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Abstract
High-throughput technologies for multiomics or molecular phenomics profiling have been extensively adopted in biomedical 
research and clinical applications, offering a more comprehensive understanding of biological processes and diseases. Omics 
reference materials play a pivotal role in ensuring the accuracy, reliability, and comparability of laboratory measurements and 
analyses. However, the current application of omics reference materials has revealed several issues, including inappropriate 
selection and underutilization, leading to inconsistencies across laboratories. This review aims to address these concerns by 
emphasizing the importance of well-characterized reference materials at each level of omics, encompassing (epi-)genomics, 
transcriptomics, proteomics, and metabolomics. By summarizing their characteristics, advantages, and limitations along with 
appropriate performance metrics pertinent to study purposes, we provide an overview of how omics reference materials can 
enhance data quality and data integration, thus fostering robust scientific investigations with omics technologies.

Keywords Reference materials · Reference datasets · Quality control · Performance metrics · Reproducibility · Multiomics 
profiling · Molecular phenomics

Abbreviations
ABRF  Association of Biomolecular Resource 

Facilities
ATCC   American Type Culture Collection
CDC  Centers for Disease Control and Prevention
CNA  Copy number alteration
CPTAC   Clinical Proteomic Tumor Analysis 

Consortium
CRM  Certified reference material
ctDNA  Circulating tumor DNA
EBV  Epstein–Barr virus
ERCC   External RNA Control Consortium
FFPE  Formalin-Fixed Paraffin-Embedded
gDNA  Genomic DNA

GeT-RM  Genetic Testing Reference Materials Coordina-
tion Program

GIAB  Genome in a Bottle Consortium
HPRC  Human Pangenome Reference Consortium
HUPO  Human Proteome Organization
IMMSA  International Microbiome and Multi-Omics 

Standards Alliance
JRC  Joint Research Centre
LDT  Laboratory developed tests
LOD  Limit of detect
LTR  Long-term reference
MAQC  MicroArray Quality Control Consortium
MCC  Matthews correlation coefficient
MetQual  Metabolomics Quality Assurance and Quality 

Control Program
MMR  Mismatch repair
mQACC   Metabolomics Quality Assurance and Quality 

Control Consortium
MRM  Multiple reaction monitoring
MS  Mass spectrometry
NCI  National Cancer Institute
NIM  National Institute of Metrology
NIST  National Institute of Standards and Technology
NMR  Nuclear magnetic resonance
PCA  Principal component analysis
PEA  Proximity Extension Assay

 * Leming Shi 
 lemingshi@fudan.edu.cn

 * Yuanting Zheng 
 zhengyuanting@fudan.edu.cn

1 State Key Laboratory of Genetic Engineering, School of Life 
Sciences and Human Phenome Institute, Fudan University, 
Shanghai 200438, China

2 Shanghai Cancer Center, Fudan University, 
Shanghai 200032, China

3 International Human Phenome Institutes, Shanghai 200438, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s43657-023-00153-7&domain=pdf
http://orcid.org/0000-0002-4052-1148
http://orcid.org/0000-0002-2981-4150
http://orcid.org/0000-0003-4480-8303


 L. Ren et al.

PRM  Parallel reaction monitoring
PSI  Proteomics Standards Initiative
PTM  Post-translational modification
QA  Quality assurance
QC  Quality control
RM  Reference material
RMSE  Root mean squared error
RT  Retention time
SEQC  Sequencing Quality Control Consortium
SNR  Signal-to-noise ratio
SNV  Single-nucleotide variations
SRM  Standard reference materials
SV  Structural variants
T2T  Telomere-to-Telomere
TCGA   The Cancer Genome Atlas
TMB  Tumor mutation burden
TNBC  Triple-negative breast cancer
UHRR  Agilent Universal Human Reference RNA 

material
VAF  Variant allele frequency
WES  Whole-exome sequencing
WGS  Whole-genome sequencing

Introduction

In recent years, the adoption of multiomics approaches in 
biomedical research and clinical application has increased 
significantly (Hasin et al. 2017; Hoadley et al. 2018). The 
integration of multiomics or molecular phenomics data 
(including genomics, epigenomics, transcriptomics, pro-
teomics, and metabolomics) along with deep phenotypic 
data enables the discovery of correlations between the 
diverse levels of genetic and regulatory information and 
distinct phenotypic traits, fostering a more comprehensive 
understanding of biological processes and facilitating the 
identification of disease mechanisms, potential therapeutic 
targets, and disease biomarkers (Jiang et al. 2019; Mangiante 
et al. 2023; Martinez-Ruiz et al. 2023; Sammut et al. 2022). 
However, challenges exist in translating scientific research 
findings to clinical settings, particularly regarding the repro-
ducibility of omics data (Bell et al. 2009; Foox et al. 2021; 
Khayat et al. 2021; Pan et al. 2022). The complexity of bio-
logical systems and potential technical artifacts from sample 
preparation, data generation and data analysis contribute to 
this challenge, which is further amplified in multiomics data 
integration (Krassowski et al. 2020). Implementing rigorous 
quality assurance (QA) and quality control (QC) measures 
is crucial to ensure the reliability of multiomics research 
(Bittremieux et al. 2018; Broadhurst et al. 2018; Zheng et al. 
2022). QA involves processes and activities to prevent errors 
and ensure quality standards of the final product, whereas 
QC comprises activities to test and inspect the final product 

or service to meet quality standards (International Organiza-
tion for Standardization, ISO 9000:2015).

Reference materials (RMs) are essential for both QA and 
QC in multiomics research (Broadhurst et al. 2018; Hard-
wick et al. 2017; Jennings et al. 2017; Lippa et al. 2022). 
RMs are well-characterized samples with known properties 
that can be used to validate the accuracy and reliability of 
analytical methods, assess the comparability of data gen-
erated by different laboratories or instruments, and serve 
as a standard against which the accuracy and precision of 
measurements can be evaluated (Bell et al. 2009; Foox et al. 
2021; Hardwick et al. 2017). Although the terms “certified 
reference materials (CRMs)”, “standard reference materi-
als (SRMs)”, “reference materials”, “reference standards”, 
“reference samples”, and “quality control samples” are often 
used with the same or very similar meaning related to the 
calibration and validation of analytical methods, there are 
important differences between them at the level of char-
acterization, traceability, and certification that they offer. 
CRMs and SRMs are typically considered the most reliable 
and accurate standards for analytical measurements, while 
the others may have more limited or uncertain properties. 
According to ISO Guide 30:2015, a CRM is “a reference 
material, accompanied by a certificate, one or more of whose 
property values are certified by a procedure that establishes 
its traceability to an accurate realization of the unit in which 
the property values are expressed, and for which each certi-
fied value is accompanied by an uncertainty at a stated level 
of confidence” (International Organization for Standardiza-
tion, ISO Guide 30:2015). In other words, a CRM is a refer-
ence material that has been thoroughly analyzed and certi-
fied by an authorized organization to have a known value for 
one or more properties, along with its associated uncertainty 
and a statement of metrological traceability. The certification 
process ensures that the material meets established interna-
tional standards for accuracy and traceability. Official gov-
erning bodies, such as the National Institute of Standards 
and Technology (NIST) in the United States, the National 
Institute of Metrology (NIM) in China, and the European 
Commission's Joint Research Centre (JRC) in Europe, can 
provide certification for CRMs. Other accredited organiza-
tions can provide certification for CRMs as well. The term 
SRM is a specific term used by NIST for those meeting 
additional NIST-specific certification criteria in accordance 
with ISO Guide 31:2000 (National Institute of Standards 
and Technology 2023a). A RM is defined as “a material or 
substance one or more of whose property values are suffi-
ciently homogenous and well established to be used for the 
calibration of an apparatus, the assessment of a measurement 
method, or for assigning values to materials” (International 
Organization for Standardization, ISO Guide 30:2015). RMs 
can also be referred to as “reference standards”, “reference 
samples”, or “quality control samples”. These materials can 



Reference Materials for Improving Reliability of Multiomics Profiling  

be prepared in-house or purchased from commercial sup-
pliers. While RMs are generally considered to be of high 
quality, they may not have undergone the rigorous testing 
and certification required for CRMs.

