makes the theory much more interesting [14–18].
The idea of combining local frames on subspaces to a global frame and performing
distributed processing procedures via frames, is modeled by the notion of a fusion
frame system, which yields the flexibility to either perform global reconstruction or
local reconstruction of a given signal [12].

On all three layers - subspace, local and global frames - of a fusion frame system,
the typical frame-related operators, like the analysis, synthesis and frame operator, can
be defined. In this paper we study the relation between these operators associated to a
fusion frame system. For that purpose we provide details for bounded block diagonal
operators between Hilbert direct sums. In particular, we show that for those operators
we get canonical combinations, like combining the fusion synthesis with the block
diagonal operator of the local synthesis operators resulting in the global synthesis
operator. We show that a global Riesz basis results in a fusion Riesz basis with local
Riesz bases, a result where only the opposite direction is known so far. We can extend
the answer to the question, when centralized and distributed reconstruction coincide,
to the case of a fusion Riesz basis. Finally, we give a collection of results on properties,
which are preserved in fusion frame systems.

This paper is an extended version of [19, Sections 3, 4.3, 4.4].

2 Preliminaries

Throughout this notes, H is always a separable Hilbert space. If V is a subspace of
H then πV denotes the orthogonal projection onto V . A Hilbert spaceH of functions
f : X −→ F (F = R or F = C) is called a reproducing kernel Hilbert space (RKHS),
if all evaluation functionals δx onH are continuous, i.e. if for every x ∈ X , there exists
Cx > 0 such that |δx ( f )| := | f (x)| ≤ Cx‖ f ‖ for all f ∈ H [20, 21]. The set of
positive integers {1, 2, 3, . . . } is denoted by N, and δi j denotes the Kronecker-delta.
The domain, kernel and range of an operator T is denoted by dom(T ),N (T ) and
R(T ) respectively. IX denotes the identity operator on a given space X . The set of
bounded operators between two normed spaces X and Y is denoted by B(X , Y ) and
we set B(X) := B(X , X). An operator T : X −→ Y between normed spaces X and
Y is called bounded from below by m (m > 0), if m‖x‖X ≤ ‖T x‖Y for all x ∈ X .
For an operator U ∈ B(H1,H2) (H1, H2 Hilbert spaces) with closed range R(U ),
U † denotes its associated pseudo inverse. Recall [3] that the pseudo inverse of U is
characterized as the unique operator U † : H2 −→ H1, satisfying the three relations

N (U †) = R(U )⊥, R(U †) = N (U )⊥, UU †x = x (x ∈ R(U )). (1)
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Moreover, if U has closed range, then U∗ has closed range and (U∗)† = (U †)∗. On
R(U ) we explicitly have U † = U∗(UU∗)−1. In case U is bounded and invertible, it
holds U † = U−1.

2.1 Frame theory

Recall [3] that a frame for H is a countable family ψ = (ψi )i∈I in H, for which
there exist constants 0 < Aψ ≤ Bψ < ∞, called the lower and upper frame bound
respectively, such that for every f ∈ H it holds

Aψ‖ f ‖2 ≤
∑

i∈I

|〈 f , ψi 〉|2 ≤ Bψ‖ f ‖2. (2)

If the frame bounds Aψ and Bψ can be chosen to be equal, then ψ is called an Aψ -
tight or simply tight frame. A 1-tight frame is called Parseval frame. If a sequence
ψ = (ψi )i∈I satisfies the right-hand inequality, but not necessarily the left-hand
inequality in (2), then it is called a Bessel sequence with Bessel bound Bψ . A sequence
ψ = (ψi )i∈I in H is called a Riesz basis, if it is complete, i.e. span(ψi )i∈I = H,
and if there exist constants 0 < αψ ≤ βψ < ∞, called lower and upper Riesz bound
respectively, such that for any finite scalar sequence (c j ) j∈J (J ⊆ I ) we have

αψ

∑

j∈J

|c j |2 ≤
∥∥∥∥

∑

j∈J

c jψ j

∥∥∥∥
2

≤ βψ

∑

j∈J

|c j |2.

For an arbitrary sequence ψ = (ψi )i∈I in H, we consider its associated frame-
related operators [22]:

• The synthesis operator Dψ : dom(Dψ) ⊆ �2(I ) −→ H, where dom(Dψ) ={
(ci )i∈I ∈ �2(I ) : ∑

i∈I ciψi ∈ H}
and Dψ(ci )i∈I = ∑

i∈I ciψi .
• The analysis operator Cψ : dom(Cψ) ⊆ H −→ �2(I ), where dom(Cψ) = { f ∈
H : (〈 f , ψi 〉)i∈I ∈ �2(I )} and Cψ f = (〈 f , ψi 〉)i∈I .

• The frame operator Sψ : dom(Sψ) ⊆ H −→ H, where dom(Sψ) = {
f ∈ H :∑

i∈I 〈 f , ψi 〉ψi ∈ H}
and Sψ f = ∑

i∈I 〈 f , ψi 〉ψi .

One can show [3, 22] that a sequence ψ = (ψi )i∈I is a Bessel sequence with Bessel
bound Bψ if and only if dom(Dψ) = �2(I ) and Dψ is bounded by

√
Bψ . In that case,

we also have D∗
ψ = Cψ ∈ B(H, �2(I )) and Sψ = DψCψ ∈ B(H)with ‖Cψ‖ ≤ √

Bψ

and ‖Sψ‖ ≤ Bψ , whereas Sψ , obviously, is self-adjoint. If ψ is a frame, its associated
frame operator Sψ , additionally, is positive and invertible, yielding the possibility of
frame reconstruction for all f ∈ H via

f =
∑

i∈I

〈 f , S−1
ψ ψi 〉ψi =

∑

i∈I

〈 f , ψi 〉S−1
ψ ψi . (3)

The sequence (ψ̃i )i∈I := (S−1
ψ ψi )i∈I is also a frame forH with frame bounds B−1

ψ ≤
A−1

ψ and associated frame operator Sψ̃ = S−1
ψ , and is referred to as the canonical dual
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frame of ψ . More generally, a frame φ = (φi )i∈I is called a dual frame of ψ , if for
all f ∈ H

f =
∑

i∈I

〈 f , ϕi 〉ψi =
∑

i∈I

〈 f , ψi 〉ϕi .

A frame ψ is Aψ -tight if and only if Sψ = Aψ · IH [3]. Therefore, frame recon-
struction becomes particularly simple for tight frames, because (3) then reduces to
f = 1

Aψ

∑
i∈I 〈 f , ψi 〉ψi .

