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Abstract
The exponential sampling formula has some limitations. By incorporating a Mellin
bandlimited multiplier, we extend it to a wider class of functions with a series that
converges faster. This series is a generalized exponential sampling series with some
interesting properties. Moreover, under a side condition, any generalized exponential
sampling series that is interpolating can be generated by a Mellin bandlimited mul-
tiplier. For an error analysis, we consider a truncated series with 2N + 1 terms and
look for a highest speed of convergence as N → ∞. We show by using a certain
non-bandlimited multiplier, which introduces in addition an aliasing error, that we can
achieve a higher rate of convergence to the function, namely O(e−αN ) with α > 0,
than with the truncated series of an exact formula. The results are illustrated by three
examples.
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1 Introduction

The exponential sampling formula was introduced in a formal way in [13, 24] in
connection with problems related to optical physics phenomena like light-scattering,
diffraction and others. Later, a rigorous treatment was first performed in [15, 16] for
functions f belonging to the Mellin–Paley–Wiener spaces B1

c,πT and B2
c,πT , with

c ∈ R and T > 0 (see Sect. 2 for the definition of these spaces). The latter formula
is contained in the following theorem, which may serve as the starting point of this
paper. We present this result in a notation that will be specified in Sect. 2; also see [16,
Theorem 5.2] or [3, Theorem 1].

Theorem A Let f belong to the Mellin–Paley–Wiener space B2
c,πT , where c ∈ R and

T > 0. Then

f (r) =
∑

k∈Z
f (ek/T ) linc/T (e−kr T ) (r > 0).

The series converges uniformly on compact subsets of the positive part of the real line.

In Mellin analysis, this is the counter-part of the familiar sampling formula of
Whittaker–Kotel’nikov–Shannon (WKS for short). As the latter, Theorem A is of
central importance in several ways but it also has some limitations in theoretical as
well as in practical use. For example, the assumption that the function f is bandlimited
in the sense ofMellin, imposes a severe restriction, as one recognizes by looking at the
Mellin version of the Paley–Wiener theorem (see [4, 5]). It excludes all functions f for
which lim supr→+∞ |rc f (r)| > 0 or lim supr→0+ |rc f (r)| > 0 let alone unbounded
functions. Furthermore, the series may converge very slowly. We shall see that these
deficiencies can be overcome by incorporating a Mellin bandlimited multiplier in the
series.

This technique can be considered within a more general framework. Motivated by
the development in the study of the WKS sampling series, there was introduced in
[11] (see also [10]) the so-called generalized exponential sampling series, in which
the function linc/T is replaced by a general continuous function ϕ satisfying suitable
assumptions (see Definition 4 below). Thus the generalized exponential sampling
series of a function f with w instead of T takes the form

(
Sϕ
w f

)
(r) :=

∑

k∈Z
f
(
ek/w

)
ϕ(e−krw) (r > 0, w > 0). (1)

The function ϕ is called the kernel of (Sϕ
w f )(r).

In general, such a series does not reproduce f as the series in Theorem A, but it
approximates continuous, bounded functions f in the sense that

lim
w→∞(Sϕ

w f )(r) = f (r)
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(see [11, Theorem 3.2]). For finite w, we have f (r) = (Sϕ
w f )(r) + (Ew f )(r) with an

approximation error (Ew f )(r). A further error occurs in computations since we will
have to truncate the series (Sϕ

w f )(r).
The present paper can also be seen as a study of the following questions:

1. How can we find kernels ϕ for which the corresponding generalized exponential
sampling series improves upon the series of Theorem A?

2. What is an appropriate kernelϕ for establishing an efficient algorithmby truncating
the corresponding generalized exponential sampling series?

We shall answer both questions by adopting a multiplier technique that was effectively
developed for the WKS sampling series (see [17–20, 22, 25–29]).

This paper is organized as follows. After fixing our notation and recalling some pre-
liminary results in the next section, we devote Sect. 3 toMellin bandlimitedmultipliers
ψ such that ψ(1) = 1, obtaining a formula

f (r) =
∑

k∈Z
f
(
ek/w

)
ψ

(
e−krw

)
linc/w

(
e−krw

)
(r ∈ R

+). (2)

that holds for awider class of functions f than the corresponding formula ofTheoremA
(see Theorem 3 below). The generalized exponential sampling series (Sψ lin

w f )(r),
occurring on the right-hand side for c = 0, has several remarkable properties (see
Theorem 5) and is even of interest in the case of functions f for which (2) is violated
since this series always interpolates with respect to the sample points. Moreover,
there is a converse result: Any generalized sampling series (1) which interpolates
with respect to the sample points and has a Mellin bandlimited kernel ϕ satisfying a
mild side condition can be obtained from the series of Theorem A by incorporating
a Mellin bandlimited multiplier ψ , that is, ϕ = ψ lin (Theorem 6). This establishes
an interesting link between the classical and the generalized sampling series. We also
study the approximation power of (Sψ lin

w f )(r) for bounded, continuous functions f
and express it in terms of best approximation by functions from a Mellin–Bernstein
space (Proposition 7).

Particular attention is paid to the truncation error which occurs when the series
(Sψ lin

w f )(r) is reduced to the sum (Sψ lin
w,N f )(r) containing the 2N + 1 terms whose

sample points are closest to r . The obtained results include classes of unbounded
functions f (Theorem 9). As one would suggest, the speed of convergence to zero
of the truncation error, which may be interpreted as the speed of an algorithm that
approximates f (r) from 2N + 1 samples, depends on the decay of ψ(r) as r → 0+
and r → +∞. This leads us to the question as to how fast a Mellin bandlimited
function ψ can decay if ψ(1) = 1. With an answer adopted from [21], we shall see
that one can achieve convergence of order O(e−N/(log N )γ ) with γ > 1 as N → ∞,
but it is in general not possible to have O(e−αN ) with α > 0.

In Sect. 4 we overcome this limitation. Inspired by results for the WKS sampling
series, we use a multiplier that is based on a Gaussian function. It is not Mellin
bandlimited and the corresponding generalized exponential sampling series cannot
reproduce Mellin bandlimited functions f , but approximates them with a so-called
aliasing error which adds to the truncation error. Nevertheless, one has the amazing
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phenomenon that the sum of these two errors converges to zero with a higher rate than
the truncation error of an exact formula (Theorem 11, Corollaries 2 and 3).

Finally, in Sect. 5, we carry out numerical experiments for three examples of admis-
sible functions f in order to illustrate someof the results of Sects. 3 and 4.An algorithm
based on the results of Sect. 4 may be the method of choice in computational expo-
nential sampling.

As to the methods employed in this paper, we mention that we use only tools form
Mellin analysis which are based on the theory of polar-analytic functions, introduced
in [5] and further developed in [6–9] (also see the forthcoming book [10]).

2 Basic notations and preliminary results

In what follows, we denote by N, and Z the sets of positive integers and integers,
respectively, by R and R+ the sets of real and positive real numbers, respectively, and
by C the set of complex numbers.

Let C(R+) be the space of all continuous functions defined on R
+.

For 1 ≤ p < +∞, let L p(R+) be the space of all Lebesgue measurable and
p-integrable complex-valued functions defined on R

+ endowed with the usual norm
‖ f ‖p. Analogous notations hold for functions defined on R.

For p = 1 and c ∈ R, we introduce the space (see [14])

Xc = { f : R+ → C : f (·)(·)c−1 ∈ L1(R+)}

endowed with the norm

‖ f ‖Xc := ‖ f (·)(·)c−1‖1 =
∫ +∞

0
| f (u)|uc−1du.

More generally, let X p
c denote the space of all functions f : R+ → C such that

f (·)(·)c−1/p ∈ L p(R+), where 1 < p < ∞. Finally, for p = ∞, we define X∞
c as

the space comprising all measurable functions f : R+ → C such that ‖ f ‖X∞
c

:=
supx>0 xc| f (x)| < ∞; see [16] for p = 2 and [10] for general p.

For h ∈ R
+ and c ∈ R, the Mellin translation operator τ c

h , applying to functions
f : R+ → C, is defined by

(τ c
h f )(x) := hc f (hx) (x ∈ R

+).