Omics RMs mentioned in this review refer to well-char-
acterized and validated samples used as quality control tools 
in various omics technologies. A major difference between 
traditional RMs and omics RMs is the number of properties 
values they encompass. Traditional RMs typically comprise 
a limited number of well-defined and characterized property 
values, often associated with physical and chemical attrib-
utes, placing a strong emphasis on traceability. In contrast, 
omics RMs encompass a significantly larger number of prop-
erty values, reflecting the complex and diverse nature of 
biological omics data. It is important to note that there is 
currently no internationally recognized CRMs for massive 
analysis technologies, because current omics RMs do not 
fulfill the conventional criteria for established traceability of 
the assigned property values. The signals detected by omics 
technologies, such as DNA or RNA sequencing reads, mass 
spectrometry (MS) peaks, or nuclear magnetic resonance 
(NMR) spectra, cannot be directly traced back to the inter-
national system of units (SI units). While omics RMs may 
not have the same level of rigor as CRMs, they can still serve 
as a useful tool for quality control and method validation 
in omics research. Many ongoing efforts have been made 
to develop omics RMs. These RMs are typically prepared 
by reputable laboratories using standardized protocols and 
characterized for their stability, homogeneity, and variabil-
ity, with their properties traceable to a reference measure-
ment system. Examples of ongoing efforts to establish omics 
RMs include the Genome in a Bottle Consortium (GIAB) 
(Zook et al. 2014), the MicroArray/Sequencing Quality 
Control (MAQC/SEQC) (MAQC Consortium 2006; Fang 
et al. 2021; Jones et al. 2021), the External RNA Control 
Consortium (ERCC) (Baker et al. 2005), Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) (Tabb et al. 2016), 
the Metabolomics Quality Assurance and Quality Control 
Consortium (mQACC) (Lippa et al. 2022), and the Chinese 
Quartet Project for multiomics profiling (Yang et al. 2023; 
Zheng et al. 2023).

RMs are widely recognized as essential for ensuring 
data quality in omics research; however, their current 
application is inadequate due to issues such as inappropri-
ate selection of RMs for the intended purpose and a lack 
of understanding about when and how to use them (Beg-
ley and Ioannidis 2015; Bowden et al. 2018; Chiva et al. 
2021; Evans et al. 2020; Zhang et al. 2020). This review 
aims to provide a comprehensive overview of currently 
available omics RMs for high-throughput technologies in 
omics research, with a focus on quality assessment across 
batches, platforms, and laboratories. We will first summa-
rize RMs for each omics level (DNA, RNA, protein, and 

metabolite), including their intended usage, advantages 
and limitations (Table 1). We will then describe qualita-
tive and quantitative properties of RMs that help deter-
mine accuracy and precision. Next, we will explain quality 
control metrics based on reference datasets or intrinsic 
relationships between reference sample groups. Finally, 
we will describe how to use RMs to improve biomarker 
discovery in omics studies and discuss considerations for 
utilizing appropriate RMs.

DNA Reference Materials

DNA RMs are designed to assess the accuracy of genetic 
variant detection using high-throughput DNA sequencing 
technologies (Fang et al. 2021; Zook et al. 2014). These 
materials are available in various formats to suit differ-
ent research purposes. Biological DNA RMs are typically 
genomic DNA (gDNA) obtained from natural biological 
materials, such as Epstein–Barr virus (EBV)-immortalized 
lymphoblastoid cell lines or tumor cell lines. Immortalized 
cell lines are convenient and cost-effective sources of refer-
ence materials, as they can be readily proliferated through 
cell culturing, providing a renewable source of gDNA (Fang 
et al. 2021; Ren et al. 2023; Zook et al. 2014). To ensure that 
RMs are sufficiently homogenous and in a large quantity to 
be widely disseminated, they are usually extracted from a 
single large batch of cell culture and well-mixed. Although 
subtle genetic differences may exist among cells cultured in 
different dishes, each vial of reference materials contains 
the same mixture of genomes, because the cells and gDNA 
are thoroughly mixed. Biological DNA RMs represent the 
full size and complexity of the human genome, making 
them ideal for benchmarking thousands or even millions of 
variants detected through whole-genome (WGS) and whole-
exome sequencing (WES). For genetic testing targeting spe-
cific disease-causing variants, patient genomes containing 
these variants can be provided as valuable reference materi-
als (Kalman et al. 2007; Li et al. 2020). Alternatively, engi-
neered DNA RMs with specific variants introduced into the 
genome using genome-editing technologies can be used (Lin 
et al. 2022; Suzuki et al. 2020). When assessing the perfor-
mance of experimental and bioinformatics processes, DNA 
RMs derived from natural or engineered cell lines are typi-
cally analyzed in parallel alongside study samples, whereas 
synthetic spike-in controls are usually added to samples of 
interest as internal controls throughout the entire sequenc-
ing workflow to measure technical artifacts. To distinguish 
them from study samples, synthetic spike-in controls are 
composed of non-human artificial DNA sequences or con-
tain unique molecular barcodes (Blackburn et al. 2019; Reis 
et al. 2020).
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Biological DNA Reference Materials

Germline variants are inherited genetic changes that occur in 
either a sperm or an egg cell and are passed on to offspring at 
the time of conception. These variants are present in all cells 
of the body and are typically detected from a blood sample. 
The accurate and reliable detection of germline variants is 
crucial for identifying genetic causes of disease and develop-
ing personalized treatment strategies.

The GIAB consortium, hosted by NIST, is dedicated 
to creating reference materials, methods, and datasets that 
facilitate the clinical translation and regulation of human 
genome sequencing (National Institute of Standards and 
Technology 2023b). In 2015, NIST released the primary 
human genome DNA reference material, RM 8398, derived 
from HG001/NA12878, a healthy female of European ances-
try. To improve the representation of human genetic diver-
sity, NIST further developed DNA reference materials from 
different ethnic populations, including an Ashkenazi Jewish 
family trio (RM8392) and a Han Chinese son (RM8393) 
(Zook et al. 2016). These genomes were chosen from the 
Personal Genome Project because of the broad consent for 
public genome data sharing and commercial use of products 
based on these cell lines. This broad consent has enabled 
commercial reference materials to be based on the same cell 
lines characterized by the GIAB, including spike-in DNA 
mimicking challenging variants, somatic variants, and cir-
culating tumor DNA (ctDNA), which are explained below. 
The seven genomes have been extensively characterized by 
the GIAB consortium for benchmarking germline variants, 
including single nucleotide variations (SNVs), small indels 
and structural variants (SVs) (Wagner et al. 2022; Zook et al. 
2014, 2019, 2020). While all of GIAB's current benchmarks 
are focused on germline "normal" cell lines, the consortium 
is currently collaborating to develop new broadly consented 
tumor-normal cell line pairs for genomic RM development.

In recent years, several initiatives have made signifi-
cant strides in developing biological DNA RMs to serve as 
benchmarks for whole-genome germline variants (Li et al. 
2018). The Quartet Project, led by Fudan University in close 
collaboration with the National Institute of Metrology of 
China and other organizations, established four immortal-
ized lymphoblastoid cell lines from a Chinese Quartet fam-
ily, including a father, mother and two monozygotic daugh-
ters (Ren et al. 2023; Zhang et al. 2023). This family was 
recruited from the Fudan Taizhou cohort in Central China, 
thus possessing genetic features from both Northern and 
Southern Chinese populations (Wang et al. 2009). The four 
DNA RMs have been certified by China's State Administra-
tion for Market Regulation as the First Class of National 
Reference Materials. They have been extensively used for 
proficiency testing and methods validation in clinical and 
commercial laboratories and the sequencing datasets are 

publicly available (Khayat et al. 2021; Pan et al. 2022). In 
addition to DNA RMs, the Quartet Project released corre-
sponding RNA, protein and metabolite RMs derived from 
the same cell lines. Therefore, the Quartet RMs have three 
types of “truth” to assess the performance of variants calling 
results (Ren et al. 2023). The first is the characterized bench-
mark variants, which can be used to evaluate the perfor-
mance of variants identified inside the benchmark regions. 
The second is the Mendelian inheritance law underlying 
the monozygotic twins and their parents. The third kind of 
“truth” is central dogma of multiomics RMs, which ena-
bles cross-omics validation of variant calls from multiomics 
datasets.

High-throughput sequencing technologies aim to scan 
variants on a whole-genome scale, while clinical genetic 
testing focuses on a few particular genetic variants associ-
ated with diseases. To support quality control for clinical 
genetic testing, the U.S. Centers for Disease Control and 
Prevention (CDC) led the Genetic Testing Reference Materi-
als Coordination Program (GeT-RM) to develop DNA RMs, 
including those for rare inherited genetic diseases, human 
leukocyte antigen (HLA) testing and pharmacogenetics 
(Coriell Institute 2023). The GeT-RM obtained cell lines 
containing medically important mutations from the Coriell 
Cell Repositories, and then distributed genomic DNAs to 
multiple volunteering laboratories for genotyping and muta-
tion confirmation using a variety of platforms and assays 
(Centers for Disease Control and Prevention 2019). The 
GeT-RM has characterized DNA RMs for a wide range of 
genetic disorders, such as cystic fibrosis (Pratt et al. 2009), 
Duchenne and Becker muscular dystrophy (Kalman et al. 
2011), fragile X syndrome (Amos Wilson et  al. 2008), 
Huntington disease (Kalman et al. 2007), and many oth-
ers, including 11 human leukocyte antigen loci (Bettinotti 
et al. 2018) and pharmacogenetic loci (Gaedigk et al. 2019; 
Pratt et al. 2016). These reference materials represent spe-
cific mutations associated with diseases and are available for 
research, clinical test development, quality assurance and 
control, and proficiency testing to ensure the accuracy of 
clinical testing.