More generally, if H is a RKHS, we say that a frame ψ is painless (compare to
painless non-stationary Gabor frames [23]), if Sψ is given by amultiplication operator,
i.e. Sψ f (x) = m(x) f (x) for some function m : X −→ F. In particular, the frame
inequalities (2) imply Aψ ≤ m(x) ≤ Bψ (x ∈ X ). Moreover, frame reconstruction
remains ’painless’ in this case, as it simply corresponds to point-wise multiplication,
S−1
ψ f (x) = 1

m(x)
f (x) (x ∈ X ).

Frames and Riesz bases can be characterized in terms of their associated synthesis
and analysis operators, as presented in the statement below, see also [3]. For a more
detailed study of the frame-related operators associated to general sequences, which
can be unbounded operators, we refer to [22].

Theorem 2.1 [3] Let ψ = (ψi )i∈I be a countable family of vectors in H. Then the
following are equivalent.

(i) ψ is a frame (resp. Riesz basis) for H.
(ii) The synthesis operator Dψ is bounded and surjective (resp. bounded and bijec-

tive).
(iii) The analysis operator Cψ is bounded, injective and has closed range (resp.

bounded and bijective).

In particular, for any frame ψ , the pseudo inverses of Dψ and Cψ are well-defined.
In [3] it is shown that

D†
ψ = Cψ S−1

ψ ,

which implies

C†
ψ = S−1

ψ Dψ.

In particular, if ψ is a Riesz basis, we have

D−1
ψ = Cψ S−1

ψ , C−1
ψ = S−1

ψ Dψ.

2.2 Fusion frame theory

By rewriting the terms |〈 f , ψi 〉|2 from the frame inequalities (2),
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|〈 f , ψi 〉|2 = ‖ψi‖2
〈
〈 f ,

ψi

‖ψi‖〉 ψi

‖ψi‖ , f
〉

= ‖ψi‖2〈πVi f , f 〉
= v2i ‖πVi f ‖2,

where we set Vi := span{ψi } and vi := ‖ψi‖, we see that frames can also be
viewed as weighted sequences of (1-dimensional) closed subspaces (resp. orthogonal
projections), satisfying the inequalities (2). Admitting higher dimensional subspaces
leads to the notion of a fusion frame and allows to extend many definitions from
classical frame theory to this setting.

Recall [11], that a countable sequence V = (Vi , vi )i∈I of closed subspaces Vi of
H, together with weights vi > 0, is called a fusion frame (or frame of subspaces) for
H, if there exist constants 0 < AV ≤ BV < ∞, called lower and upper fusion frame
bound respectively, such that for every f ∈ H it holds

AV ‖ f ‖2 ≤
∑

i∈I

v2i ‖πVi f ‖2 ≤ BV ‖ f ‖2. (4)

A fusion frame V is called AV -tight, if the fusion frame bounds AV and BV can be
chosen to be equal.A 1-tight fusion frame is calledParseval fusion frame. IfV as above
satisfies the right-hand inequality, but not necessarily the left-hand inequality in (4),
we call V a Bessel fusion sequence with Bessel fusion bound BV . A weighted family
of closed subspaces V = (Vi , vi )i∈I is called a fusion Riesz basis, if span(Vi )i∈I = H
and if there exist constants 0 < αV ≤ βV < ∞, called lower and upper fusion Riesz
bound respectively, such that for any finite subset J ⊆ I we have

αV

∑

j∈J

‖ f j‖2 ≤
∥∥∥∥

∑

j∈J

v j f j

∥∥∥∥
2

≤ βV

∑

j∈J

‖ f j‖2

for all sequences ( f j ) j∈J ∈ (Vj ) j∈J . The family (Vi )i∈I is called an orthonormal
fusion basis forH, ifH is the orthogonal direct sum of the spaces Vi , i.e.H = ⊕i∈I Vi .

The appropriate representation spaces for the fusion frame setting areHilbert direct
sums, defined by

( ∑

i∈I

⊕Vi
)
�2

=
{
( fi )i∈I : fi ∈ Vi ,

∑

i∈I

‖ fi‖2 < ∞
}
.

As in the classical frame setting, for any weighted sequence of closed subspaces
V = (Vi , vi )i∈I we consider its associated fusion-frame-related operators:

• The synthesis operator DV : dom(DV ) ⊆ ( ∑
i∈I ⊕Vi

)
�2

−→ H, where
dom(DV ) = {

( fi )i∈I ∈ ( ∑
i∈I ⊕Vi

)
�2

: ∑
i∈I vi fi ∈ H}

and DV ( fi )i∈I =∑
i∈I vi fi ,

• The analysis operator CV : dom(CV ) ⊆ H −→ (∑
i∈I ⊕Vi

)
�2
, where

dom(CV ) = {
f ∈ H : (viπVi f )i∈I ∈ (∑

i∈I ⊕Vi
)
�2

}
and CV f = (viπVi f )i∈I ,
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• The fusion frame operator SV : dom(SV ) ⊆ H −→ H, where dom(SV ) = {
f ∈

H : ∑
i∈I v2i πVi f ∈ H}

and SV f = ∑
i∈I v2i πVi f .

It is well-known [11] that V = (Vi , vi )i∈I is a Bessel fusion sequence with Bessel
fusion bound BV if and only if dom(DV ) = (

∑
i∈I ⊕Vi )�2 and DV is bounded by√

BV . Here, the basic definitions are still analogous to (Hilbert) frames, we again have
D∗

V = CV ∈ B(H, (
∑

i∈I ⊕Vi )�2) and SV = DV CV ∈ B(H) being self-adjoint. The
latter is additionally positive and invertible, if V is a fusion frame. In particular, fusion
frames also yield the possibility of perfect reconstruction via

f =
∑

i∈I

v2i πVi S−1
V f =

∑

i∈I

v2i S−1
V πVi f .

It can be shown that a fusion frame V is AV -tight if and only if SV = AV · IH, see
[19] for more details.

Moreover, if H is a RKHS, we call a fusion frame V for H painless [2, 23, 24], if
SV is given by a multiplication operator, i.e. SV f (x) = m(x) f (x) for some function
m : X −→ F, which necessarily satisfies Aψ ≤ m ≤ Bψ and S−1

V f (x) = 1
m(x)

f (x)

(x ∈ X ).
Unsurprisingly, fusion frames and fusion Riesz bases can be characterized in terms

of their associated synthesis and analysis operators, as in the classical frame case
(Theorem 2.1):

Theorem 2.2 [11] Let V = (Vi , vi )i∈I be a sequence of closed subspaces in H with
weights vi > 0. Then the following are equivalent.