Setting τh := τ 0h , we have (τ c
h f )(x) = hc(τh f )(x) and ‖τ c

h f ‖Xc = ‖ f ‖Xc .

The Mellin transform of a function f ∈ Xc is the linear and bounded operator
defined by (see, e.g., [14])

Mc[ f ](s) ≡ [ f ]∧Mc
(s) :=

∫ +∞

0
us−1 f (u)du (s = c + i t, t ∈ R).
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More generally, for 1 < p ≤ 2, the Mellin transform M p
c of f ∈ X p

c is given by
(see [16] for p = 2 and [10] for general p)

M p
c [ f ](s) ≡ [ f ]∧

M p
c
(s) = l.i.m.ρ→+∞

∫ ρ

1/ρ
f (u)us−1du,

for s = c + i t, in the sense that

lim
ρ→∞

∥∥∥∥M p
c [ f ](c + i t) −

∫ ρ

1/ρ
f (u)us−1du

∥∥∥∥
L p′

(c+iR)

= 0,

where p′ is the conjugate exponent of p, that is, 1/p + 1/p′ = 1.
The basic tool for a self-contained and independent treatment of Mellin analysis

is the theory of polar-analytic functions. The notion of polar analyticity was first
introduced in [5], and subsequently the theory of these functions was developed in
the papers [6–9]; also see the forthcoming book [10]. Here we recall the definition of
this notion. Let H := {(r , θ) : r > 0, θ ∈ R} be the polar plane. By D we denote a
domain in H, that is, a nonempty, open and connected subset of H.

Definition 1 We say that f : D → C is polar-analytic onD if for every (r0, θ0) ∈ D
the limit

lim
(r ,θ)→(r0,θ0)

f (r , θ) − f (r0, θ0)

reiθ − r0eiθ0
=: (Dpol f )(r0, θ0)

exists and is the same howsoever (r , θ) approaches (r0, θ0) within D .

It is easy to see that, writing f (r , θ) = u(r , θ) + iv(r , θ) with u, v being the real and
imaginary parts of f , the function f is polar-analytic onD if and only if u and v have
continuous partial derivatives on D which satisfy the Cauchy–Riemann equations in
polar form (see, e.g., [7, 10]).

Next, we recall the definitions of two fundamental function spaces.

Definition 2 For c ∈ R, T > 0 and p ∈ [1,+∞] the Mellin–Bernstein space B p
c,T

comprises all functions f : H → C with the following properties:

(i) f is polar-analytic on H;
(ii) f (·, 0) ∈ X p

c ;
(iii) there exists a positive constant C f such that

| f (r , θ)| ≤ C f r−ceT |θ | ((r , θ) ∈ H).

It is easily seen that the following inclusions hold:

B
p
c,T1

⊂ B
p
c,T2

(0 < T1 < T2 < +∞, 1 ≤ p ≤ +∞)

and

B
p1
c,T ⊂ B

p2
c,T (T ∈ R

+, 1 ≤ p1 < p2 ≤ +∞).
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Furthermore, the Mellin–Bernstein spaces are translation invariant in the following
sense. If f ∈ B

p
c,T and (r0, θ0) is any point of H, then the function

f(r0,θ0) : (r , θ) �−→ rc
0 f (r0r , θ + θ0) (3)

also belongs toB p
c,T . Note that f(r0,θ0) is obtained from f by theMellin translation τ c

r0
with respect to the first variable and an ordinary translation by θ0 with respect to the
second variable. For a proof one has to verify that f(r0,θ0) satisfies conditions (i)–(iii)
of Defintion 2. For (i) one can use the Cauchy–Riemann equations in polar form. For
(ii) one may employ a result in [5, Theorem 4.2], which yields that

‖ f(r0,θ0)(·, 0)‖X p
c

≤ eT |θ0|‖ f (·, 0)‖X p
c
, (4)

and it is easily seen that (iii) holds with C f(r0,θ0)
= eT |θ0|C f .

Definition 3 For c ∈ R, T > 0 and p ∈ [1, 2], the Mellin–Paley–Wiener space B p
c,T

comprises all functions f ∈ C(R+) ∩ X p
c which are Mellin bandlimited to [−T , T ],

that is, [ f ]∧
M p

c
(c + i t) = 0 a.e. for |t | > T .

The following basic result is aMellin version of the classical Paley–Wiener theorem
(see [5, 10]).

Theorem 1 A function ϕ ∈ X2
c belongs to the Mellin–Paley–Wiener space B2

c,T if and

only if there exists a function f ∈ B2
c,T such that f (·, 0) = ϕ(·).

In connection with sampling formulas, the second index of the Mellin–Bernstein
spaces and the Mellin–Paley–Wiener spaces is often expressed as a multiple of π to
the benefit that the sample points will contain no π . Subsequently we want to stick to
this custom.

A second basic result is the following version of the Parseval formula in Mellin
analysis (see [3]).

Theorem 2 Let f , g ∈ B2
c,πT . Then

∫ ∞

0
f (u)g(u)u2c du

u
= 1

T

∞∑

k=−∞
f (ek/T )g(ek/T )e2ck/T .

We conclude this section by recalling the sinc function, defined on C by

sinc z := sin(π z)

π z
if z ∈ C \ {0}, sinc 0 = 1.

It can be used to introduce the lin function by

linc(r) := r−c sinc(log r) (c ∈ R, r ∈ R
+).

We agree that lin(r) := lin0(r). By r−ce−icθ lin(reiθ ) for (r , θ) ∈ H, we obtain a
polar-analytic continuation of linc to the whole of H.
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3 AMellin bandlimitedmultiplier

We start with a lemma that will be useful for studying the convergence of the arising
exponential sampling series.

Lemma 1 Let 
 ∈ B2
0,πδ , where δ ∈ ]0, 1]. Then, for w > 0, we have

∑

k∈Z

∣∣∣
(e−krw,wθ) lin(e−krweiwθ )

∣∣∣ ≤ eπw(1+δ)|θ |‖
(·, 0)‖X2
0

((r , θ) ∈ H). (5)

The series converges uniformly on compact subsets of H.

Proof Using the notation (3), we may write


(e−krw,wθ) = 
(rw,wθ)(e
−k, 0).

By the translation invariance of the Mellin–Bernstein spaces and the Mellin-Paley–
Wiener theorem, we have


(rw,wθ)(·, 0) ∈ B2
0,πδ ⊆ B2

0,π .

Therefore the Mellin–Parseval formula (see [3, Theorem 4]) and (4) yield

(
∑

k∈Z

∣∣∣
(e−krw,wθ)

∣∣∣
2
)1/2

= ∥∥
(rw,wθ)(·, 0)
∥∥

X2
0

≤ eπδw|θ |‖
(·, 0)‖X2
0
. (6)

Analogously we conclude that

(
∑

k∈Z

∣∣∣lin(e−krweiwθ )

∣∣∣
2
)1/2

≤ eπw|θ |‖ lin ‖X2
0

= eπw|θ |.

Now (5) is an immediate consequence of the Cauchy–Schwarz inequality.
It remains to verify the assertion on uniform convergence. For N ∈ N, we have

again by the Cauchy–Schwarz inequality and (6) that

∑

|k|>N

∣∣∣
(e−krw,wθ) lin(e−krweiwθ )

∣∣∣

≤
⎛

⎝
∑

|k|>N

∣∣∣
(e−krw,wθ)

∣∣∣
2

⎞

⎠
1/2 ⎛

⎝
∑

|k|>N

∣∣∣lin(e−krweiwθ )

∣∣∣
2

⎞

⎠
1/2

≤ eπδw|θ |‖
(·, 0)‖X2
0

⎛

⎝
∑

|k|>N

∣∣∣lin(e−krweiwθ )

∣∣∣
2

⎞

⎠
1/2

.
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This shows that it suffices to prove the assertion on uniform convergence for∑
k∈Z

∣∣lin(e−krweiwθ )
∣∣2 only.