Somatic variants are genetic mutations that occur in non-
germline cells. They are typically detected in tumors from 
sequencing datasets of paired tumor and normal samples, 
with normal samples used to remove germline variants. 
Accurate and reliable detection of somatic variants is cru-
cial for gaining insights into cancer biology, guiding targeted 
therapies and improving patient outcomes in cancer treat-
ment. DNA RMs used to benchmark somatic variants usu-
ally consist of matched tumor and normal genomes.

The MicroArray and Sequencing Quality Con-
trol (MAQC-IV/SEQC2) consortium recently completed 
its fourth project, which aimed to develop standard anal-
ysis protocols and quality control metrics for the use of 
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high-throughput DNA sequencing data in regulatory science 
research and precision medicine (MAQC Consortium 2021). 
The Somatic Mutation Working Group (WG1) of SEQC2 
established paired tumor-normal DNA RMs and correspond-
ing whole-genome reference datasets for small variants and 
structural variants (Fang et al. 2021; Talsania et al. 2022). 
The DNA RMs are gDNA derived from a triple-negative 
breast cancer (TNBC) cell line (HCC1395) and a B-lympho-
cyte-derived normal cell line (HCC1395BL) from the same 
donor, obtained from the American Type Culture Collection 
(ATCC). HCC1395 is a well-studied cell line with abundant 
somatic alterations, including approximately 40,000 SNVs, 
around 2000 indels, copy number alterations (CNAs) affect-
ing 56% of the genome, 256 complex genomic rearrange-
ments, and 138 experimentally confirmed fusion genes (Ste-
phens et al. 2009). The SEQC2 WG1 later used DNA RMs 
to address challenges in accurately detecting somatic vari-
ants from WGS and WES by examining experimental and 
bioinformatic components affecting their reproducibility and 
accuracy, covering a wide range of topics, including library 
preparation protocols, DNA input amount, tumor purity, read 
coverage, and bioinformatic pipelines (Sahraeian et al. 2022; 
Talsania et al. 2022; Xiao et al. 2021).

Due to the heterogeneity of tumors and diverse mutational 
profiles among different types of cancer, a single reference 
material, such as HCC1395, may not fully represent breast or 
any other types of cancer genomes. Nevertheless, it is highly 
mutated and suitable for benchmarking, developing, and 
refining protocols and tools for somatic variant detection. 
To better capture the genetic diversity of tumor genomes, 
researchers have made efforts to establish DNA RMs from 
more tumor types. For instance, Craig et al. (2016) created 
DNA RMs from a metastatic melanoma (COLO829) and its 
paired B-lymphoblastoid normal cell line (COLO829BL).

While WGS and WES provide a more comprehensive 
view of the entire genome, targeted sequencing, also known 
as oncopanel sequencing, offers a more cost-effective and 
efficient approach by focusing on a limited number of cancer 
hotspot variants. It can detect variants with a variant allele 
frequency (VAF) as low as 0.5%. The Oncopanel Sequenc-
ing Working Group (WG2) of SEQC2 established two DNA 
RMs for oncopanel benchmarking (Jones et al. 2021). Sam-
ple A is an equal mass pooled gDNA sample of the same 
10 cancer cell lines that were originally used for develop-
ing the Agilent Universal Human Reference RNA material 
(UHRR, Catalog #74000) (MAQC Consortium 2006, 2014), 
covering as many clinically related variants as possible to 
increase variant density in coding regions. Sample B is 
derived from a non-cancer male cell line (Agilent OneSeq 
Human Reference DNA, PN 5190-8848). To emulate the 
range of VAFs typically encountered in targeted sequenc-
ing and ctDNA sequencing, tumor Sample A was diluted 
by normal Sample B at different ratios to create a series 

of tumor DNA reference materials with even lower VAFs 
of variants. The SEQC2 WG2 employed these DNA RMs 
to conduct cross-platform multi-laboratory evaluations of 
commercially available oncopanels, and developed action-
able guidelines to improve the performance and consistency 
of oncopanel sequencing across different laboratories and 
platforms (Deveson et al. 2021a; Gong et al. 2021).

Apart from benchmarking individual somatic variant 
calls, DNA RMs have been developed to benchmark aggre-
gated genomic biomarkers derived from somatic variants, 
such as tumor mutation burden (TMB). TMB is a promising 
biomarker for predicting response to pan-cancer immune 
checkpoint inhibitor therapy (Samstein et al. 2019; Yarchoan 
et al. 2017). The gold standard for measuring TMB is to 
perform tumor-normal paired WES and count the total num-
ber of non-synonymous mutations in the coding regions. 
However, WES is a relatively costly and time-consuming 
approach. To address this, researchers are exploring the 
use of less expensive targeted sequencing panels that focus 
on a small number of driver genes to estimate TMB. How-
ever, significant variability in TMB measurement has been 
observed (Buttner et al. 2019). To address the need to stand-
ardize and harmonize TMB assessment across assays and 
laboratories, many initiatives have developed DNA RMs, 
such as Friends of Cancer Research TMB Harmonization 
Project (Merino et al. 2020; Stenzinger et al. 2019; Vega 
et al. 2021) and SeraSeq (Seracare 2023a). These DNA RMs 
are established from Formalin-Fixed Paraffin-Embedded 
(FFPE) clinical samples or tumor cell lines. Contrived RMs 
are developed by mixing gDNA of tumor cell lines with 
matched normal cell lines at a series of proportions to mimic 
low VAF variants detected from liquid biopsy (Zhang et al. 
2021).

Engineered DNA Reference Materials

Engineered DNA RMs are designed to assess the analytical 
performance of laboratory developed tests (LDTs) for oncol-
ogy therapies by introducing desired cancer hotspot muta-
tions into germline DNA RMs using gene editing systems 
such as CRISPR/Cas9 (Jia et al. 2018; Pfeifer et al. 2022; 
Suzuki et al. 2020; Zehnbauer et al. 2017). Cell lines like 
HapMap cell lines (e.g., HG001 and HG002) and the Quartet 
cell lines are preferred for this purpose, because they can 
be easily cultured in large quantities and widely distributed 
due to their broad consent (Lin et al. 2022). Each variant is 
independently engineered into different cell lines, and the 
multiplexed DNA RMs are created by mixing genomes with 
engineered variants together (Medical Device Innovation 
Consortium 2019). The risk of unexpected off-target effects 
induced by genome editing is a major concern, which can 
result in variants at similar DNA sequences other than the 
intended on-target sites (Zhang et al. 2015). To ensure that the 
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original and engineered cell lines are isogenic at all locations 
except for the engineered variant sites, various computational 
and experimental methods are used to detect any off-target 
CRISPR/Cas9 activity, including Sanger sequencing, Food 
and Drug Administration (FDA)-approved clinically vali-
dated targeted gene panels, PacBio WGS, and circularization 
for high-throughput analysis of nuclease genome-wide effects 
by sequencing (CHANGE-seq) technology (Lazzarotto et al. 
2020). Engineered DNA RMs can also be developed with 
abundant somatic variants by knocking down genes in the 
mismatch repair (MMR) pathway and proofreading systems, 
which are crucial for high fidelity of genome replication 
(Wang et al. 2023). Clones are then selected by flow cytom-
etry and cultured to accumulate sufficient somatic variations. 
One major concern of engineered DNA RMs is that the engi-
neered genomes are not able to mimic the complexity and 
heterogeneity of real cancer genomes.

Engineered DNA RMs can be used to benchmarking 
ctDNA assays (Deveson et al. 2021b; Horizon Discovery 
2023; Seracare 2023b; Thermo Scientific 2020). To emu-
late low concentrations of ctDNA in plasma, the mutated 
genome is diluted by a background genome with wild-type 
alleles, resulting in somatic variants with low VAF. The 
DNA sequences are then fragmented to an average size of 
150–170 bp to closely resemble highly degraded ctDNA 
extracted from human plasma. While researchers have 
attempted to digest DNA sequences using micrococcal 
nuclease (MNase) to preserve nucleosome core particles and 
trimmed nucleosomes (Zhang et al. 2017), further investiga-
tion is needed to determine if the contrived DNA RMs can 
fully represent the biological properties of ctDNA and per-
form equivalently, or even sufficiently, to clinical specimens.

Synthetic DNA Reference Materials

Synthetic DNA molecules are artificially created through 
chemical synthesis techniques and do not necessarily align 
with the human reference genome. The synthetic DNA RMs 
are developed to represent diagnostic features and to address 
the specific requirements of any next-generation sequenc-
ing (NGS) test, especially clinically relevant or difficult vari-
ants. Synthetic DNA RMs are often used as spike-in controls 
to be added into a study sample with a known quantity to 
measure sensitivity and precision of NGS libraries (Deveson 
et al. 2016, 2019). These spike-ins should be added at suf-
ficient abundance to achieve matched sequencing coverage 
with the accompanying sample without sacrificing too many 
sequencing reads (Blackburn et al. 2019).