(i) V is a fusion frame (resp. fusion Riesz basis) for H.
(ii) The synthesis operator DV is bounded and surjective (resp. bounded and bijective).
(iii) The analysis operator CV is bounded, injective and has closed range (resp.

bounded and bijective).

In particular, for any fusion frame V it holds

D†
V = CV S−1

V , C†
V = S−1

V DV .

In case V is a fusion Riesz basis, we have

D−1
V = CV S−1

V , C−1
V = S−1

V DV . (5)

For a fusion Riesz basis V , we can give a simpler formula for D−1
V than in (5),

when we restrict D−1
V to the subspace Vi . By setting (for i ∈ I )

Vi := ... × {0} × {0} × Vi × {0} × {0} × ... (Vi at the i-th position),

we can formulate the following preparatory result.
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Lemma 2.3 Let V = (Vi , vi )i∈I be a fusion Riesz basis. Let i ∈ I be arbitrary and
gi ∈ Vi . Then

D−1
V gi = (. . . , 0, 0, v−1

i gi , 0, 0, ...) (v−1
i gi in thei-th entry)

In other words, D−1
V maps Vi into Vi for every i ∈ I .

Proof Let gi ∈ Vi . According to Theorem 2.2, there exists precisely one g ∈(∑
i∈I ⊕Vi

)
�2
, such that DV g = gi . Obviously, g = (. . . , 0, 0, v−1

i gi , 0, 0, ...) (gi

in the i-th entry) meets this condition. ��
The following result from [11] can be viewed as the starting point of the theory of

fusion frames. It indicates the link between fusion frames and distributed processing.

Theorem 2.4 [11] Let (Vi )i∈I be a family of closed subspaces of H, (vi )i∈I a family
of weights and assume that for every i ∈ I , ϕ(i) := (ϕi j ) j∈Ji is a frame for Vi

with frame bounds Ai and Bi . Suppose that there exist constants A and B such that
0 < A = inf i∈I Ai ≤ supi∈I Bi = B < ∞. Then the following are equivalent.

(i) V = (Vi , vi )i∈I is a fusion frame for H.
(ii) vϕ = (viϕi j )i∈I , j∈Ji is a frame for H.

In particular, if V is a fusion frame with fusion frame bounds AV and BV , then
Avϕ = AV · A and Bvϕ = BV · B are frame bounds for vϕ. Conversely, if vϕ is a
frame with frame bounds Avϕ and Bvϕ , then AV = Avϕ/B and BV = Bvϕ/A are
fusion frame bounds for V .

Theorem 2.4 shows that the three frame layers -subspaces, local sequences, global
sequence- are naturally connected. This motivates the notion of a fusion frame system.

Definition 2.5 [12] Let (Vi , vi )i∈I be a fusion frame forH and let ϕ(i) = (ϕi j ) j∈Ji be
a frame for Vi for every i ∈ I . If the frames ϕ(i) have common frame bounds, then we
call (Vi , vi , ϕ

(i))i∈I a fusion frame system for H. Furthermore, we call its associated
frame vϕ := (viϕi j )i∈I , j∈Ji global frame, and the frames ϕ(i) local frames. We will
always denote the common frame bounds of the local frames by A and B (A ≤ B).

The advantage of the concept of fusion frames and fusion frame systems is, that it
enables us to reconstruct signals in two (generally different) canonical ways. We can
either perform frame reconstruction via the global frame vϕ, i.e.

f =
∑

i∈I

∑

j∈Ji

〈 f , viϕi j 〉S−1
vϕ viϕi j , (6)

or we perform frame reconstruction of πVi f via the frame ϕ(i) on a local level at first
and then fuse the information together via fusion frame reconstruction, i.e.
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f =
∑

i∈I

v2i S−1
V πVi f

=
∑

i∈I

∑

j∈Ji

〈 f , viϕi j 〉S−1
V S−1

ϕ(i)viϕi j . (7)

Following the terminology from [12],we call the reconstruction process (6) centralized
reconstruction, and the reconstruction process (7) distributed reconstruction. Here, the
question, how S−1

vϕ and the operators S−1
V S−1

ϕ(i) are related, naturally arises, and will be
answered in Proposition 4.4.

3 Bounded block diagonal operators

In order to give the relations between the (fusion) frames associated to a fusion frame
system in terms of their frame-related operators, we reconsider Hilbert direct sums
and a certain type of bounded operators between them.

Instead of considering Hilbert direct sums of closed subspaces of the same Hilbert
space H, we consider the slightly more general case, where Vi are arbitrary Hilbert
spaces, and set

( ∑

i∈I

⊕Vi
)
�2

:=
{
( fi )i∈I : fi ∈ Vi ,

∑

i∈I

‖ fi‖2Vi
< ∞

}
. (8)

Obviously, setting Vi = C for all i ∈ I yields the space �2(I ).
For f = ( fi )i∈I , g = (gi )i∈I ∈ (

∑
i∈I ⊕Vi )�2 , the operation

〈 f , g〉(∑i∈I ⊕Vi )�2
:=

∑

i∈I

〈 fi , gi 〉Vi (9)

is easily seen to be well-defined and inherits the defining properties of an inner product
from the inner products 〈·, ·〉Vi , see also [25]. Its induced norm is therefore given by

‖ f ‖(
∑

i∈I ⊕Vi )�2
= (∑

i∈I

‖ fi‖2Vi

)1/2 (10)

and adapting any standard completeness proof for �2(I ) yields that (
∑

i∈I ⊕Vi )�2 is
also complete with respect to this norm.

Of course, definition (8) extends to the casewhere the spaces Vi are only pre-Hilbert
spaces, resulting in (

∑
i∈I ⊕Vi )�2 equipped with the inner product (9) being only a

pre-Hilbert space. If and only if all Vi are Hilbert spaces, the space (
∑

i∈I ⊕Vi )�2

is a Hilbert space, in which case we call it a Hilbert direct sum. In particular, since
subspaces of Hilbert spaces are closed if and only if they are complete, we obtain the
following corollary.
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Corollary 3.1 Consider the Hilbert direct sum
(∑

i∈I ⊕Vi
)
�2

and for each i ∈ I , let
Ui be a subspace of Vi . Then

( ∑
i∈I ⊕Ui

)
�2

is a closed subspace of
(∑

i∈I ⊕Vi
)
�2

if
and only if Ui is a closed subspace of Vi for every i ∈ I .

The next result is also easy to show, but still worthwhile to be mentioned.

Lemma 3.2 Consider the Hilbert direct sum
(∑

i∈I ⊕Vi
)
�2

and the (not necessarily
closed) subspaces Ui of Vi (i ∈ I ) and

( ∑
i∈I ⊕Ui

)
�2

of
(∑

i∈I ⊕Vi
)
�2

. Then

((∑

i∈I

⊕Ui
)
�2

)⊥
= (∑

i∈I

⊕U⊥
i

)
�2

.