Now let C be a compact subset of H. There exists an integer m ∈ N such that
sup(r ,θ)∈C w |log r + iθ | ≤ m. Then for |k| > m we have

∣∣∣lin(e−krweiwθ )

∣∣∣ = |sin(πw(log r + iθ))|
|π(w(log r + iθ) − k)| ≤ eπm

π(|k| − m)

and so for N > m,

∑

|k|>N

∣∣∣lin(e−krweiwθ )

∣∣∣
2 ≤ 2e2πm

π2

∞∑

j=1

1

(N + j − m)2

≤ 2e2πm

π2

∫ ∞

N−m

dt

t2
= 2e2πm

π2(N − m)
.

Hence, given ε > 0, there exists an N ∈ N such that

∑

|k|>N

∣∣∣lin(e−krweiwθ )

∣∣∣
2

< ε

for (r , θ) ∈ C . This completes the proof. ��
Theorem 3 For δ ∈]0, 1[, let ψ ∈ B2

0,πδ such that ψ(1) = 1. Suppose that f ∈ B∞
c,πT ,

where c ∈ R and T > 0. Then for w = T /(1 − δ), we have

f (r , 0) =
∑

k∈Z
f (ek/w, 0)ψ(e−krw) linc/w(e−krw) (r ∈ R

+). (7)

The series converges absolutely and uniformly on compact subsets of R+.

Proof For any ρ ∈ R
+ serving as a parameter, consider the function ψ(ρw/(·)w).

It is easily verified that it belongs to B2
0,πδw. By Theorem 1, there exists a function


ρ ∈ B2
0,πδw such that 
ρ(r , 0) = ψ(ρw/rw) for all r ∈ R

+. Now we readily
see from the definition of Mellin–Bernstein spaces that f 
ρ ∈ B2

c,πw. Again by the
Mellin-Paley–Wiener theorem,

f (·, 0)
ρ(·, 0) = f (·, 0)ψ(ρw/(·)w) ∈ B2
c,πw.

Therefore Theorem A with T replaced by w applies to this function and yields

f (r , 0)ψ

(
ρw

rw

)
=

∑

k∈Z
f (ek/w, 0)ψ(ρwe−k) linc/w(e−krw).

This holds for any ρ ∈ R
+. Substituting ρ = r , we obtain (7).
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It remains to verify the assertion on convergence. Since

linc/w(e−krw) = r−ceck/w lin(e−krw),

we may rewrite the right-hand side of (7) as

r−c
∑

k∈Z
eck/w f (ek/w, 0)ψ(e−krw) lin(e−krw),

and so

∑

k∈Z

∣∣∣ f (ek/w, 0)ψ(e−krw) linc/w(e−krw)

∣∣∣

≤ r−c sup
k∈Z

∣∣∣eck/w f (ek/w, 0)
∣∣∣
∑

k∈Z

∣∣∣ψ(e−krw) lin(e−krw)

∣∣∣

≤ r−c‖ f (·, 0)‖X∞
c

∑

k∈Z

∣∣∣ψ(e−krw) lin(e−krw)

∣∣∣ .

Now the proof is completed by employing Lemma 1 with θ = 0. ��
Remark 1 Note that formula (7) of Theorem 3 remains true for all w > T /(1 − δ).
This is a consequence of the inclusions between Mellin–Bernstein spaces. Indeed,
if f ∈ B∞

c,πT , then f ∈ B∞
c,πT1

for all T1 > T and so Theorem 3 allows us to
set w = T1/(1 − δ). A corresponding observation holds for some of the subsequent
statements.

In the following we shall show that Theorem 3 can be extended in various ways. It
will suffice to consider the case c = 0 only. For if f ∈ B∞

c,πT , then

g : (r , θ) �−→
(

reiθ
)c

f (r , θ)

belongs to B∞
0,πT . Hence the reconstruction of f can be obtained by applying Theo-

rem 3with c = 0 to g and simplymultiplying both sides of the corresponding equation
(7) by r−c.

First we show that Theorem 3 can be extended to a reconstruction of f on the whole
of H. For this we need a corresponding extension of the multiplier ψ as guaranteed
by Theorem 1. We denote it by 
.

Theorem 4 For δ ∈ ]0, 1[, let 
 ∈ B2
0,πδ such that 
(1, 0) = 1. Suppose that f ∈

B∞
0,πT , where T > 0. Then for w = T /(1 − δ), we have

f (r , θ) =
∑

k∈Z
f (ek/w, 0)
(e−krw,wθ) lin(e−krweiwθ ) ((r , θ) ∈ H) .

The series converges absolutely and uniformly on compact subsets of H.
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Proof Since

sup
k∈Z

∣∣∣ f (ek/w, 0)
∣∣∣ ≤ ‖ f (·, 0)‖X∞

0
< ∞,

the assertion on the convergence follows from Lemma 1. Hence

g(r , θ) :=
∑

k∈Z
f (ek/w, 0)
(e−krw,wθ) lin(e−krweiwθ )

exists for all (r , θ) ∈ H and defines a continuous function g. We also note that, as a
function of (r , θ), each term of the series defining g is polar-analytic on H.

Now let R be any rectangle in H with its edges parallel to the axes of the (r , θ)

coordinate system and denote by ∂R its positively oriented boundary. Then, for any
N ∈ N,

∫

∂R

∑

|k|≤N

f (ek/w, 0)
(e−krw,wθ) lin(e−krweiwθ )eiθ (dr + irdθ) = 0

as a consequence of Cauchy’s theorem for polar-analytic functions (see [6, Theo-
rem 4.1]). On the other hand, given ε > 0, the uniform convergence on compact
subsets of H guarantees the existence of an integer N ∈ N such that

∣∣∣∣∣∣

∫

∂R

∑

|k|>N

f (ek/w, 0)
(e−krw,wθ) lin(e−krweiwθ )eiθ (dr + irdθ)

∣∣∣∣∣∣
< ε.

This allows us to conclude that

∫

∂R
g(r , θ)eiθ (dr + irdθ) = 0.

Now a Morera type theorem (see [6, Theorem 4.2]) implies that g is polar-analytic on
H. Then h := f − g is also polar-analytic on H and, as a consequence of Theorem 3,
we have h(r , 0) = 0 for all r ∈ R

+. Hence the identity theorem for polar-analytic
functions (see [7, Theorem 2]) implies that h is identically zero on H, as was to be
shown. ��

Generalized exponential sampling

Nowwewant to generalize Theorem 3 in another way. Setting ϕ := ψ lin and denoting
f (·, 0) simply by f , we may write the right-hand side of (7) for c = 0 as

(
Sϕ
w f

)
(r) :=

∑

k∈Z
f (ek/w)ϕ(e−krw) (r ∈ R

+). (8)
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Series of this formhave been studied under the name generalized exponential sampling
series (see [11], [12]). In order that (Sϕ

w f )(r) exists and approximates f (r) in some
sense, it was required that ϕ belongs to a class � which is defined as follows.

Definition 4 The class � comprises all continuous functions ϕ : R
+ → C with the

following properties: For every u ∈ R
+, we have

(i)
∑

k∈Z ϕ(e−ku) = 1,
(ii) supu∈R+

∑
k∈Z

∣∣ϕ(e−ku)
∣∣ < ∞,

(iii) limρ→∞
∑

|k−log u|>ρ

∣∣ϕ(e−ku)
∣∣ = 0,

uniformly with respect to u ∈ R
+.

For example, ifϕ ∈ �, then (Sϕ
w f )(r) exists for every bounded function f : R

+ →
C and limw→∞(Sϕ

w f )(r) = f (r) at each continuity point of f (see [11, Theorem3.2]).
In view of generalized exponential sampling, we can extend Theorem 3 as follows.

Theorem 5 For δ ∈ ]0, 1[, let ψ ∈ B2
0,πδ such that ψ(1) = 1. Set ϕ := ψ lin. Then

the following statements hold:

(a) ϕ ∈ �;
(b) ϕ log ∈ B2

0,π(1+δ);

(c) for each bounded function f : R
+ → C the series (8) converges absolutely and

uniformly on compact subsets of R+ and

sup
r∈R+

∣∣(Sϕ
w f

)
(r)

∣∣ ≤ ‖ψ‖X2
0
sup

r∈R+
| f (r)| ;

(d) for each bounded function f : R
+ → C the series (8) is interpolating with respect

to the sample points, that is,

(
Sϕ
w f

)
(e�/w) = f (e�/w) (� ∈ Z);

(e) for each f ∈ B∞
0,πw(1−δ), the restriction to R

+ is a fixpoint of Sϕ
w, that is,

Sϕ
w f (·, 0) = f (·, 0).