Synthetic DNA RMs enable researchers to evaluate the 
quantitative properties of DNA sequencing, such as VAF, 
limit of detect (LOD), and copy numbers. A pair of syn-
thetic DNA RMs, which represent wile-type and mutant 
alleles, can be combined to simulate lower somatic VAF 

and to establish LOD (Blackburn et al. 2019; Deveson et al. 
2021b). Alternatively, sequence elements can be encoded 
in a single synthetic DNA molecule at known abundances 
(Reis et al. 2020).

RNA Reference Materials

RNA sequencing (RNA-seq) is typically used for identify-
ing differentially expressed transcripts or genes between 
experimental groups and control groups; thus, RNA RMs are 
often provided as sample pairs or groups. As high-through-
put sequencing technologies do not directly measure abso-
lute abundances of RNA molecules reliably, differences or 
relative expression levels (ratios) between sample groups 
serve as a built-in truth to benchmark quantitative measure-
ments, instead of absolute abundance for each RNA in a sin-
gle sample. Biological RNA RMs are derived from single 
large batches of immortalized cell lines. Gene and transcript 
expression levels are characterized by multiple methods 
(MAQC Consortium 2006; Yu et al. 2023). Synthetic RNA 
RMs are exogenous or artificial RNA oligonucleotides with 
a wide range of known concentrations, which enable for the 
assessment of dynamic range, specificity, sensitivity and LOD 
that is not otherwise possible for biological RNA reference 
materials (Jiang et al. 2011; Munro et al. 2014). However, 
synthetic RNA RMs lack the desired complexity and diversity 
and, thus, could behave differently from biological samples.

Biological RNA Reference Materials

The MAQC/SEQC projects initiated by the US FDA uti-
lized two human RNA RMs to comprehensively evaluate 
the comparability and accuracy of gene-expression meas-
urements obtained through microarray and RNA-seq tech-
niques across different laboratories and protocols (MAQC 
Consortium 2006, 2014). The two RNA RMs are the Agilent 
Universal Human Reference RNA composed of total RNA 
from 10 human tumor cell lines (termed “Sample A”) and 
the ThermoFisher Human Brain Reference RNA (HBRR, 
termed “Sample B”). A pair of RNA RMs can be combined 
together at known mixing ratios, thus enabling users to assess 
relative accuracy of each method based on the differentially 
expressed genes detected. Samples A and B were then mixed 
in 3:1 and 1:3 ratios, respectively, to generate Samples C and 
D. This combination of biologically different RNA sources 
and known titration differences enables assessment of relative 
accuracy based on the differentially expressed genes detected.

In addition to comparing the consistency of differen-
tially expressed genes between query datasets and reference 
datasets, unsupervised clustering methods such as principal 
component analysis (PCA) were used to assess the perfor-
mance of omics data to distinguish sample groups. Gene 
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expression profiles between MAQC samples A and B are 
significantly different with more than 15,000 differentially 
expressed genes. Successfully distinguishing sample groups 
with such large differences does not guarantee the ability 
to identify subgroups with subtle biological differences of 
clinical samples. The four Quartet RNA reference materials 
are much more similar to each other and require increased 
performance of a method for distinguishing them (Yu 
et al. 2023). There are about 2000 differentially expressed 
genes between any two of the Quartet samples, which are 
enriched in B cell mediated immunity. Triplicates of each 
Quartet RNA reference material were sequenced in a batch 
to benchmark transcriptomic profiling cross protocols and 
laboratories. The signal-to-noise ratio (SNR) metric, defined 
as the ratio of the inter-sample distance on the PCA plot 
over the intra-sample distance between technical replicates, 
is applied to assess the quality of query datasets. Higher 
SNR values indicate stronger power to discriminate sample 
groups, while lower SNR values indicate technical biases or 
sequencing failures of one or more replicates. In the Quartet 
benchmark studies, some experiments were found to have 
high replicate consistency but relatively low SNR values, 
indicating that these experiments may had systematic tech-
nical biases which can only be revealed by multi-sample 
reference materials.

Synthetic RNA Reference Materials

Synthetic RNA RMs are used as external spike-in controls 
to be added to the samples of interest for transcriptomic 
analysis. Laboratories have used different custom external 
spike-ins for specific platforms and assays, before the Exter-
nal RNA Controls Consortium developed the first generally 
accepted RNA spike-ins for various microarray and sequenc-
ing applications, which were later distributed by NIST as 
SRM 2374 (Baker et al. 2005). The ERCC spike-in controls 
comprise 92 polyadenylated RNA transcripts derived from 
bacterial sequences or in vitro transcription of synthetic 
DNA sequences. The 92 ERCC RNA control transcripts are 
categorized into four sub-pools, each containing 23 tran-
scripts spanning a wide dynamic range in concentration. The 
sub-pools are combined to create two mixtures, Mix1 and 
Mix2, in four defined abundance ratios of 4:1, 1:2, 1:1.5, 
and 1:1 (Munro et al. 2014). Spike-in controls can be added 
to biological RNA RMs to combine the advantages of both 
types of reference materials into a single sequencing run. 
In the third phase of the MAQC project or SEQC, research-
ers conducted a broader analysis of RNA-seq performance 
evaluating the sensitivity and technical variation between 
different NGS methods and laboratories by complementing 
samples A and B with ERCC controls (MAQC Consortium 
2014).

While ERCC spike-in transcripts are valuable for stand-
ardization and quantification in transcriptomic analysis, they 
have limitations in representing the diversity and complexity 
of endogenously expressed transcripts due to their lack of 
isoforms. To address this limitation, alternative RNA refer-
ence materials have been developed. Sequins, designed by 
the Garvan Institute of Medical Research, provide a com-
prehensive representation of alternative isoforms and the 
complex exon–intron architecture of human genes, allow-
ing for more accurate assessment of gene fusion, alternative 
splicing, and transcript assembly (Hardwick et al. 2016). 
Additionally, the spike-in RNA variants (SIRV) developed 
by Lexogen consist of 69 synthetic transcript isoforms that 
comprehensively reflect variations of alternative splicing, 
alternative transcription start- and end-sites, overlapping 
genes, and antisense transcripts (Lexogen 2023). This set 
of RNA reference materials enables the evaluation of the 
performance of isoform-specific RNA-seq workflows, and 
thus provides a more comprehensive evaluation of RNA-seq 
performance.

RNA-seq can be used to sequence long RNAs, such as 
messenger RNAs, as well as short RNAs, such as micro-
RNAs (miRNAs), that differ in length. The Extracellular 
RNA Communication Consortium led a benchmark study for 
miRNA quantification across multiple protocols and labo-
ratories using small RNA-seq (Giraldez et al. 2018). They 
used diverse combinations of synthetic RNAs to evaluate 
sequence-specific biases and accuracy. An equimolar pool 
consisted of over 1000 chemically synthesized RNA oligo-
nucleotides (15–90 nt) mixed at equal concentration was 
used to assess reproducibility of absolute RNA sequences 
abundance at counts per million (CPM) level. Two syn-
thetic small RNA pools with RNAs varied in defined rela-
tive amount were used to assess the concordance for rela-
tive quantification. Synthetic pools with unedited and edited 
miRNA variants in different ratios were used to determine 
the accuracy of quantifying miRNA editing.

Protein Reference Materials

The proteome refers to the entire set of proteins expressed 
by a cell, tissue or organism at a particular time. Proteom-
ics is the systematic, high-throughput study of the compo-
sition, functions, and interactions of all proteins. In pro-
teomics research, where the sheer multitude of proteins 
presents a formidable challenge, mass spectrometry (MS) 
is commonly used for both qualitative and quantitative 
protein analysis. This process involves comparing detected 
peptide maps with protein sequences sourced from data-
bases. However, the complexity of MS-based proteomics 
experiments and their potential for considerable variability 
can hinder the achievement of accurate and reproducible 
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results. To enhance the reliability and reproducibility 
of proteomics, numerous initiatives have been actively 
working for decades to establish community standards 
and guidelines. These efforts aim to ensure consistency, 
promote rigorous experimental practices, and facilitate 
the generation of reliable and comparable proteomic data 
across different laboratories and studies. For example, 
the Proteomics Standards Initiative (PSI) of the Human 
Proteome Organization (HUPO) standardized practices 
and guidelines for data reporting formats (Deutsch et al. 
2017), data quality control framework (Bittremieux et al. 
2017) and data interpretation (Omenn 2021). CPTAC, 
launched by the US National Cancer Institute (NCI), 
intends to improve MS-based proteomics measurement 
quality for biomarker discovery in cancer research (Tabb 
et al. 2016; Zhou et al. 2017). The Proteomics Standards 
Research Group (sPRG) of the Association of Biomolecu-
lar Resource Facilities (ABRF) develops and implements 
standards to reflect the accuracy and consistency of prot-
eomics (Tabb et al. 2010).