Proof The “⊇”-part is trivial. To prove the “⊆”-part, we have to show that for any
h = (hi )i∈I ∈ (

(
∑

i∈I ⊕Ui )�2
)⊥ we have hi ∈ U⊥

i (for all i ∈ I ). To this end,
observe that since 〈 f , h〉(∑i∈I ⊕Vi )�2

= 0 for all f ∈ ( ∑
i∈I ⊕Ui

)
�2
, we particularly

may choose f = (. . . , 0, 0, fi , 0, 0, ...) ∈ (∑
i∈I ⊕Ui

)
�2

(where fi ∈ Ui is in the
i-th entry) and see that in this case 0 = 〈 f , h〉(∑i∈I ⊕Vi )�2

= 〈 fi , hi 〉Vi , which implies

hi ∈ U⊥
i . Since this holds for all i ∈ I , the proof is finished. ��

Next we consider two Hilbert direct sums
(∑

i∈I ⊕Vi
)
�2

and
(∑

i∈I ⊕Wi
)
�2

indexed by the same index set. Let, for every i ∈ I , Oi ∈ B(Vi , Wi ) be given.
We call the family (Oi )i∈I completely bounded [26], if there exists a constant C > 0,
such that ‖Oi‖ ≤ C for all i ∈ I . It is easy to show the next lemma, see also [25].

Lemma 3.3 Consider the family (Oi )i∈I of operators Oi ∈ B(Vi , Wi ). Then

⊕

i∈I

Oi ( fi )i∈I := (Oi fi )i∈I (11)

defines a well-defined and bounded operator from
(∑

i∈I ⊕Vi
)
�2

into
(∑

i∈I ⊕Wi
)
�2

if and only if (Oi )i∈I is completely bounded. In that case ‖⊕
i∈I Oi‖ = supi∈I ‖Oi‖.

Bounded operators
⊕

i∈I Oi , defined as in (11), naturally appear in the definition
of a dual fusion frame [14–18]. In accordance with these references we call such oper-
ators block diagonal. We also note that in those references, block diagonal operators⊕

i∈I Oi with the additional property, that each operator Oi is surjective, are called
component preserving. In the remainder of this section, a detailed investigation of
bounded block diagonal operators between Hilbert direct sums is presented, whereas
component preserving operators only implicitly appear on some occasions as a special
case, see e.g. Proposition 3.8.

We omit the obvious proof of the next result. For more details, see [19].

Lemma 3.4 Let (
∑

i∈I ⊕Ui )�2 , (
∑

i∈I ⊕Vi )�2 and (
∑

i∈I ⊕Wi )�2 be Hilbert direct
sums, let

⊕
i∈I Oi ∈ B(

(
∑

i∈I ⊕Vi )�2 , (
∑

i∈I ⊕Wi )�2
)

and
⊕

i∈I Pi ∈ B(
(
∑

i∈I⊕Ui )�2 , (
∑

i∈I ⊕Vi )�2
)
. Then the following hold.
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(a)

(⊕

i∈I

Oi
)∗ =

⊕

i∈I

O∗
i

(b) If (
∑

i∈I ⊕Vi )�2 = (
∑

i∈I ⊕Wi )�2 , then
⊕

i∈I Oi is self-adjoint if and only if Oi

is self-adjoint for every i ∈ I .
(c)

(⊕

i∈I

Oi
)(⊕

i∈I

Pi
) =

⊕

i∈I

(OiPi ).

(d)
⊕

i∈I Oi is bounded from below by m if and only if Oi is bounded from below by
m for all i ∈ I .

Next, we consider the kernel and range of bounded block diagonal operators, where
we notice a difference in the quality of the results.

Lemma 3.5 Let
⊕

i∈I Oi ∈ B(
(
∑

i∈I ⊕Vi )�2 , (
∑

i∈I ⊕Wi )�2
)
. Then

(a)

N ( ⊕

i∈I

Oi
) = (∑

i∈I

⊕N (Oi )
)
�2

(b)

R( ⊕

i∈I

Oi
) ⊆ (∑

i∈I

⊕R(Oi )
)
�2

Proof By component-wise definition (11) we have

N ( ⊕

i∈I

Oi
) =

{
( fi )i∈I ∈ ( ∑

i∈I

⊕Vi
)
�2

: Oi fi = 0 (∀i ∈ I )
}

=
{
( fi )i∈I : fi ∈ N (Oi ) (∀i ∈ I ),

∑

i∈I

‖ fi‖2Vi
< ∞

}

= (∑

i∈I

⊕N (Oi )
)
�2

,

as well as

R( ⊕

i∈I

Oi
) =

{
(gi )i∈I ∈ (∑

i∈I

⊕Wi
)
�2

: ∃( fi )i∈I ∈ ( ∑

i∈I

⊕Vi
)
�2

: Oi fi = gi (∀i ∈ I )
}

⊆
{
(gi )i∈I ∈ (∑

i∈I

⊕Wi
)
�2

: ∃( fi )i∈I ∈ (Vi )i∈I : Oi fi = gi (∀i ∈ I )
}
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=
{
(gi )i∈I ∈ (∑

i∈I

⊕Wi
)
�2

: gi ∈ R(Oi ) (∀i ∈ I )
}

= ( ∑

i∈I

⊕R(Oi )
)
�2

. (12)

��
In general, we cannot achieve equality in (12) without further assumptions, except

in the trivial case |I | < ∞ (compare to Example 3.9). However, if
⊕

i∈I Oi has closed
range, then equality is always achieved, as the next result shows.

Proposition 3.6 Let
⊕

i∈I Oi ∈ B(
(
∑

i∈I ⊕Vi )�2 , (
∑

i∈I ⊕Wi )�2
)

and assume that⊕
i∈I Oi has closed range. Then

(a)

R( ⊕

i∈I

Oi
) = (∑

i∈I

⊕R(Oi )
)
�2

.

(b) Oi has closed range for every i ∈ I .