Proof Clearly ϕ is continuous. Since the constant function g(r , θ) ≡ 1 on H belongs
to any of the spacesB∞

0,T , for every T > 0, it follows from Theorem 3 applied to the
function g that

1 =
∑

k∈Z
ϕ(e−ku)

for all u ∈ R
+. As a consequence of Lemma 1 with w = 1 and θ = 0, we have

∑

k∈Z

∣∣∣ϕ(e−ku)

∣∣∣ ≤ ‖ψ‖X2
0

(u ∈ R
+).
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Next, let ρ ≥ 1 and denote by �ρ� the largest integer not exceeding ρ. Then, by the
Cauchy–Schwarz inequality and Theorem 2,

∑

|k−log u|>ρ

∣∣∣ϕ(e−ku)

∣∣∣ ≤
(

∑

k∈Z

∣∣∣ψ(e−ku)

∣∣∣
2
)1/2

⎛

⎝
∑

|k−log u|>ρ

∣∣∣lin(e−ku)

∣∣∣
2

⎞

⎠
1/2

≤ ‖ψ‖X2
0

⎛

⎝
∑

|k−log u|>ρ

1

π2(log u − k)2

⎞

⎠
1/2

≤
√
2

π
‖ψ‖X2

0

⎛

⎝
∞∑

n=�ρ�+1

1

n2

⎞

⎠
1/2

≤
√
2

π
‖ψ‖X2

0

(∫ ∞

�ρ�
dx

x2

)1/2

=
√
2

π
‖ψ‖X2

0

1

�ρ�1/2 .

This shows that the left-hand side converges uniformly to zero as ρ → ∞.Altogether,
we see that ϕ ∈ �.

Next we note that

ϕ(r) log r = ψ(r) lin r log r = ψ(r)
sin(π log r)

π
(r ∈ R

+).

Since ψ ∈ B2
0,πδ, there exists by Theorem 1 a function 
 ∈ B2

0,πδ such that ψ(r) =

(r , 0) and so the function �(r , θ) := 
(r , θ)

sin(π(log r+iθ))
π

belongs to B2
0,π(δ+1).

Again by Theorem 1, one has that ϕ(r) log r = �(r , 0) belongs to B2
0,π(δ+1), and so

(b) holds.
Assertion (c) is verified with the help of Lemma 1.
As regards (d), it suffices to note that if � ∈ Z and r = e�/w, then

ϕ(e−krw) = ϕ(e�−k) = ψ(e�−k) lin(e�−k)

= ψ(e�−k) sinc(� − k) = δ�,k

with Kronecker’s delta.
Finally assertion (e) is contained in Theorem 3. ��
It is remarkable that Theorem 5 has a converse. For this we need statements (b) and

(d) only. In fact, any generalized exponential sampling series (8) that is interpolating
and has a Mellin bandlimited ϕ satisfying (b) is a multiplier version of the sampling
series of Theorem A.

Theorem 6 A generalized exponential sampling series (8) has the properties (b) and
(d) of Theorem 5 if and only if there exists a ψ ∈ B2

0,πδ such that ψ(1) = 1 and
ϕ = ψ lin.
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Proof The sufficiency is already contained in Theorem 5.
Necessity. Suppose that statements (b) and (d) of Theorem 5 hold. Then, by

Theorem 1, there exists a function F ∈ B2
0,π(1+δ) such that F(r , 0) = ϕ(r) log r

for all r ∈ R
+. Now consider

G(r , θ) := π F(r , θ)

sin(π(log r + iθ))
. (9)

The denominator on the right-hand side has simple zeros at the points (e�, 0) for
� ∈ Z and is different from zero at all other points ofH. Hence G is polar-analytic on
H \ {(e�, 0) : � ∈ Z}. Since lin is bounded on R

+, we conclude from statement (d)
with w = 1 that

(
Sϕ
1 lin

)
(e�) =

∑

k∈Z
lin(ek)ϕ(e�−k) = ϕ(e�) = lin(e�). (10)

Thus

F(e�, 0) = ϕ(e�)� = sinc(�)� = 0

for all � ∈ Z. Hence the points (e�, 0) for � ∈ Z are all removable isolated singularities
of G, and so G has a continuation that is polar-analytic on the whole of H.

It is easily verified that

|sin(π(log r + iθ))| ≥ |sinh(πθ)| ≥ 1 − e−2π

2
eπ |θ | (|θ | ≥ 1). (11)

As a consequence of statement (b), we have

|F(r , θ)| ≤ CF eπ(1+δ)|θ | ((r , θ) ∈ H) (12)

with a constant CF depending on F only. Hence

|G(r , θ)| ≤ 2πCF

1 − e−2π eπδ|θ | (|θ | ≥ 1). (13)

Next, let N ∈ N and letRN be a rectangle with vertices at (e±(N+1/2),±1). On its
vertical edges, we have |sin(π(log r + iθ))| ≥ cosh(πθ), and so (12) yields that on
these line segments

|G(r , θ)| ≤ 2πCF

1 + e−2π |θ | eπδ|θ | ≤ 2πCF

1 + e−2π eπδ. (14)

On the horizontal edges, it follows from (13) that

|G(r , θ)| ≤ 2πCF

1 − e−2π eπδ. (15)
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The bounds (14) and (15) do not depend on N . By the maximum principle for polar-
analytic functions (see [9, Theorem 12]), it follows that

|G(r , θ)| ≤ 2πCF

1 − e−2π eπδ (|θ | ≤ 1).

Combined with (13), we see that

|G(r , θ)| ≤ CG eπδ|θ | ((r , θ) ∈ H), (16)

where

CG = 2πCF

1 − e−2π eπδ.

We would like to show that G(·, 0) ∈ X2
0 which is a little delicate because of the

removable singularities. Therefore, we first show that G(·, 1) ∈ X2
0. By the translation

invariance of Mellin-Bernstein spaces, we know that F(·, 1) ∈ X2
0 and by (4),

‖F(·, 1)‖X2
0

≤ eπ(1+δ)‖F(·, 0)‖X2
0
.

From this we conclude with the help of (11) that G(·, 1) ∈ X2
0 and

‖G(·, 1)‖X2
0

≤ 2πeπδ

1 − e−2π ‖F(·, 0)‖X2
0
.

Now, by employing the Cauchy–Riemann equations in polar form and manipulating
(16) slightly, we find that G1 : (r , θ) �→ G(r , θ + 1) belongs toB2

0,πδ . But then, by

the translation invariance, G itself belongs to B2
0,πδ .

Finally, setting ψ := G(·, 0), we have by the Theorem 1 that ψ ∈ B2
0,πδ and

ψ(r) lin(r) = F(r , 0)

log r
= ϕ(r) (r ∈ R

+).

Furthermore ψ(1) = ϕ(1) = lin(1) = 1 as a consequence of (10) for � = 0. This
completes the proof. ��

Approximation of bounded, continuous functions

The approximation power of Sψ lin
w f can be expressed in terms of the best approxi-

mation of f by functions from B∞
0,πT , where T = w(1 − δ). For this, we introduce

E∞
πT [ f ] := inf

g∈B∞
0,πT

‖ f − g(·, 0)‖X∞
0

.

The announced result can now be stated as follows:
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Proposition 7 For δ ∈]0, 1[, let ψ ∈ B2
0,πδ such that ψ(1) = 1. Suppose that f ∈

C(R+) ∩ X∞
0 . Then for w > 0 and T = w(1 − δ), we have

∥∥∥ f − Sψ lin
w f

∥∥∥
X∞
0

≤
(
1 + ‖ψ‖X2

0

)
E∞

πT [ f ]. (17)

Proof Given ε > 0, there exists a function gε ∈ B∞
0,πT such that ‖ f − gε(·, 0)‖X∞

0
≤

E∞
πT [ f ] + ε. By Theorem 3, we have gε(r , 0) = (Sψ lin

w gε(·, 0))(r). Now employing
statement (c) of Theorem 5, we obtain

∥∥∥ f − Sψ lin
w f

∥∥∥
X∞
0

≤ ‖ f − gε(·, 0)‖X∞
0

+
∥∥∥Sψ lin

w gε(·, 0) − Sψ lin
w f

∥∥∥
X∞
0

≤ E∞
πT [ f ] + ε +

∥∥∥Sψ lin
w (gε(·, 0) − f )

∥∥∥
X∞
0

≤ E∞
πT [ f ] + ε + ‖ψ‖X2

0

(
E∞

πT [ f ] + ε
)
.