The limitations of traditional methods have driven the 
development of new technologies tailored for highly sensi-
tive protein biomarker discovery while demanding minimal 
quantities of biological materials (Eldjarn et al. 2023; Sun 
et al. 2023). Examples of this innovation include Olink's 
Proximity Extension Assay (PEA) (Petrera et al. 2021; Wik 
et al. 2021), SomaLogic's SomaScan Assay (Candia et al. 
2017, 2022), and Seer's Proteograph (Blume et al. 2020). 
Among them, the Olink technology implements more strin-
gent quality control procedures by integrating four inter-
nal controls into all samples and including external con-
trols within each plate (Olink 2023). The Olink technology 
employs a detection principle where two specific proximity 
probes are coupled, generating an amplicon upon binding to 
the target protein, which is then quantified using quantitative 
real-time PCR (qPCR) or NGS (Wik et al. 2021). The inter-
nal controls encompass an incubation control, an extension 
control, and a detection control, each serving distinct roles in 
data quality assurance during the PEA. The incubation con-
trols involve non-human antigens with matching antibodies 
for monitoring throughput the PEA process. The extension 
control consists of IgG antibodies coupled with matching 
oligo pairs, ensuring the constant proximity of DNA tags 
and supporting data normalization while monitoring the 
extension, amplification, and detection steps. The detection 
control, a synthetic double-stranded DNA, contributes to 
data quality control and aids in identifying potential issues 
in the final amplification and detection stages. Furthermore, 
each sample plate incorporates eight external controls, which 
consist of two pooled sample controls to estimate inter and 
intra consistency for each assay, three negative controls con-
taining buffer to establish background levels and calculate 
the limit of detection, and three plate controls designed to 

account for potential variations between runs and plates, 
further enhancing the reliability and accuracy of the results.

In the realm of proteomics studies, the inclusion of vari-
ous types of RMs, such as internal standards, blank QC sam-
ples or negative controls, and pooled QC samples, equips 
researchers with the means to effectively manage variability, 
achieve precise quantification, and ensure the reliability of 
their findings (Bittremieux et al. 2018; Bunk 2010; Chiva 
et al. 2021). Within this review, our primary focus is on 
external RMs that can be analyzed alongside the study sam-
ples, enabling comparisons between runs, batches and stud-
ies, as well as ensuring the accuracy of detection through 
comparison with reference datasets or the categorization of 
different sample groups.

A diverse range of protein RMs has been developed to 
support both qualitative and quantitative proteomic meas-
urements, serving as invaluable tools for method valida-
tion, quality control, and calibration within the field of 
proteomics research. These RMs serve as valuable tools for 
method validation, quality control, and calibration in pro-
teomics research. These RMs vary in complexity, ranging 
from simple synthetic peptide mixtures to digests of bovine 
serum albumin and even complex human tissues (Bittrem-
ieux et al. 2018). Biological matrix protein RMs are derived 
from biological materials such as whole-cell lysate and bio-
fluids, offering a higher level of sample complexity with 
tens of thousands of proteins. While biological protein RMs 
obtained from human tissues and plasma better resemble the 
biological features of their respective sample types, their 
availability is usually limited, and the reference datasets 
can differ between lots. In contrast, microorganisms and 
cell lines provide inexpensive and renewable protein RMs, 
ensuring sufficient quantities for the research community. 
Synthetic protein RMs, on the other hand, consist of mix-
tures of a limited number of purified recombinant human 
proteins or chemically synthesized peptides with defined 
molecular weights and concentrations. However, the com-
position of synthetic proteins is much simpler and does not 
resemble the complex biological characteristics of clinical 
samples.

Biological Protein Reference Materials

Protein identification is a critical component of proteom-
ics and often leads to subsequent investigations in which 
these proteins are quantified. One-sample based RMs are 
often used to evaluate the performance of protein identi-
fication and absolute quantification, for example RM8461 
released by NIST from a cryogenically homogenized and 
freeze-dried liver tissue (Davis et al. 2019), yeast Saccha-
romyces cerevisiae (later released by NIST as RM8323) 
(Beasley-Green et al. 2012; Paulovich et al. 2010), bacte-
rium Shewanella oneidensis (Nakayasu et al. 2021), NCI-7 
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Cell Line Panel (Clark et al. 2018), HeLa cells (Kocher et al. 
2011) and HEK293T cells (Collins et al. 2017). While these 
proteomes have been extensively characterized and served 
as a model proteome in numerous fundamental proteomic 
investigations, reference datasets of high-confidence proteins 
have not yet been established. As a result, the performance 
of protein identification and absolute quantification are cur-
rently being assessed primarily based on the consistency 
between technical replicates of the same RM.

Another important application of quantitative proteomic 
measurements is to determine differentially expressed pro-
teins (Anwaier et al. 2022; Ku et al. 2023). Multi-sample 
RM suites are developed to facilitate relative quantitation 
assessment. CPTAC established a pair of patient-derived 
xenograft tumors as a comparative reference material 
(CompRef) to longitudinally monitor the reproducibility of 
differential proteomics across instruments and centers for 
the Cancer Genome Atlas (TCGA) (Tabb et al. 2016; Zhou 
et al. 2017). The CompRef represent basal (WHIM2) and 
luminal-B (WHIM16) breast cancer subtypes, having sig-
nificantly different proteomic signatures. They were then 
utilized as standards to establish uniform analytical pipe-
lines for other cancer types (colorectal and ovarian cancers) 
by the CPTAC Common Data Analysis Platform (CDAP) 
(Rudnick et al. 2016). NIST is currently developing protein 
RMs suites for the assessment of relative quantitation in 
proteomics, including RM 8462 Frozen Human Liver Suite 
(normal, fatty and congested liver samples) and RM 8231 
Frozen Human Plasma Suite (Diabetic, high triglyceride, 
young African-American and Normal plasma samples). The 
Quartet Project also released biological protein RMs, which 
are extracted from four lymphoblastoid cell lines as the same 
with DNA and RNA reference materials mentioned above 
(Tian et al. 2023).

Synthetic Protein Reference Materials

Synthetic protein reference materials have been extensively 
used in benchmark studies of proteomic measurements to 
determine experimental and analytical variations by big 
consortia (Paulovich et al. 2010; Tabb et al. 2010). Notable 
examples of standard protein mixtures include: the Universal 
Proteomics Standards (UPS1 and UPS2), a mixture of 48 
human recombinant proteins jointly developed by ABRF's 
sPRG and Sigma-Aldrich (Andrews et al. 2006); the HUPO 
Gold MS Protein Standard, a mixture of 20 human proteins, 
developed by the joint efforts of HUPO and Invitrogen (Bell 
et al. 2009); a mixture of 20 purified human proteins (NCI-
20), produced by NIST and employed by CPTAC for intra- 
and inter-laboratory studies aiming at evaluating repeatabil-
ity and comparability of qualitative proteomics (Tabb et al. 
2010; Wang et al. 2014).

Chemical synthetic or modified peptide mixtures are 
also utilized as RMs. In comparison to protein mixtures, 
peptide mixtures have a simpler composition. However, it 
is important to note that they cannot fully capture the vari-
ability introduced during enzymatic digestion, as differ-
ent laboratories may employ diverse proteolytic enzymes, 
chemicals, and conditions for digestion. Several synthetic 
peptide reference materials are commercially available, 
such as a mixture of 1000 heavy-label proteotypic peptides 
for conserved proteins across three species (human, mouse 
and rat), established by ABRF and JPT Peptide Technolo-
gies (2023). Synthetic peptides are especially important to 
evaluate the performance of targeted quantitative proteomic 
measurement, such as multiple reaction monitoring (MRM) 
and parallel reaction monitoring (PRM). They are often used 
to predict retention times (RTs) for large-scale scheduled 
liquid chromatography multiple reaction monitoring (LC-
MRM) measurements with a single calibration run before 
the analytical runs. Biognosys has developed a mixture of 
11 artificial synthetic peptides (iRT) to determine peptide 
retention time (RT) values and calibrate chromatographic 
systems for increasing the throughput (Escher et al. 2012). 
Additionally, well-defined synthetic protein reference mate-
rials can be added into biological protein reference materials 
or test samples to provide additional information of quali-
tative accuracy. An important consideration when spiking 
synthetic peptides into other samples is that these peptides 
should not overlap with the original sample content.