Proof (a) We have

(∑

i∈I

⊕R(Oi )
)
�2

=
⎛

⎝
(

(∑

i∈I

⊕R(Oi )
)
�2

)⊥⎞

⎠
⊥

=
(

( ∑

i∈I

⊕R(Oi )
⊥)

�2

)⊥
(by Lemma 3.2)

=
(

( ∑

i∈I

⊕N (O∗
i )

)
�2

)⊥

= N
( ⊕

i∈I

O∗
i

)⊥
(by Lemma 3.5 (a))

= N
(( ⊕

i∈I

Oi

)∗)⊥
(by Lemma 3.4 (a))

=
(
R

( ⊕

i∈I

Oi

)⊥
)⊥

= R( ⊕

i∈I

Oi
)

= R( ⊕

i∈I

Oi
)

⊆ ( ∑

i∈I

⊕R(Oi )
)
�2

(by Lemma 3.5 (b)),
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which implies (a) and also shows that
( ∑

i∈I ⊕R(Oi )
)
�2

is a closed subspace of(∑
i∈I ⊕Wi

)
�2
. By Corollary 3.1, this implies (b). ��

Proposition 3.6 shows, that if
⊕

i∈I Oi has closed range, so do the operatorsOi for

all i ∈ I . Therefore their corresponding pseudo inverses
( ⊕

i∈I Oi
)† and O†

i (i ∈ I )
are well-defined. In the next result, we give a relation between them.

Proposition 3.7 Let
⊕

i∈I Oi ∈ B
(( ∑

i∈I ⊕Vi
)
�2

,
( ∑

i∈I ⊕Wi
)
�2

)
and assume that

⊕
i∈I Oi has closed range. If, in addition, the family (O†

i )i∈I is completely bounded

and if
⊕

i∈I O†
i has closed range, then

( ⊕

i∈I

Oi

)† =
⊕

i∈I

O†
i .

Proof By Lemma 3.3, the operators

( ⊕

i∈I

Oi

)† : ( ∑

i∈I

⊕Wi
)
�2

−→ ( ∑

i∈I

⊕Vi
)
�2

and

⊕

i∈I

O†
i : ( ∑

i∈I

⊕Wi
)
�2

−→ (∑

i∈I

⊕Vi
)
�2

both are well-defined and bounded. Moreover, it holds

( ⊕

i∈I

Oi
)( ⊕

i∈I

O†
i

)( ⊕

i∈I

Oi
) =

⊕

i∈I

(OiO†
i Oi ) =

⊕

i∈I

Oi ,

as well as

N ( ⊕

i∈I

O†
i

) = ( ∑

i∈I

⊕N (O†
i )

)
�2

(by Lemma 3.5 (a))

= ( ∑

i∈I

⊕(R(Oi )
⊥)

�2
(by (1))

= ( ∑

i∈I

⊕R(Oi )
)⊥
�2

(by Lemma 3.2)

= R( ⊕

i∈I

Oi
)⊥ (by Proposition 3.6 (a)).

Finally, the assumption, that
⊕

i∈I O†
i has closed range, guarantees via Proposition 3.6

(a) that

R( ⊕

i∈I

O†
i

) = ( ∑

i∈I

⊕R(O†
i )

)
�2

,
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hence

R( ⊕

i∈I

O†
i

) = ( ∑

i∈I

⊕R(O†
i )

)
�2

= ( ∑

i∈I

⊕(N (Oi )
⊥)

�2
(by (1))

= ( ∑

i∈I

⊕N (Oi )
)⊥
�2

(by Lemma 3.2)

= N ( ⊕

i∈I

Oi
)⊥ (by Lemma 3.5 (a)).

��
Next we discuss the properties injectivity, surjectivity and invertibility of block

diagonal operators between Hilbert direct sums.

Proposition 3.8 Let
⊕

i∈I Oi ∈ B
((∑

i∈I ⊕Vi
)
�2

,
( ∑

i∈I ⊕Wi
)
�2

)
. Then

(a)
⊕

i∈I Oi is injective if and only if Oi is injective for all i ∈ I .
(b) If

⊕
i∈I Oi is surjective, then Oi is surjective for all i ∈ I .

(c) If Oi is surjective for all i ∈ I and if the family (O†
i )i∈I is completely bounded,

then
⊕

i∈I Oi is surjective.
(d) If

⊕
i∈I Oi is invertible, then Oi is invertible for all i ∈ I and

( ⊕

i∈I

Oi

)−1 =
⊕

i∈I

O−1
i . (13)

(e) If Oi is invertible for all i ∈ I and if (O−1
i )i∈I is completely bounded, then also⊕

i∈I Oi is invertible and (13) holds.

Proof (a) follows immediately from Lemma 3.5 (a).
(b) Assume that

⊕
i∈I Oi is surjective and choose i ∈ I arbitrary. Then for any gi ∈

Wi , (. . . , 0, 0, gi , 0, 0, ...) ∈ (∑
i∈I ⊕Wi

)
�2
and by assumption there exists some

( fi )i∈I ∈ (∑
i∈I ⊕Vi

)
�2

such that
⊕

i∈I Oi ( fi )i∈I = (. . . , 0, 0, gi , 0, 0, ...).
This implies Oi fi = gi , hence Oi is surjective.

(c) We have
⊕

i∈I O†
i ∈ B(

(
∑

i∈I ⊕Wi )�2 , (
∑

i∈I ⊕Vi )�2
)
by Lemma 3.3. More-

over, by properties of pseudo-inverses,O†
i is a right-inverse ofOi onR(Oi ) = Wi

(i ∈ I ). Therefore, by component-wise definition and Lemma 3.4 (c),
⊕

i∈I O†
i

is a right-inverse of
⊕

i∈I Oi on
( ∑

i∈I
⊕

Wi
)
�2
. In particular, for any (gi )i∈I ∈(∑

i∈I
⊕

Wi
)
�2
, we can find ( fi )i∈I := (O†

i gi )i∈I ∈ (∑
i∈I

⊕
Vi

)
�2
, such that⊕

i∈I Oi ( fi )i∈I = (gi )i∈I , i.e.
⊕

i∈I Oi is surjective.
(d) By (a) and (b), Oi is bijective for every i ∈ I . Moreover, since

⊕
i∈I Oi is

invertible, it is bounded from below by some constant m > 0, which implies
that Oi is bounded from below by m for all i ∈ I . Consequently, (O−1

i )i∈I is
completely bounded by m−1, hence

⊕
i∈I O−1

i is well-defined and bounded and
obviously a left- and right-inverse of

⊕
i∈I Oi .
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(e) Since (O−1
i )i∈I = (O†

i )i∈I is completely bounded,wemay apply (a) and (c) to see
that

⊕
i∈I Oi is bijective and thus invertible. Moreover

⊕
i∈I O−1

i is well-defined
and bounded and (13) clearly holds.

��

Example 3.9 Let I = N and let Vi = Wi �= {0} for all i ∈ I . For every i ∈ I , we
define

Oi : Vi −→ Vi , Oi := 1√
i
IVi .