The left-hand side does not depend on ε. Letting ε → 0, we arrive at (17). ��

Note that Sψ lin
w f comes close to a best approximation by functions from B∞

0,πT

but misses it in two ways. First Sψ lin
w f is the restriction to R

+ of a function from
B∞

0,πw(1+δ) while T = w(1 − δ). Secondly, there is a factor 1 + ‖ψ‖X2
0
on the right-

hand side of (17), which is at least as big as 1 + δ−1/2. Indeed, by Theorem 2, we
have

‖ψ‖2
X2
0

= 1

δ

∑

k∈Z

∣∣∣ψ(ek/δ)

∣∣∣
2 ≥ 1

δ
|ψ(1)|2 = 1

δ
,

where equality is attained for ψ(r) = lin(r δ).

The truncation error

Next we want to estimate the truncation error of the series (Sψ lin
w f )(r). It will depend

on the decay of |ψ(r)| as r → 0+ and r → +∞. Thereforewewill classifymultipliers
ψ according to their decay.

Definition 5 Let δ ∈ ]0, 1[ and let μ be a positive, decreasing function on [0,+∞[
such that μ(t) → 0 as t → +∞. Then the class B2

0,πδ(μ) comprises all functions

ψ ∈ B2
0,πδ such that ψ(1) = 1 and

|ψ(r) log r | ≤ μ(|log r |) (r ∈ R
+). (18)
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Example 1 For an integer m ≥ 2, let ψ(r) := linm(r δ/m) and let κ := πδ/m. Then
ψ ∈ B2

0,πδ , ψ(1) = 1 and

|ψ(r) log r | =
∣∣∣∣
sinm(log rκ)

κ(log rκ)m−1

∣∣∣∣ ≤ 1

κm |log r |m−1 (r ∈ R
+ \ {1}).

We also have

|ψ(r) log r | =
∣∣∣linm−1(r δ/m)

∣∣∣
|sin(log rκ)|

κ
≤ 1

κ
(r ∈ R

+).

The first bound does not extend to r = 1, the second is not decreasing, but the harmonic
mean of these two bounds leads to

|ψ(r) log r | ≤ 2

κ(1 + (κ |log r |)m−1)
(r ∈ R

+).

Hence

μ(t) := 2

κ(1 + (κt)m−1)
(t ∈ [0,+∞[)

defines an admissible function μ that yields (18).

When r ∈ R
+ is given and wewant to approximate (Sψ lin

w f )(r) by 2N +1 terms of
this series, it seems reasonable to take those termswhose sample points ek/w are closest
to r . This means that we associate with (w, r) the integer Nw,r := �w log r + 1/2�
and keep only those terms of the series for which

k ∈ {
Nw,r , Nw,r ± 1, . . . , Nw,r ± N

}
.

The truncated series obtained in this way shall be denoted by

(
Sψ lin
w,N f

)
(r) :=

Nw,r +N∑

k=Nw,r −N

f (ek/w)ψ(e−krw) lin(e−krw).

We also use the notation

⎪⎪⎪f
⎪⎪⎪

w,∞ := sup
k∈Z

∣∣∣ f (ek/w)

∣∣∣ .

The following proposition provides an estimate of the truncation error in terms of μ

and N .
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Proposition 8 Let δ ∈ ]0, 1[, ψ ∈ B2
0,πδ(μ) and w > 0. Suppose that f is a function

defined on R
+ such that

⎪⎪⎪f
⎪⎪⎪

w,∞ < ∞. Then

∣∣∣
(

Sψ lin
w f

)
(r) −

(
Sψ lin
w,N f

)
(r)

∣∣∣ < |sin(πw log r)|⎪⎪⎪f
⎪⎪⎪

w,∞
2μ(N + 1

2 )

π N
(19)

for N ∈ N and r ∈ R
+.

Proof Obviously,

∣∣∣
(

Sψ lin
w f

)
(r) −

(
Sψ lin
w,N f

)
(r)

∣∣∣

≤ ⎪⎪⎪f
⎪⎪⎪

w,∞
∑

|k−Nw,r |>N

∣∣∣ψ(e−krw) lin(e−krw)

∣∣∣

= ⎪⎪⎪f
⎪⎪⎪

w,∞
∑

| j |>N

∣∣ψ(exp(log rw − Nw,r − j))
∣∣ |sin(πw log r)|
π

∣∣log rw − Nw,r − j
∣∣ .

Since log rw − Nw,r ∈ ] − 1
2 ,

1
2 ], we find that

∣∣log rw − Nw,r − j
∣∣ ≥ | j | − 1

2 for
| j | > N and so (18) implies

∣∣ψ(exp(log rw − Nw,r − j))
∣∣ ≤ μ(| j | − 1

2 )

| j | − 1
2

≤ μ(N + 1
2 )

| j | − 1
2

(| j | > N ).

Hence

∣∣∣
(

Sψ lin
w f

)
(r) −

(
Sψ lin
w,N f

)
(r)

∣∣∣

≤ 2

π

⎪⎪⎪f
⎪⎪⎪

w,∞ |sin(πw log r)|μ
(

N + 1

2

) ∞∑

j=N+1

1

( j − 1
2 )

2
.

Finally, noting that

1

( j − 1
2 )

2
<

∫ j

j−1

dx

x2
,

we obtain

∞∑

j=N+1

1

( j − 1
2 )

2
<

∫ ∞

N

dx

x2
= 1

N
. (20)

This completes the proof. ��
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Remark 2 The bound on the right-hand side of (19) can be simplified by replacing it
with

sup
r∈R+

| f (r)| 2μ(N )

π N
.

However, the sine in (19) shows that the truncated series is still interpolating.

Proposition 8 combined with Theorem 3 implies the following result.

Corollary 1 Let δ ∈ ]0, 1[ and ψ ∈ B2
0,πδ(μ). Suppose that f ∈ B∞

0,πT , where T > 0.
Then, for w = T /(1 − δ), we have

∣∣∣ f (r , 0) −
(

Sψ lin
w,N f (·, 0)

)
(r)

∣∣∣ < |sin(πw log r)| ‖ f ‖X∞
0

2μ(N + 1
2 )

π N

for N ∈ N and r ∈ R
+.

Nowwewant to show that Proposition 8 has a generalization that admits unbounded
functions f . Roughly speaking, this is achieved by taking a portion of the decaying
multiplier ψ for compensating the growth of f while the remaining portion serves for
the decay of the truncation error as N → ∞.

Theorem 9 For δ ∈ ]0, 1[, let ψ ∈ B2
0,πδ(μ) and let f be a function defined on R

+.
Suppose that

| f (r)| ≤ K (|log r |) (r ∈ R
+),

where K is a non-decreasing, positive function defined on [0,+∞[ such that

K (t)μ(t)λ ≤ K (0)μ(0)λ (0 ≤ t < +∞) (21)

for some λ ∈ [0, 1]. Then for w > 1 the generalized exponential sampling series
(Sψ lin

w f )(r) converges absolutely for each r ∈ R
+ and

∣∣∣
(

Sψ lin
w f

)
(r) −

(
Sψ lin
w,N f

)
(r)

∣∣∣

< |sin(πw log r)| K

(
w |log r | + 1

w − 1

)
μ(0)λ

2μ(N + 1
2 )

1−λ

π N
(22)

for N ∈ N.
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Proof It suffices to prove (22). We have

∣∣∣
(

Sψ lin
w f

)
(r) −

(
Sψ lin
w,N f

)
(r)

∣∣∣

≤
∑

|k−Nw,r |>N

∣∣∣ f (ek/w)ψ(e−krw) lin(e−krw)

∣∣∣

=
∑

| j |>N

∣∣∣ f (e( j+Nw,r )/w)ψ(ew log r−Nw,r − j ) lin(ew log r−Nw,r − j )

∣∣∣

≤ |sin(πw log r)|
∑

| j |>N

K

(∣∣ j + Nw,r
∣∣

w

)
μ(

∣∣w log r − Nw,r − j
∣∣)

π
∣∣w log r − Nw,r − j

∣∣2
.