Metabolite Reference Materials

Metabolomics encompasses the extensive investigation of 
small molecules, known as metabolites, within cells, biolog-
ical fluids, tissues, or organisms. It integrates the influences 
of factors from genomics, transcriptomics, proteomics, as 
well as environmental elements like diet and lifestyle. Since 
metabolites serve as indicators of the downstream effects of 
these factors on cellular functions, they closely represent the 
actual phenotypes of cells, tissues, or organisms, offering 
novel insights into metabolism and its regulation in physi-
ological and pathological processes, including health, aging, 
and diseases. Metabolomics involves the simultaneous iden-
tification and quantification of various small molecule types, 
including amino acids, fatty acids, carbohydrates, and other 
products of cellular metabolic functions. In comparison to 
genomics, transcriptomics, and proteomics, the reliable 
identification and quantification of the metabolome are sig-
nificantly more complex due to the chemical complexity and 
the presence of isomers—compounds with the same molecu-
lar formula but different structural arrangements—introduc-
ing challenges for precise identification and quantification.
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To promote the advancement of metabolomics toward 
higher quality, several large research consortia have emerged 
in the field, aiming to enhance the reproducibility of metab-
olomics research results through comprehensive quality 
assurance and quality control measures. These consortia 
have undertaken various efforts, including the establishment 
of best practices, promotion of communication and educa-
tion, and the advancement of the field toward higher-quality 
standards. The mQACC, consisting of experts in quality 
assurance and quality control, is focused on developing 
universal best practices and reporting standards to ensure 
the robustness and reproducibility of untargeted metabo-
lomics research (Beger et al. 2019; Evans et al. 2020). The 
Metabolomics Society Data Quality Task Group (DQTG) 
aims to enhance the robustness of quality assurance and 
quality control in the metabolomics community through 
communication, advocacy, education, and the promotion of 
best practices (Kirwan et al. 2022). The Standard Metabolic 
Reporting Structures (SMRS) group is dedicated to stand-
ardizing metabolomics analysis and provides comprehensive 
reports and summaries on relevant key issues (Beckonert 
et al. 2007; Lindon et al. 2005). The ABRF Metabolomics 
Research Group aims to study the reproducibility of metabo-
lomics research and propose best data analysis strategies by 
comparing analysis groups using the same dataset (Turck 
et al. 2020). Additionally, the ABRF plays a role in improv-
ing the core competencies of biotechnology laboratories 
through research, communication, and education (Cheema 
et al. 2015; Turck et al. 2020). The Metabolomics Consor-
tium has proposed guidelines for achieving high-quality 
reporting of LC–MS-derived metabolomics data, including 
the identification and prioritization of test materials, assess-
ment of useful indicators of data quality, and descriptions of 
common practices and variations in quality assurance and 
quality control workflows (Broadhurst et al. 2018).

Quality control samples can be categorized into three pri-
mary types based on their intended purposes. System suit-
ability test samples serve as a quality assurance measure 
applied before data acquisition to instill confidence in the 
eventual high-quality results (Broadhurst et al. 2018; Kirwan 
et al. 2022). Typically, these samples consist of solutions 
containing a small number of authentic chemical standards, 
typically ranging from five to 10 analytes, with known con-
centrations. They play a critical role in instrument calibra-
tion and assessment of critical system parameters, including 
mass-to-charge (m/z) ratio and chromatographic characteris-
tics such as retention time, peak area, and peak shape.

Blank quality control samples and matrix-matched qual-
ity control samples are essential components of quality con-
trol measures to ensure that the quality management process 
is fulfilled. Blank quality control samples consist of samples 
devoid of metabolites, serving to identify potential sample 
contamination or instrument-related background signals, 

thereby eliminating interference from external contaminants 
or instrument-related background signals, thereby eliminat-
ing interference from external contaminants or the instru-
ment itself (Kirwan et al. 2022). By comparing data from the 
actual samples to that from the blank samples, researchers 
can distinguish genuine metabolite signals from potential 
interferences or background noise. Within the category of 
matrix-matched quality control samples, the most com-
monly used are pooled samples. These samples are created 
by pooling a small amount of each analyzed biological sam-
ple within a study, representing both the sample matrix and 
metabolite composition. Pooled QC samples play a multifac-
eted role, conditioning the analytical platform, conducting 
intra-study reproducibility measurements, and mathemati-
cally correcting for systematic changes in parameter values 
(Broadhurst et al. 2018). A specific type of pooled QC sam-
ple can be used to assess data quality across different stud-
ies within the same laboratory, termed long-term reference 
(LTR) QC samples (Broadhurst et al. 2018). These sam-
ples are obtained either through the commercial purchase 
of the required sample types or by collecting representative 
samples from various studies within the laboratory. In this 
review, we focus on the use of external RMs for assessing 
performance across different laboratories, which are created 
and sold by a certified group.

Biological Metabolite Reference Materials

SRM 1950 released by NIST is one of the first developed 
metabolite reference materials, which is intended for quality 
control of identifying and quantifying metabolites in human 
plasma, such as fatty acids, electrolytes, vitamins, hormones, 
and amino acids (Phinney et al. 2013). It is a mixture of 
human plasma samples from 100 individuals reflecting a 
racial distribution in the US population at the time of imple-
mentation (77% white, 12% African-American or black, 2% 
American Indian or Askan Native, 4% Asian, 5% other, with 
about 15% Hispanic origin). A total of 90 metabolites are 
assigned with high confidence values of absolute concen-
trations by integrating several different analytical methods. 
SRM 1950 was initially designed for targeted metabolomics, 
and has been extensively used to benchmark platforms, pro-
tocols and workflows (McGaw et al. 2010; Misra and Olivier 
2020; Siskos et al. 2017; Thompson et al. 2019). Recently, 
it has also been used in benchmark studies of untargeted 
metabolomics and lipidomics (Azab et al. 2019; Bowden 
et al. 2017; Cajka et al. 2017). NIST also released other 
standalone natural-matrix reference materials for organic 
contaminants from an assortment of biological materials, 
including frozen non-fortified human milk (SRM 1953), for-
tified human milk (SRM 1954), non-fortified human serum 
(SRM 1957), fortified human serum (SRM 1958) (Schantz 
et al. 2013), lyophilized human serum (SRM 909b and SRM 
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909c) (Aristizabal-Henao et al. 2021), smokers' human urine 
(SRM 3672), and non-smokers' urine (SRM 3673).

Like other quantitative omics, such as transcriptomics 
and proteomics, identifying differentially expressed metabo-
lites between sample groups is one of the main purposes for 
metabolomics-based biomarker researches. RMs consisting 
of two or more sample groups can be used to assess the 
performance of distinguishing sample groups. The NIST 
Metabolomics Quality Assurance and Quality Control Mate-
rials (MetQual) Program released a suite of pooled plasma 
materials (RM 8231) comprising four different metabolic 
health states, including type 2 diabetes plasma, hypertriglyc-
eridemia plasma, normal African-American plasma and nor-
mal human plasma (SRM 1950) (Met Qual Program Coordi-
nators 2023). The MetQual Program is planning to conduct 
an inter-laboratory study to obtain consensus characteriza-
tion of RM 8231 and assess measurement variability within 
the metabolomics community. NIST also developed several 
multi-sample metabolite reference materials from other bio-
logical resources. RM 971a consists of two serum mixtures: 
one from a pool of healthy, premenopausal adult females, 
and the other one from a pool of healthy adult males. It is 
intended to evaluate the accuracy of identify and quantify 
hormones in human serum (Aristizabal-Henao et al. 2021). 
SRM 1949 Frozen Human Prenatal Serum is a four-level 
material that was pooled from non-pregnant women and 
women during each trimester of pregnancy, aiming at qual-
ity control for the measurement of hormones and nutritional 
elements throughout pregnancy (Boggs et al. 2021; Sem-
pos et al. 2022). A suite of human urine reference materials 
(RM 8232) is under development. The suite will consist of 
four pooled urine samples from female non-smokers, female 
smokers, male non-smokers and male smokers. Relative 
metabolite fold changes, percent differences for the top 20 
metabolites and the identified top 30 abundant metabolites 
of the urine samples will be characterized by both LC–MS 
and nuclear magnetic resonance. RM 8462 Frozen Human 
Liver Suite mentioned in the protein reference materials sec-
tion can be also used for metabolomics (Lippa et al. 2022).

The Quartet Project also developed a multi-sample 
metabolite RM suite by extracting metabolites from the four 
immortalized lymphoblastoid cell lines. Aiming at assessing 
the performance of detecting biological differences between 
different sample groups, reference datasets for fold changes 
of absolute abundance values between samples groups were 
constructed, by consensus across platforms, laboratories and 
replicates. The performance of quantitative metabolomics 
can be assessed not only by the consistency between fold 
changes of differentially expressed metabolites in query 
datasets and reference datasets, but also by SNR by meas-
uring the ability to discriminate the intrinsic biological dif-
ferences between the four sample groups.