For each i we have ‖Oi‖ ≤ 1, i.e. the family (Oi )i∈I is completely bounded by 1.
Thus, by Lemma 3.3,

⊕
i∈I Oi : (∑

i∈I ⊕Vi
)
�2

−→ ( ∑
i∈I ⊕Vi

)
�2
is a well-defined

and bounded operator.

(a) Let us reconsider Lemma 3.5 (b). We give an example of an element g ∈(∑
i∈I ⊕Vi

)
�2
, which is contained in

(∑
i∈I ⊕R(Oi )

)
�2
but not inR( ⊕

i∈I Oi
)
:

For every i ∈ I , choose some normalized vector hi ∈ Vi and set fi := hi√
i

∈ Vi

and gi := hi
i ∈ Vi . Clearly we have Oi fi = gi for each i ∈ I . Observe that

g = (gi )i∈I ∈ (∑
i∈I

⊕
Vi

)
�2
, since ‖g‖2

(
∑

i∈I ⊕Vi )�2
= ∑

i∈N

1
i2

= π2

6 . In partic-

ular, g ∈ ( ∑
i∈I ⊕R(Oi )

)
�2
. On the other hand, f = ( fi )i∈I /∈ (

∑
i∈I

⊕
Vi )�2 ,

since ‖ f ‖2
(
∑

i∈I ⊕Vi )�2
= ∑

i∈N

1
i = ∞. However, g /∈ R( ⊕

i∈I Oi
)
, since, by

component-wise definition, f is the only possible candidate to be mapped onto g
by

⊕
i∈I Oi , while f /∈ (∑

i∈I ⊕Vi
)
�2
.

(b) We also reconsider Proposition 3.8 (c). At first glance, one might guess that if
(Oi )i∈I is a completely bounded family of surjective operators, then

⊕
i∈I Oi

has to be surjective as well. However, the above example demonstrates the impor-
tance of the (in this case missing) condition that (O†

i )i∈I is completely bounded:
The operators Oi = 1√

i
IVi are not only surjective and completely bounded, but

also injective. However,
⊕

i∈I Oi is not surjective as shown above. Observe that
‖O†

i ‖ = ‖O−1
i ‖ = √

i , i.e. the family (O†
i )i∈I fails to be completely bounded.

4 Fusion frame systems and related operators

We are now prepared to prove relations between the (fusion) frames associated to a
fusion frame system in terms of their associated synthesis, analysis and frame opera-
tors.
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4.1 Operator identities for fusion frame systems

Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system with corresponding global frame vϕ =

(viϕi j )i∈I , j∈Ji . The representation space of vϕ is the space

�2
(⊎

i∈I

Ji
) :=

{
(ci j )i∈I , j∈Ji : ci j ∈ C,

∑

i∈I

∑

j∈Ji

|ci j |2 < ∞
}
,

which clearly is a Hilbert space with respect to the inner product 〈(ci j )i∈I , j∈Ji ,

(di j )i∈I , j∈Ji 〉 = ∑
i∈I

∑
j∈Ji

ci j di j . We observe that norm of (ci j )i∈I , j∈Ji ∈
�2(

⊎
i∈I Ji ), which is given by

‖(ci j )i∈I , j∈Ji ‖ = (∑

i∈I

∑

j∈Ji

|ci j |2
)1/2

,

equals the norm of (ci )i∈I ∈ ( ∑
i∈I ⊕�2(Ji )

)
�2
, where ci = (ci j ) j∈Ji ∈ �2(Ji ). In

particular, we obtain the following result, see [19] for more details.

Proposition 4.1 The Hilbert spaces �2
(⊎

i∈I Ji
)

and
( ∑

i∈I ⊕�2(Ji )
)
�2

are isomet-
rically isomorphic.

Recall, that the definition of a fusion frame system implies that the family (Dϕ(i) )i∈I

is completely bounded by
√

B. This observation begs for an application of our results
from Section 3. Indeed, the link between the global frame vϕ = (viϕi j )i∈I , j∈Ji , the
fusion frame V = (Vi , vi )i∈I and the local frames ϕ(i) = (ϕi j ) j∈Ji corresponding to
the fusion frame system (Vi , vi , ϕ

(i))i∈I is mirrored by the operator identities below.
We note that identities (14) and (15) also appear in [18], their finite-dimensional
versions can be found in [17]. However, for the convenience of the reader, we state a
full proof.

Proposition 4.2 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system and vϕ be the corre-

sponding global frame. Then the following hold:

Dvϕ = DV

⊕

i∈I

Dϕ(i) (14)

Cvϕ = (⊕

i∈I

Cϕ(i)

)
CV (15)

Svϕ = DV
( ⊕

i∈I

Sϕ(i)

)
CV . (16)

Proof If c = (ci j )i∈I , j∈Ji ∈ �2(
⊎

i∈I Ji ) ∼= (∑
i∈I ⊕�2(Ji )

)
l2 , then ci = (ci j ) j∈Ji ∈

�2(Ji ) for every i ∈ I . Since the family (Dϕ(i) )i∈I is completely bounded by
√

B,
Lemma 3.3 guarantees that

⊕
i∈I Dϕ(i) is well-defined and bounded, i.e. that

(Dϕ(i)ci )i∈I ∈ (∑

i∈I

⊕Vi
)
�2

.
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Therefore we may write

Dvϕc =
∑

i∈I

∑

j∈Ji

ci jviϕi j =
∑

i∈I

vi Dϕ(i)ci = DV

⊕

i∈I

Dϕ(i)c,

which shows (14). Applying Lemma 3.4 yields

Cvϕ = D∗
vϕ =

(
DV

⊕

i∈I

Dϕ(i)

)∗

=
(⊕

i∈I

Dϕ(i)

)∗
D∗

V

=
(⊕

i∈I

D∗
ϕ(i)

)
D∗

V =
(⊕

i∈I

Cϕ(i)

)
CV

and

Svϕ = DvϕCvϕ = DV

( ⊕

i∈I

Dϕ(i)

)(⊕

i∈I

Cϕ(i)

)
CV

= DV

( ⊕

i∈I

Dϕ(i)Cϕ(i)

)
CV = DV

( ⊕

i∈I

Sϕ(i)

)
CV .