Next we estimate the term

Tj := K

(∣∣ j + Nw,r
∣∣

w

)
μ(

∣∣w log r − Nw,r − j
∣∣)

π
∣∣w log r − Nw,r − j

∣∣2
(| j | > N ).

Noting again that ξ := w log r − Nw,r ∈ ] − 1
2 ,

1
2 ], we find that

Tj = K

(∣∣∣∣log r + j − ξ

w

∣∣∣∣

)
μ(| j − ξ |)
π | j − ξ |2

≤ K

(
|log r | + | j | + 1

2

w

)
μ(| j | − 1

2 )
λ

π(| j | − 1
2 )

2
μ(N + 1

2 )
1−λ (| j | > N ).

We distinguish two cases: If

|log r | + | j | + 1
2

w
≤ | j | − 1

2 ,

then

K

(
|log r | + | j | + 1

2

w

)
μ(| j | − 1

2 )
λ ≤ K (| j | − 1

2 )μ(| j | − 1
2 )

λ ≤ K (0)μ(0)λ,

and so

Tj ≤ K (0)μ(0)λ
μ(N + 1

2 )
1−λ

π(| j | − 1
2 )

2
. (23)

If

|log r | + | j | + 1
2

w
> | j | − 1

2 ,
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then

| j | + 1
2 <

w

w − 1
(|log r | + 1).

Therefore

K

(
|log r | + | j | + 1

2

w

)
≤ K

(
w |log r | + 1

w − 1

)
,

and so

Tj ≤ K

(
w |log r | + 1

w − 1

)
μ(N + 1

2 )

π(| j | − 1
2 )

2
. (24)

Comparing the estimates (23) and (24), we see that in any case

Tj ≤ K

(
w |log r | + 1

w − 1

)
μ(0)λ

μ(N + 1
2 )

1−λ

π(| j | − 1
2 )

2
(| j | > N ).

The proof is completed by employing inequality (20) for the summation over j . ��
The choice ofλ allowsus someflexibility. Forλ = 0,we see fromcondition (21) that

only bounded functions f are admissible and thenwe essentially recover Proposition 8
with the rate of convergence to zero of the truncation error being O(μ(N )/N ) as
N → ∞. Note that inequality (21) remains true if λ is replaced by any λ′ ∈ ]λ, 1].
We may even raise both sides of (21) to the power λ′/λ and obtain

K (t)λ
′/λμ(t)λ

′ ≤ K (0)λ
′/λμ(0)λ

′
(0 ≤ t < +∞).

This means that, if K (0) ≥ 1, we can enlarge the class of admissible functions by
requiring that

| f (r)| ≤ K (|log r |)λ′/λ (r ∈ R
+),

but for the functions added in this way the guaranteed rate of convergence of the
trunction error will be O(μ(N )1−λ′

/N ) only. When we choose λ′ = 1, we fix a
largest class of admissible functions but the speed of convergence in the worst case
reduces to O(1/N ).

As a suitablemajorant K (·) for the admissible functionswe can always take K (t) :=
cμ(t)−λ with a constant c > 0, which satisfies (21) trivially.

In view of Proposition 8 and Theorem 9 it is desirable to have a rapidly decaying
multiplierψ . This raises the non-trivial question as to how fastψ can decay. Similarly,
prescribingμ as a rapidly decaying function,wemay ask if the class B2

0,πδ(μ) specified
in Definition 5 will be non-empty? In the case of entire functions of exponential type
an answer to the correponding questions can be found in [21, p. 101], which reads as
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follows: Let S(r) ≥ 1 be increasing. A necessary and sufficient condition for there to
exist entire functions ϕ �≡ 0 of exponential type with

|ϕ(x)| ≤ 1

S(|x |) on R

is that

∫ ∞

0

log S(r)

1 + r2
dr < ∞.

If that condition is met, there are entire functions ϕ �≡ 0 of arbitrarily small exponential
type satisfying the inequality in question.

We recall that there is a correspondence between Mellin bandlimited functions and
entire functions of exponential type. If ψ ∈ B2

0,πδ and f (x) := ψ(ex ), then f is
the restriction to R of an entire function of exponential type πδ that belongs to the
Lebesgue class L2 on the real line. The converse is also true. Given f of the latter
kind, then ψ defined by ψ(r) := f (log r) belongs to B2

0,πδ . Therefore the cited result
implies the following criterion.

Proposition 10 The class B2
0,πδ(μ) specified in Definition 4 is non-empty if and only

if

−
∫ ∞

0

logμ(t)

1 + t2
dt < ∞.

This shows that in Proposition 8 and Theorem 9 we can haveO(e−N/(log N )γ ) with
γ > 1 for the convergence of the trunction error as N → ∞ but it is not possible to
have such a rate of convergence with γ ≤ 1. In particular, we cannot have O(e−αN )

for some positive α.

4 Amultiplier based on a Gaussian function

Unfortunately, multipliers ψ ∈ B0,πδ(μ) with

μ(t) = O
(

e−t/(log t)γ
)

(γ > 1, t → ∞)

are not easily available. They can be constructed by an infinite product of lin functions
(see [18] for corresponding products of sinc functions) which is quite inconvenient
for computations. But there is a striking observation. When we analyse the proofs of
Proposition 8 and Theorem 9, we find that only the estimate (18) is needed but we
nowhere use that ψ ∈ B2

0,πδ . For example, we could take

ψ(r) := e−2(log r)2 . (25)
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Then inequality (18)will holdwithμ(t) = e−t2 and (19)will be validwith this function
μ. Thus we obtain an exceptionally fast converging truncation error by using a very
convenient multiplier. However, since this multiplier ψ is not Mellin bandlimited,
Theorem 3 and Corollary 1 are not applicable. We produce a so-called aliasing error
which may prevent Sψ lin

w f from being a good approximation to f .
The same dilemma arises when one equips the classical sampling formula of

Whittaker–Kotel’nikov–Shannon with a multiplier. Nevertheless some scientists
experimented with Gaussian multipliers, that is with functions of the form t �→
c1e−c2t2 , where c1 and c2 are positive constants, despite the fact that these func-
tions are not bandlimited. It was reported that the Chinese chemist G.W. Wei and his
collaborators tackled diverse dynamical problems arising in physics and chemistry by
using such multipliers. Inspired by their excellent numerical results, Qian [25] (also
see Creamer–Qian [26]) provided a mathematical justification for this approach with
rigorous error estimates. Using methods of Fourier analysis, these authors showed that
a bandlimited function can be approximated by 2N +1 terms of its classical sampling
series equipped with a cleverly scaled Gaussian multiplier with an error that decays
like

O
(

e−αN

√
N

)
(N → ∞), (26)

whereα is a positive constant. This is an amazing result since it shows that, by allowing
in addition an aliasing error, one can achieve a better approximation by 2N +1 samples
of f than with the truncated series of an exact formula. This result was considerably
extended in [29] by using methods of complex analysis. Multidimensional versions
were presented in [2] and in [1]. Micchelli et al. [23] considered the sequence of
samples of a bandlimited function f occurring in the classical sampling formula
and asked for an optimal algorithm that approximates f (x) by using 2N + 1 of these
samples. They found that such an algorithmconverges for theworst case of the function
f as fast as (26) with some α > 0 but not faster. Hence sampling with a Gaussian
multiplier as initiated by Wei and Qian has the rate of convergence of an optimal
algorithm and is therefore the method of choice for computations. A very early use of
Gaussian multipliers in a somewhat different context can be found in E.T. Whittaker’s
construction of “cotabular” functions; see [30].

The distinguished role ofGaussian functions can bemade plausible by the following
reflection: For the truncation error to converge fast one should have a rapidly decaying
multiplier ψ . For the aliasing error to converge fast one should have a multiplier ψ

whose Fourier transform decays rapidly. This leads us naturally to Gaussian functions
since they decay rapidly and their Fourier transforms are again Gaussian functions.