Synthetic Metabolite Reference Materials

Synthetic metabolite reference materials are artificial sub-
stances that have identical chemical properties to naturally 
occurring metabolites in biological systems. They play 
an important role as calibration standards for analytical 
methods to allow accurate identification and quantification 
of metabolites. Synthetic metabolite RMs contain known 
concentrations of chemical components, which can be run 
separately or used as internal standards to perform system 
suitability tests, calibration, and metabolite quantification. 
These RMs can be prepared in individual laboratories to fit 
specific purposes for each study or can be purchased from 
vendors. They can be produced using chemical synthesis 
or enzymatic reactions, and they can be used for a range 
of applications, including targeted and untargeted metabo-
lomics, and in the development and validation of new ana-
lytical methods. Synthetic metabolite RMs can also be used 
to assess the accuracy and precision of different analytical 
platforms and to facilitate inter-laboratory comparisons.

One example of a synthetic metabolite RM is the deuter-
ated internal standards that are frequently used in MS-based 
metabolomics. These internal standards are made by incor-
porating deuterium into the metabolite of interest, allowing 
for accurate quantification of the metabolite in biological 
samples. Commercially available synthetic metabolite refer-
ence materials are typically mixtures of isotopically labeled 
or U-13C labeled metabolites that span a broad range of 
molecular weights, possess varied ionization propensi-
ties, and cover a distribution in class and retention time. 
Examples of commercially available synthetic metabolite 
reference materials include the QReSS kit from Cambridge 
Isotope Laboratories (CIL) (Cambridge Isotope Laborato-
ries, Inc. 2023), the IROA-Long-Term Reference Standard 
(IROA-LTRS) from IROA Technologies (Evans et al. 2020), 
the Lipidyzer Platform kits from SCIEX (Lippa et al. 2022), 
and quantitative metabolic profiling kits from Biocrates 
(Biocrates 2023).

Multiomics Reference Materials

Multiomics integrates diverse omics data to better cluster 
and classify sample (sub)groups, and more comprehensively 
understand the mechanisms underlying biological processes 
by investigating molecular interaction across omics layers 
(Karczewski and Snyder 2018; Price et al. 2017; Schussler-
Fiorenza Rose et al. 2019). Multiomics analysis inherits 
challenges from the single omics datasets and confronts new 
challenges in data harmonization and integration across dif-
ferent omics layers with varying numbers of features and 
statistical properties (Athieniti and Spyrou 2023; Sonia 
Tarazona 2021). Multiomics RMs derived from the same 
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source that incorporate multiple omics types and provide 
unbiased ground truth serve as crucial tools for assessing 
the performance of methods for normalizing and integrating 
multiomics datasets, conducting cross-omics validation, and 
imputing missing data (Krassowski et al. 2020; Zheng et al. 
2023). They enable the validation and comparison of data 
integration methods across multiple omics layers, allowing 
for the identification of potential biases or discrepancies in 
the integration of data. Cross-omics validation is a criti-
cal step in multiomics research, involving comparing and 
validating findings across different omics layers. Multiom-
ics RMs provide a standardized framework for conducting 
such validation, ensuring that results obtained from different 
omics techniques align and mutually reinforce each other.

The Quartet Project, aiming at quality control and data 
integration of multiomics profiling, has established a 
series of openly consented multiomics reference materi-
als, including matched DNA, RNA, protein and metabolite, 
derived from the same batch of immortalized EBV infected 
B-lymphoblastoid cell lines from a healthy Chinese Quartet 
family with parents and monozygotic twin daughters (Fig. 1) 
(Zheng et al. 2023). Replicates of each Quartet reference 
material were analyzed in each batch for performance evalu-
ation. Correctly classifying different Quartet samples based 
on multiomics features can be used for assessing the reli-
ability of correlation-based multiomics network integration. 
The subtle known biological differences among the four ref-
erence samples may allow technical biases and batch effects 
to be discerned more efficiently when using multiple sample 
reference materials.

Recently, NIST has partnered with institutions around the 
world to form an open consortium, the International Micro-
biome and Multi-Omics Standards Alliance (IMMSA), to 
address multiomics measurement challenges for micro-
biome. The IMMSA has five working groups planning to 
develop microbial reference materials, benchmark bioin-
formatic tools, establish best practices for metabolomics, 
develop standards for documents and written, and develop 
standard methods for enumerating whole-cell reference 
materials. Human whole stool is one source of their candi-
date reference materials, because it can facilitate the under-
standing of biologically relevant properties of the human gut 
microbiome and identify new biomarkers that may serve as 
disease indicators.

Reference Datasets for Reference Materials

Establishing reference datasets for biological reference 
materials is crucial for evaluating the performance of high-
throughput technologies. These reference datasets behave 
like "examination papers with right answers" to identify 
false-positive and false-negative results in a given test. 

Reference datasets can be qualitative, which involves iden-
tifying the presence or absence of variants, transcripts, 
proteins, or metabolites in the sample. They can also be 
quantitative, which involves determining the concentration, 
abundance, or expression levels of these molecules. Since 
a single run of a sample can lead to errors or miss true ana-
lytes (substances), reference datasets need to be carefully 
established by integrating data from various measurement 
technologies and bioinformatic analysis pipelines to avoid 
biases toward a specific method or platform. This ensures 
that the reference datasets provide an unbiased ground truth 
for evaluating the performance of multiomics technologies.

Qualitative Reference Datasets

Reference datasets of variants for DNA reference materials 
typically include two components: benchmark variants and 
benchmark regions. Benchmark variants are a group of well-
characterized and highly confident variants on the genomic 
sequences of a DNA reference material. These variants 
are developed with corresponding benchmark regions that 
include positions of the benchmark variants and homozy-
gous reference positions.

To ensure the accuracy of benchmark variants, four 
approaches are commonly employed. First, benchmark 
variants are developed by integrating data from multiple 
sequencing technologies and bioinformatic algorithms to 
take advantage of the strengths of different methods, while 
carefully filtering out errors introduced from individual runs. 
To increase confidence in the benchmark variants, major-
ity voting methods are often applied to select variants that 
are consistent among replicates. However, it is important to 
note that even reproducible variants may not always be true 
variants, as systematic errors shared across multiple meth-
ods can also be present (Robasky et al. 2014). Consensus 
genotype calls or in silico datasets can also be used to train 
machine learning models to find the optimal classification 
threshold to identify likely false positives. For example, the 
GIAB consortium used concordant genotype calls to train 
a simple one-class model for each dataset to determine 
whether each call from each dataset might be biased (Zook 
et al. 2019). Another example is the SEQC2 study, which 
spiked in silico SNVs and indels into normal replicates 
using BAMSurgeon to create "pseudo-tumors" (Fang et al. 
2021). Variants detected by virtual tumor-normal pairs that 
were not spiked in were labeled as false positives. About 
100 genomic and sequencing features were extracted to train 
adaptively boosted classifiers, which were used to classify 
variants called from real tumor-normal pairs into four con-
fidence levels.

Second, pedigree information can be used to remove tech-
nical errors when establishing reference datasets for ger-
mline variants. Since the number of Mendelian inconsistent 
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Fig. 1  The quartet project for quality control of multiomics profiling
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variants is far more than that of de novo variants and somatic 
variants arisen somatically or from cell culture, they are 
potential technical artifacts (Conrad et al. 2011). Illumina 
released another version of small-variant benchmark calls 
for NA12878—“the Platinum Genome” (Eberle et  al. 
2017). Although the Platinum Genome was integrated 
from sequencing datasets generated from a single Illumina 
sequencing platform and called by multiple pipelines, its 
accuracy was validated by using haplotype inheritance infor-
mation though a well-studied 17-member pedigree. Bench-
mark variants of the Quartet samples are required to be the 
same between the monozygotic twin daughters and follow 
Mendelian inheritance law with parents.

Third, validation of draft benchmark variants using 
orthogonal technologies with different principles is neces-
sary to confirm their reliability. Sanger sequencing is widely 
recognized as the "gold standard" method for validating 
variant calls from high-throughput sequencing. Addition-
ally, array-based genotyping and amplicon-based sequencing 
can be designed to validate variants in specific regions of 
interest. Given the impracticality of validating millions of 
variants across the entire human genome simultaneously, a 
small number of variants with different confidence levels are 
randomly selected for validation. Variants with the highest 
confidence level are expected to fully supported by orthogo-
nal technologies, and validation rate drops as the confidence 
level decreases (Fang et al. 2021). An alternative way is to 
focus on validating suspicious false positives. It should be 
noticed that discrepancies by orthogonal technologies do not 
necessarily indicate errors in benchmark variants, because 
variants on repetitive regions are unlikely to be easily char-
acterized by sequencing technologies mentioned above, and 
long-read sequencing are more useful for such variants.