��
For fusion Riesz bases, Proposition 4.2, Theorem 2.2 and Proposition 3.8 (e) imply

the following:

Proposition 4.3 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system and vϕ be its corre-

sponding global frame. If in addition (Vi , vi )i∈I is a fusion Riesz basis, then

S−1
vϕ = C−1

V

(⊕

i∈I

S−1
ϕ(i)

)
D−1

V . (17)

Considering the previous result leads to the question, whether we can replace C−1
V

and D−1
V in (17) by C†

V and D†
V respectively, and obtain a generalization of Proposi-

tion 4.3 to fusion frame systems, where the associated fusion frame is not necessarily
a fusion Riesz basis. A positive answer to this question can be given by adding a
technical assumption:

Proposition 4.4 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system and vϕ be the corre-

sponding global frame. If

πVi S−1
V Svϕ = Sϕ(i)πVi (∀i ∈ I ), (18)

then

S−1
vϕ = C†

V

(⊕

i∈I

S−1
ϕ(i)

)
D†

V .
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Proof For every f ∈ H we have

C†
V

(⊕

i∈I

S−1
ϕ(i)

)
D†

V Svϕ f = S−1
V DV

(⊕

i∈I

S−1
ϕ(i)

)
CV S−1

V Svϕ f

= S−1
V

∑

i∈I

S−1
ϕ(i)v

2
i πVi S−1

V Svϕ f

= S−1
V

∑

i∈I

S−1
ϕ(i)v

2
i Sϕ(i)πVi f (by (18))

= S−1
V

∑

i∈I

v2i πVi f

= S−1
V SV f = f .

This yields the claim. ��

Example 4.5 (a) We show that if the fusion frame associated to a fusion frame system
is a fusion Riesz basis, then (18) is satisfied: Let (Vi , vi , ϕ

(i))i∈I be a fusion frame
system with corresponding global frame vϕ. It can be shown [27] that the associated
fusion frame V is a fusion Riesz basis if and only if v2i πVi S−1

V πVj = δi jπVj for all
i, j ∈ I . The latter implies (18), since by Proposition 4.2, for all f ∈ H we have

πVi S−1
V Svϕ f = πVi S−1

V DV
(⊕

i∈I

Sϕ(i)

)
CV f

= v2i πVi S−1
V

(
v−2

i

∑

j∈I

πVj v
2
j Sϕ( j)πVj f

)

= πVi Sϕ(i)πVi f = Sϕ(i)πVi f .

(b) We give an example of a fusion frame system fulfilling (18), while its associated
fusion frame is not a fusion Riesz basis: Let (Vi , vi , ϕ

(i))i∈I be a fusion frame system
with corresponding global frame vϕ, and assume that all local framesϕ(i) are tightwith
respect to the same frame bound A. Then, by Corollary 4.10, this implies Svϕ = A ·SV .
Therefore, for all i ∈ I we have

πVi S−1
V Svϕ = πVi · A = A · πVi = Sϕ(i)πVi .

Note that the associated fusion frame V does not need to be a fusion Riesz basis.

Lemma 4.6 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system. Then

⊕
i∈I Dϕ(i) is surjec-

tive and

( ⊕

i∈I

Dϕ(i)

)† =
⊕

i∈I

D†
ϕ(i) =

⊕

i∈I

C̃
ϕ(i) . (19)
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If all local frames ϕ(i) are Riesz bases, then
⊕

i∈I Dϕ(i) is invertible and it holds

( ⊕

i∈I

Dϕ(i)

)−1 =
⊕

i∈I

D−1
ϕ(i) =

⊕

i∈I

C̃
ϕ(i) .

Proof By Theorem 2.1, each Dϕ(i) is surjective. Moreover, the family (D†
ϕ(i) )i∈I =

(Cϕ(i) S−1
ϕ(i) )i∈I is completely bounded by

√
B/A. By Proposition 3.8 (c), this implies

that
⊕

i∈I Dϕ(i) is surjective. Therefore,
(⊕

i∈I Dϕ(i)

)∗ = ⊕
i∈I D∗

ϕ(i) = ⊕
i∈I Cϕ(i)

has closed range. In particular

⊕

i∈I

D†
ϕ(i) =

⊕

i∈I

(Cϕ(i) S−1
ϕ(i) )

=
( ⊕

i∈I

Cϕ(i)

)( ⊕

i∈I

S−1
ϕ(i)

)

has closed range, since it is a composition of bounded closed range operators. Now,
an application of Proposition 3.7 yields (19). The second statement can be shown
similarly by applying Proposition 3.8 (e). ��

As a consequence of the previous lemma,we obtain operator identities for the fusion
frame-relatedoperators of a fusion frame system, similar to those ofProposition4.2.By
multiplying identity (14) from the right with

( ⊕
i∈I Dϕ(i)

)† = ⊕
i∈I (Cϕ(i) S−1

ϕ(i) ), we
obtain (20) (see also [17, 18]). Proceeding analogously to the proof of Proposition 4.2,
we immediately obtain (21) and (22):

Proposition 4.7 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system and vϕ its corresponding

global frame. Then

DV = Dvϕ

⊕

i∈I

(Cϕ(i) S−1
ϕ(i) ) (20)

CV =
⊕

i∈I

(S−1
ϕ(i) Dϕ(i) )Cvϕ (21)

SV = Dvϕ

⊕

i∈I

(Cϕ(i) S−2
ϕ(i) Dϕ(i) )Cvϕ. (22)

4.2 Properties preserved in fusion frame systems

Our results fromSection 4.1 enable us to examine fusion frame systems in termsof their
associated frame-related operators. This is particularly interesting, since the properties
of these operators are directly linked to the properties of their respective frames. In this
spirit, we prove the following characterization by using operator theoretic arguments.
We remark that the implication (ii) ⇒ (i) has been independently proved in [27] via
another approach.
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Theorem 4.8 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system and vϕ be the correspond-

ing global frame. Then the following are equivalent:

(i) vϕ is a Riesz basis.
(ii) (Vi , vi )i∈I is a fusion Riesz basis and ϕ(i) is a Riesz basis for every i ∈ I .

In particular, if V = (Vi , vi )i∈I is a fusion Riesz basis with fusion Riesz bounds αV

and βV , then αvϕ = αV · A and βvϕ = βV ·B are Riesz bounds for vϕ. Conversely, if vϕ

is a Riesz basis with Riesz bounds αvϕ and βvϕ , then αV = Avϕ/B and βV = Bvϕ/A
are fusion Riesz bounds for V .

Proof Hereinafter, we implicitly apply Theorems 2.1 and 2.2 several times.
(i) ⇒ (ii): If vϕ is a Riesz basis, then Dvϕ = DV

⊕
i∈I Dϕ(i) is bounded and

bijective. In particular,
⊕

i∈I Dϕ(i) is injective, which implies by Proposition 3.8 that
Dϕ(i) is bounded and bijective for every i ∈ I . This is equivalent to ϕ(i) being a
Riesz basis for every i ∈ I . Moreover, by Proposition 4.7, we now have that DV =
Dvϕ

⊕
i∈I (Cϕ(i) S−1

ϕ(i) ) is a composition of bounded and bijective operators and thus
itself is bounded and bijective. Therefore, (Vi , vi )i∈I is a fusion Riesz basis.