In the case of exponential sampling, appropriately scaled functions of the form (25)
may be a reasonable choice. We set

ψ(r) = exp
(
− α

N
(log r)2

)
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with a positive α to be fixed later, consider the truncated generalized exponential
sampling series

(
Sψ lin
w,N f

)
(r) and call it

(
Gα

w,N f
)
(r) :=

Nw,r +N∑

k=Nw,r −N

f (ek/w) exp
(
− α

N
(log(e−krw))2

)
lin(e−krw)

with G referring to Gauss. The following theorem includes an efficient algorithm for
approximating the restriction to R

+ of a polar-analytic function from its exponential
samples.

Theorem 11 Let f be polar-analytic on H such that

| f (r , θ)| ≤ K (|log r |)eπT |θ | ((r , θ) ∈ H),

where K is a non-decreasing, non-negative function defined on [0,+∞[ and T ≥ 0.
Then, for w > T , α = π(1 − T /w)/2, N ∈ N and r ∈ R

+, we have

∣∣ f (r , 0) − (
Gα

w,N f (·, 0))(r)
∣∣ ≤ |sin(πw log r)| K

(
|log r | + N + 1

w

)
2e−αN

√
παN

βN ,

where

βN = 1

1 − e−2π N
+ 2√

παN
= 1 + O(N−1/2) (N → ∞).

Proof First we note that for r ∈ {ek/w : k ∈ Z} the assertion is trivially true. For
r ∈ R

+ \ {ek/w : k ∈ Z}, (ρ, ϑ) ∈ H and λ := α/N , consider

F(ρ, ϑ) := f (ρ, ϑ) exp(−λ(log(ρw/rw) + iwϑ)2)

(log(ρ/r) + iϑ) sin(πw(log ρ + iϑ))
.

This function F is polar-analytic on H except for isolated singularities at the points
(r , 0) and (ek/w, 0) with k ∈ Z, which are all poles of order 1. We want to show by
employing the residue theorem for polar-analytic functions (see [7, Sect. 4]) that the
error of the approximation of f (r , 0) by (Gα

w,N f (·, 0))(r) can be represented by a
contour integral of F . For this, we have to calculate the residues res0 of the poles of
F . It is easily seen that

(res0 F)(r , 0) = f (r , 0)

sin(πw log r)
.
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For calculating the residues at (ek/w, 0), we first factor the sine in the denominator
of F as follow:

sin(πw(log ρ + iϑ)) = (−1)k sin(πw(log ρ + iϑ − k/w))

= (−1)kπw(log ρ + iϑ − k/w) sinc(log ρw + iwϑ − k)

= (−1)kπw(log ρ + iϑ − k/w) lin(e−kρweiwϑ).

With this decomposition, a basic formula for the residues of poles of order 1 yields

(res0 F)(ek/w, 0) = f (ek/w, 0) exp(−λ(log(e−krw))2)

(−1)k+1π log(e−krw)

= (−1)k+1 f (ek/w, 0) exp(−λ(log(e−krw))2)
lin(e−krw)

sin(π log(e−krw))

= − f (ek/w, 0) exp(−λ(log(e−krw))2)
lin(e−krw)

sin(π w log r)
.

Now write N ′ := N + 1
2 and denote by RN the rectangle with vertices at

(
e(Nw,r ±N ′)/w,

N

w

)
,

(
e(Nw,r ±N ′)/w,− N

w

)

and by ∂RN its positively oriented boundary. By the residue theorem for polar-analytic
functions, we have

sin(πw log r)

2π i

∫

∂RN

F(ρ, ϑ)

(
dρ

ρ
+ idϑ

)

= sin(πw log r)

⎡

⎣(res0 F)(r , 0) +
∑

|k−Nw,r |≤N

(res0 F)(ek/w, 0)

⎤

⎦

= f (r , 0) −
∑

|k−Nw,r |≤N

f (ek/w, 0) exp(−λ(log(e−krw))2) lin(e−krw)

= f (r , 0) − (
Gα

w,N f (·, 0))(r).

Next we denote by I ±
hor the contributions to the integral coming from the two

horizontal parts of ∂RN , where + and − refer to the upper and lower line segment,
respectively. Similarly, we denote by I ±

vert the contributions to the integral coming
from the two vertical parts of ∂RN , where + and − refer to the right and left line
segment, respectively. Then

f (r , 0) − (Gα
w,N f (·, 0))(r) = sin(πw log r)

2π i

(
I −
hor + I +

vert + I +
hor + I −

vert

)
. (27)
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We note that for (ρ, ϑ) ∈ ∂RN , we have

| f (ρ, ϑ)| ≤ K

(
|log r | + N + 1

w

)
eπT |ϑ |

and

∣∣∣log
ρ

r
+ iϑ

∣∣∣ ≥ N

w
.

Therefore

∣∣I ±
hor

∣∣ ≤ K

(
|log r | + N + 1

w

)
w

N
eπT N/w

×
∣∣∣∣∣

∫ e(Nw,r +N ′)/w

e(Nw,r −N ′)/w
exp(−λ(log(ρw/rw) ± i N )2))

sin(πw(log ρ ± i N/w))

dρ

ρ

∣∣∣∣∣

= K

(
|log r |+ N +1

w

)
eπT N/w

N

∣∣∣∣∣

∫ Nw,r +N ′

Nw,r −N ′
exp(−λ(u−log rw ± i N )2)

sin(π(u ± i N ))
du

∣∣∣∣∣ .

Since

∣∣∣exp(−λ(u − log rw ± i N )2)

∣∣∣ = eλN2
e−λ(u−w log r)2 ,

|sin(π(u ± i N ))| ≥ sinh(π N ) = 1
2eπ N (1 − e−2π N ),

∣∣∣∣∣

∫ Nw,r +N ′

Nw,r −N ′
e−λ(u−w log r)2du

∣∣∣∣∣ ≤
∫ ∞

−∞
e−λx2dx =

√
π

λ
=

√
π N

α

and

π N
T

w
− π N + λN 2 = −αN ,

we conclude that

∣∣I ±
hor

∣∣ ≤ K

(
|log r | + N + 1

w

)
2
√

πe−αN

√
αN (1 − e−2π N )

. (28)

For the contributions coming from the vertical line segments, we have

∣∣I ±
vert

∣∣ ≤ K

(
|log r | + N + 1

w

)
w

N

×
∣∣∣∣
∫ N/w

−N/w

exp(−λ(Nw,r ± N ′ − log rw + iwϑ)2)eπT |ϑ |

sin(π(Nw,r ± N ′ + iwϑ))
dϑ

∣∣∣∣ .
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Here
∣∣∣exp(−λ(Nw,r ± N ′ − log rw + iwϑ)2)

∣∣∣ ≤ e−λN2
eλw2ϑ2

and

∣∣sin(π(Nw,r ± N ′ + iwϑ))
∣∣ ≥ cosh(πwϑ) ≥ 1

2eπw|ϑ |.

Substituting θ = wϑ and noting that

λθ2 + π |θ | T

w
− π |θ | = α

N
θ2 − 2α |θ | ≤ −α |θ |

for θ ∈ [−N , N ], we arrive at
∣∣I ±
vert

∣∣ ≤ K

(
|log r | + N + 1

w

)
2e−αN

N

∫ N

−N
e−α|θ |dθ

≤ K

(
|log r | + N + 1

w

)
4e−αN

αN
. (29)

Employing the estimates (28) and (29) in conjunction with (27), we readily complete
the proof. ��

Note that in Theorem 11 the speed of convergence may be lower than O(e−αN )

since N also occurs in the argument of the non-decreasing function K . However,
when the restriction of f to R

+ is bounded, such a deterioration is not possible. The
following statement is an obvious consequence of Theorem 11.

Corollary 2 Let f ∈ B∞
0,πT , where T > 0. Then, for w > T , α = π

2 (1 − T
w

), N ∈ N

and r ∈ R
+, we have

∣∣ f (r , 0) − (
Gα

w,N f (·, 0))(r)
∣∣ ≤ |sin(πw log r)| C f

2e−αN

√
παN

βN ,

where C f is the constant introduced in Definition 2 for c = 0 and βN is as in Theo-
rem 11.