(ii) ⇒ (i): If all ϕ(i) are Riesz bases and if (Vi , vi ) is a fusion Riesz basis, then DV

and Dϕ(i) (i ∈ I ) are bounded and bijective. ByLemma4.6,
⊕

i∈I Dϕ(i) is bounded and
bijective. Therefore the composition Dvϕ = DV

⊕
i∈I Dϕ(i) is bounded and bijective,

i.e. vϕ is a Riesz basis.
The claim for the Riesz bounds follows from Theorem 2.4. ��
Consider a fusion frame system (Vi , vi , ϕ

(i))i∈I with corresponding global frame
vϕ. In [12], the authors posed the question, when centralized reconstruction equals
distributed reconstruction, i.e. when the dual frame (S−1

V S−1
ϕ(i)viϕi j )i∈I , j∈Ji of vϕ coin-

cides with the canonical dual frame (S−1
vϕ viϕi j )i∈I , j∈Ji . In [12] the authors showed

that this holds, if (Vi )i∈I is an orthonormal fusion basis. Observe that this also is true
if we instead assume that vϕ is a Riesz basis, since, in this case, the canonical dual is
the unique dual frame for vϕ [3] and the question becomes trivial. In the next result,
we only assume (Vi , vi )i∈I to be a fusion Riesz basis, which is weaker than both of
the previously mentioned assumptions (compare to Theorem 4.8) and show that also
in this case centralized reconstruction equals distributed reconstruction.

Theorem 4.9 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system and vϕ be its corresponding

global frame. If V = (Vi , vi )i∈I is a fusion Riesz basis, then (S−1
V S−1

ϕ(i)viϕi j )i∈I , j∈Ji

is the canonical dual frame of vϕ, i.e.

(S−1
vϕ viϕi j )i∈I , j∈Ji = (S−1

V S−1
ϕ(i)viϕi j )i∈I , j∈Ji .

Proof By Lemma 2.3, we have D−1
V viϕi j = (. . . , 0, 0, ϕi j , 0, 0, ...) (ϕi j in the i-th

entry). By applying Proposition 4.3, this yields
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S−1
vϕ viϕi j = C−1

V

( ⊕

k∈I

S−1
ϕ(k)

)
D−1

V viϕi j

= C−1
V

( ⊕

k∈I

S−1
ϕ(k)

)
(. . . , 0, 0, ϕi j , 0, 0, ...)

= C−1
V (. . . , 0, 0, S−1

ϕ(i)ϕi j , 0, 0, ...)

= C−1
V D−1

V DV (. . . , 0, 0, S−1
ϕ(i)ϕi j , 0, 0, ...)

= S−1
V S−1

ϕ(i)viϕi j .

Since this is true for all i ∈ I and j ∈ Ji , the proof is finished. ��
We conclude with the following collecting results on inheritable structures in fusion

frame systems. Recall that we denote the common frame bounds of the local frames
in a fusion frame system by A and B.

Corollary 4.10 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system for H and vϕ be the

corresponding global frame.

(1) [11] If ϕ(i) is Parseval for every i ∈ I , then Svϕ = SV .
(2) If ϕ(i) is A-tight for every i ∈ I , then Svϕ = A · SV .
(3) If ϕ(i) is Ai -tight for every i ∈ I , then Svϕ = SW , where W = (Vi ,

√
Aivi )i∈I .

Proof (2) By (16), Svϕ = DV
( ⊕

i∈I AIVi

)
CV = DV AI(

∑
i∈I ⊕Vi )�2

CV =
ADV CV = ASV . (3) follows similarly by observing that for any f ∈ H we have
Svϕ f = DV

( ⊕
i∈I AiIVi

)
CV f = ∑

i∈I Aiv
2
i πVi f = SW f . ��

As an immediate consequence we obtain the following:

Corollary 4.11 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system for H and vϕ be the

corresponding global frame.

(1) [12] If ϕ(i) is Parseval for every i ∈ I , then V is Parseval if and only if vϕ is
Parseval.

(2) [12] If ϕ(i) is Parseval for every i ∈ I , then V is A-tight if and only if vϕ is A-tight.
(3) If ϕ(i) is A-tight for every i ∈ I , then V is tight if and only if vϕ is tight.
(4) In case H is a RKHS: If ϕ(i) is Parseval for every i ∈ I , then V is painless if and

only if vϕ is painless.
(5) In case H is a RKHS: If ϕ(i) is A-tight for every i ∈ I , then V is painless if and

only if vϕ is painless.

We can also show a converse of Corollary 4.10 with restrictions to the fusion frame
V .

Corollary 4.12 Let (Vi , vi , ϕ
(i))i∈I be a fusion frame system and vϕ be the corre-

sponding global frame.

(1) If Svϕ = SV , then
⊕

i∈I (IVi − Sϕ(i) ) = 0 on R(CV ). In particular, if V is a fusion

Riesz basis and Svϕ = SV , then ϕ(i) is Parseval for every i ∈ I .
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(2) If Svϕ = A · SV , then
⊕

i∈I (A · IVi − Sϕ(i) ) = 0 on R(CV ). In particular, if V is

a fusion Riesz basis Svϕ = A · SV , then ϕ(i) is A-tight for every i ∈ I .
(3) If Svϕ = SW , where W = (Vi ,

√
Aivi )i∈I , then

⊕
i∈I (Ai · IVi − Sϕ(i) ) = 0 on

R(CV ). In particular, if V is a fusion Riesz basis and Svϕ = SW , then ϕ(i) is
Ai -tight for every i ∈ I .

Proof (1) By (16), we have SV − Svϕ = DV
⊕

i∈I (IVi − Sϕ(i) )CV = 0. This implies
that

0 =
〈
DV

⊕

i∈I

(IVi − Sϕ(i) )CV f , f
〉

H

=
〈⊕

i∈I

(IVi − Sϕ(i) )CV f , CV f
〉

(
∑

i∈I ⊕Vi )�2
(∀ f ∈ H).

Since
⊕

i∈I (IVi − Sϕ(i) ) is self-adjoint by Lemma 3.4 (b), this implies
⊕

i∈I (IVi −
Sϕ(i) ) = 0 on R(CV ). If V additionally is a fusion Riesz basis, then R(CV ) =
(
∑

i∈I ⊕Vi )�2 , which implies Sϕ(i) = IVi for all i ∈ I . (2) and (3) can be shown
analogously. ��
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