When we proved the assertion of Theorem 11 for an arbitrarily chosen N ∈ N,
we did not really need that the function f is polar-analytic on the whole of H. It will
suffice that it is polar-analytic in a strip

Sd := {(r , θ) ∈ H : |θ | < d}

with d > N/w. This condition can always be satisfied by choosing w = (N + ε)/d
with ε > 0. This leads us to the following statement inwhich the hypothesis is designed
such that T = 0 and the function K is a constant K f which allows us to let ε approach
zero on both sides of the error estimate.
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Table 1 Computations for the function (30) according to Corollaries 1 and 2, respectively

N =10 Cor. 1 Cor. 2 N =20 Cor. 1 Cor. 2 N =30 Cor. 1 Cor. 2
j abs. error abs. error j abs. error abs. error j abs. error abs. error

0 7.15e-06 5.69e-08 0 4.04e-09 1.61e-14 0 3.48e-13 5.57e-21

2 5.19e-06 5.13e-08 2 4.96e-09 1.41e-14 2 2.73e-13 4.92e-21

4 1.67e-05 3.80e-08 4 1.32e-08 9.95e-15 4 1.56e-13 3.52e-21

6 2.57e-05 1.88e-08 6 1.94e-08 4.29e-15 6 1.57e-14 1.58e-21

8 3.08e-05 3.21e-09 8 2.27e-08 2.02e-15 8 1.27e-13 5.93e-22

Bound 4.07e-03 1.53e-07 Bound 1.89e-05 4.06e-14 Bound 7.82e-07 1.29e-20

Corollary 3 Let f be polar-analytic in a strip Sd with d > 0. Suppose that

K f := sup
(r ,θ)∈Sd

| f (r , θ)| < ∞.

Then for N ∈ N and r ∈ R
+, we have

∣∣∣ f (r , 0) − (
Gπ/2

N/d,N f (·, 0))(r)

∣∣∣ ≤
∣∣∣∣sin

(
π N

d
log r

)∣∣∣∣ K f
2
√
2 e−π N/2

π
√

N
βN ,

where

βN = 1

1 − e−2π N
+ 2

√
2

π
√

N
= 1 + O(N−1/2) (N → ∞).

5 Numerical experiments

As a first example, we consider the function

f : (r , θ) �−→ cos
(
π(log r + iθ)

)
(30)

which belongs toB∞
0,π . It qualifies for Corollaries 1 and 2. In the case of Corollary 1,

we use the multiplier ψ of Example 1 with δ = 1/2 and m = 8. Then the constructed
function μ becomes

μ(t) = 32

π(1 + (π t/16)7)
.

In view of Remark 1, we may choose w = 16 in both corollaries. This enables us
to compare the two statements by computing approximations of f (r j , 0) at r j =
e( j+1/2)/w in both cases. Results for the true absolute errors are shown in the columns
of Table 1. For the chosen points r j the error bounds of the two corollaries do not
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Table 2 Computations for the function (31) according to Theorem 11

N=5 Theorem 11 N=10 Theorem 11

j abs. error bound rel. error rel. bound j abs. error bound rel. error rel. bound

0 7.14e-05 4.23e-04 7.11e-05 4.21e-04 0 1.63e-08 2.66e-07 1.62e-08 2.65e-07

8 2.08e-04 1.90e-03 7.58e-05 6.90e-04 8 5.27e-08 1.27e-06 1.92e-08 4.62e-07

16 9.73e-04 9.09e-03 7.61e-05 7.11e-04 16 2.48e-07 6.10e-06 1.94e-08 4.77e-07

24 4.68e-03 4.37e-02 7.62e-05 7.12e-04 24 1.19e-06 2.93e-05 1.94e-08 4.78e-07

32 2.25e-02 2.10e-01 7.62e-05 7.12e-04 32 5.74e-06 1.41e-04 1.94e-08 4.78e-07

40 1.08e-01 1.01e+00 7.62e-05 7.12e-04 40 2.76e-05 6.79e-04 1.94e-08 4.78e-07

48 5.21e-01 4.87e+00 7.62e-05 7.12e-04 48 1.33e-04 3.27e-03 1.94e-08 4.78e-07

Table 3 Computations for the function (31) according to Thorem 11, continued

N=20 Theorem 11 N=30 Theorem 11

j abs. error bound rel. error rel. bound j abs. error bound rel. error rel. bound

0 1.73e-15 1.87e-13 1.72e-15 1.86e-13 0 1.83e-21 1.59e-19 1.82e-21 1.58e-19

8 9.33e-15 9.00e-13 3.40e-15 3.28e-13 8 1.66e-21 7.65e-19 6.03e-22 2.78e-19

16 4.51e-14 4.33e-12 3.53e-15 3.39e-13 16 6.49e-21 3.68e-18 5.08e-22 2.88e-19

24 2.17e-13 2.08e-11 3.53e-15 3.39e-13 24 3.09e-20 1.77e-17 5.03e-22 2.88e-19

32 1.04e-12 1.00e-10 3.53e-15 3.39e-13 32 1.49e-19 8.51e-17 5.03e-22 2.88e-19

40 5.02e-12 4.82e-10 3.53e-15 3.39e-13 40 7.15e-19 4.10e-16 5.03e-22 2.88e-19

48 2.42e-11 2.32e-09 3.53e-15 3.39e-13 48 3.44e-18 1.97e-15 5.03e-22 2.88e-19

Table 4 Computations for the function (32) according to Corollary 3

N =5 Cor. 3 N =10 Cor. 3 N =20 Cor. 3 N =30 Cor. 3
j abs. error j abs. error j abs. error j abs. error

0 6.44e-05 0 1.72e-08 0 1.56e-15 0 1.74e-22

2 1.39e-04 4 3.94e-08 8 4.13e-15 12 5.05e-22

4 2.05e-04 8 5.82e-08 16 6.16e-15 24 7.57e-22

6 2.38e-04 12 6.84e-08 24 7.32e-15 36 9.01e-22

8 2.36e-04 16 6.92e-08 32 7.46e-15 48 9.21e-22

10 2.00e-04 20 6.02e-08 40 6.55e-15 60 8.11e-22

Bound 3.64e-04 Bound 9.14e-08 Bound 9.11e-15 Bound 1.09e-21

depend on j . They are presented in the last line. We see that the approximation by
the operator Gα

w,N of Corollary 2 is much better than the approximation by Sψ lin
w,N of

Corollary 1. Moreover, the error bound of Corollary 2 is closer to the true errors.
Our second example is the function

f : (r , θ) �−→ reiθ + r−1e−iθ

2
, (31)
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which is polar-analytic on H but unbounded on R
+. It satisfies the hypotheses of

Theorem 11 with K (t) = cosh(t), T = 0 and α = π/2. We choose w = 16/π and
compute approximations of f (r j , 0) for r j = e( j+1/2)/w. The true absolute errors and
their bounds are shown in Tables 2 and 3 for four different values of N . The absolute
errors grow with increasing

∣∣log r j
∣∣ as suggested by the bound of Theorem 11 which

contains |log r | in the argument of the increasing function K . However, the relative
errors

∣∣∣∣∣
f (r j , 0) − (

Gα
w f (·, 0))(r j )

f (r j , 0)

∣∣∣∣∣

and their bounds are nearly constant. Taking into account the contribution of K , the

dependence of the error bounds on N is O( e−7π N/16√
N

)
as N → ∞.

As a third example, we consider the function

f : (r , θ) �−→
√
1 + (log r + iθ)2 lin

(
(reiθ )1/π

)
. (32)

It is polar-analytic and bounded on the strip S1 with

sup
(r ,θ)∈S1

| f (r , θ)| ≤ 21/23−1/4 cosh(1) =: K f .

Therefore it may serve for illustrating Corollary 3. The columns of Table 4 show the
index j and the true absolute errors at the points r j = e( j+1/2)/N for four choices of
N . For these points, the error bounds provided by Corollary 3 do not depend on j .
They are presented in the last line. It turns out that they are very realistic. The factor
of overestimation of the largest absolute error in a column decreases with increasing
N . For N = 5 it is 1.53; for N = 30 it has decreased to 1.18.
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