Fourth, manual inspection is necessary on discrepancies 
between benchmark variants and orthogonal validation. To 
ensure the accuracy and completeness of the benchmark sets, 
the GIAB consortium has established a process that involves 
sharing a draft benchmark with GIAB after initial evalua-
tions at NIST, inviting volunteers with expertise in different 
technologies to contribute callsets, comparing these call-
sets to the draft benchmark, and randomly selecting putative 
false positives and false negatives for curation by the callset 
contributors (Wagner et al. 2022). Any sites identified as 
questionable or errors in the benchmark are re-curated by 
NIST. If the majority of false positives or false negatives are 
found to be errors or questionable in the benchmark, a new 
version of the benchmark is developed. This process ensures 
the continuous improvement and refinement of the bench-
mark sets, leading to more reliable and accurate variant calls.

Benchmark regions, also known as high-confidence 
genomic regions, are areas where accurate genotypes can be 
reliably derived, and sites within them are either benchmark 
calls or homozygous reference calls. Benchmark regions are 

often integrated from callable regions of multiple sequenc-
ing datasets that have relatively high mapping quality and 
sequencing coverage. Low complexity regions and highly 
repetitive regions are typically excluded to avoid possible 
systematic mapping errors, and flanking regions of uncertain 
variants are also excluded. Concordant variants outside of 
the high-confidence regions are not considered as bench-
mark variants due to their lower confidence level. Bench-
mark regions can be continually updated with advances in 
sequencing technologies, assembly algorithms, and variant 
calling methods. Linked-read and long-read sequencing 
technologies have been utilized to provide better coverage 
of difficult-to-map and repetitive regions. The benchmark 
regions for small variants have been expanded from 77% to 
92% of the autosomes and X chromosome of GRCh38 by 
including long reads (Chin et al. 2020; Wagner et al. 2022). 
GIAB has collaborated with the Human Pangenome Ref-
erence Consortium (HPRC) and the Telomere-to-Telomere 
Consortium (T2T) to expand benchmark sets by utilizing 
T2T assemblies of the HG002 genome, initially focusing 
on chromosomes X and Y and later expanding to the entire 
genome (Nurk et al. 2022).

Identification of transcripts, proteins and metabolites 
is a critical step in interpreting omics datasets. In fact, the 
number of identified features (protein or metabolites) has 
been routinely used as a performance metric. As we have no 
idea what substances are expected to be present in biological 
reference materials, features are retained in the reference 
datasets if they are consistently detected among multiple 
replicates, platforms and algorithms with small coefficient 
of variation (CV) of quantitative measurements (Aristizabal-
Henao et al. 2021; Davis et al. 2019). For reference materials 
with two or more sample groups, the number and identities 
of differentially expressed features between sample pairs are 
additional qualitative properties for quantitative omics.

Quantitative Reference Datasets

Quantitative properties fall into two categories: absolute 
and relative quantification. Absolute quantification is to 
determine absolute copy numbers of transcripts or absolute 
concentrations of proteins and metabolites, which can be 
achieved by using a standard curve created by dilution series 
of internal standards for each substance. In the MAQC study, 
the expression levels of 1044 genes in samples A and B were 
measured by TaqMan qPCR assays, which were later used as 
orthogonal gold standard to assess the accuracy of microar-
ray and RNA-seq (MAQC Consortium 2006, 2014). In the 
Quartet study, absolute quantification of Quartet protein ref-
erence materials was performed by using  C13 stable isotope-
labeled concatenated peptides. They randomly selected 33 
proteins with intensity-based absolute quantification values 
distributed in four orders of magnitude as anchor proteins for 
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absolute quantification and calibration of the copy numbers 
for the whole proteome. The abundance of more than 4000 
proteins in each of four Quartet samples were quantified 
by aligning to the anchor proteins (Tian et al. 2023). NIST 
reported mass fraction, mass concentration and amount-of-
substance concentration of metabolites for SRM 1950 by 
combining different extraction procedures, analytical meth-
ods, chromatographic separations and LC detection modes 
(Simon-Manso et al. 2013).

Absolute quantification is difficult to achieve in RNA-
seq and untargeted metabolomics and proteomics. The 
original signals from a single sample, such as fragments per 
kilobase of transcript per million mapped reads (FPKM) 
in transcriptomics, fraction of total  (FOT) in MS-based 
proteomics and relative peak areas in metabolomics, from 
different platforms, labs and batches are incomparable due 
to technical biases and batch effects (Zheng et al. 2023). 
These technologies are usually applied to compare expres-
sion profiles between control and test groups to identify dif-
ferentially expressed features. Reference datasets of relative 
quantification, which determines fold changes in expression 
levels between different sample groups, is vital for perfor-
mance assessment of such technologies (MAQC Consor-
tium 2006, 2014). Recently, the Quartet Project established 
the first ratio-based quantitative reference datasets for 

transcriptomics, proteomics and metabolomics, through con-
verting the original signals to relative quantitative measure-
ments by dividing the expression profiles of study samples 
by those of a universal reference material on a feature-by-
feature basis (Zheng et al. 2023).

Performance Metrics

Performance metrics are essential for evaluating the quality 
of a test dataset or experiment. These metrics are catego-
rized into two groups: reference dataset-dependent metrics 
and reference dataset-independent metrics (Fig. 2). Refer-
ence dataset-dependent metrics assess the performance of 
variant calls and expression profiles by comparing them to a 
reference dataset. On the other hand, reference dataset-inde-
pendent metrics evaluate the performance of the experiment 
without using a reference dataset, usually by the reproduc-
ibility of replicates or built-in truth of multi-sample refer-
ence materials.

Reference Datasets Dependent

The evaluation of variant calls can be accomplished by com-
paring them to benchmark variants in benchmark regions. 

Fig. 2  Performance metrics based on reference materials in multiom-
ics profiling. When reference datasets are available, the performance 
of a query dataset can be assessed by comparing its consistency with 
the reference datasets. In cases where reference datasets are not avail-

able, the performance of a query dataset can be assessed by evalu-
ating the reproducibility between replicates or utilizing built-in truth 
within multi-sample reference materials
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Two commonly used measures are precision, which refers to 
the fraction of called variants that are also benchmark vari-
ants, and recall or sensitivity, which is the fraction of bench-
mark variants that have been detected. Precision and recall 
are often in a trade-off relationship; improving one measure 
may result in a decrease in the other. The recall rate is not 
affected by false positives and can be increased by relaxing 
variant filtration thresholds, which may lead to detecting 
more putative variants. Therefore, it is necessary to assess 
both precision and recall to avoid over-inflating the recall 
rate. The F1-score is a commonly used measure that takes 
into account both false positives and false negatives by com-
puting a harmonic mean of precision and recall. Specificity, 
which describes how many of all homozygous reference sites 
were correctly detected as non-variant sites, is less useful 
for variant calling performance evaluation because there is 
typical a three-orders-of-magnitude difference in the number 
of variants and the number of bases in a genomic region.

Benchmark variants developed from existing technolo-
gies and platforms are often limited to more easily detected 
variants and regions, which may lead to overestimating the 
overall performance of an assay when it is used to call vari-
ants outside of the high-confidence or benchmark regions. 
Variants outside of benchmark calls are often located in 
complex genomic regions and are less concordant between 
different callsets. In particular, the precision of an assay may 
be greatly inflated by using only benchmark regions.

As a variant or group of variants may be differently rep-
resented between variant call format (VCF) files, variant 
representation should be normalized before benchmark-
ing to greatly reduce ambiguities. The Global Alliance for 
Genomics and Health (GA4GH) Benchmarking Team and 
GIAB have developed best practices and methods for bench-
marking small germline variant calls (Kumaran et al. 2019), 
by providing guidance to match variant calls with different 
representations, define standard performance metrics, and 
stratify performance by variant type and genome context.

Reference datasets of transcriptomics, proteomics and 
metabolomics consist of a catalog of highly confident fea-
tures or differentially expressed features (qualitative prop-
erties) and their corresponding expression levels or fold 
changes between sample groups (quantitative properties). 
Precision and recall are used to describe the proportion of 
detected features that are true and the proportion of reference 
features that are detected, respectively. Instead of F1-score, 
Matthews correlation coefficient (MCC) was employed as 
the main evaluation measure in the MAQC projects, because 
it takes true negatives into consideration and produces a high 
score only if good results are obtained in all of the four cat-
egories in a confusion matrix (Chicco and Jurman 2020). 
The Pearson correlation coefficient between the expression 
levels or fold changes of test datasets and reference datasets 
is used to describe the accuracy of quantitation. The root 

mean squared error (RMSE) measures the deviation between 
predicted and actual expression values. It should be noticed 
that reference datasets of biological reference materials may 
be incomplete, as features can be removed if their expression 
levels are below the limit of quantification, or they can only 
be measured by specific extraction and analysis procedures 
that have not been included in the construction of the refer-
ence datasets.

Reference Datasets Independent

To diagnose the underlying causes of suboptimal datasets, 
it is necessary to combine performance metrics for vari-
ous stages of the experiment including sample or library 
preparation, sequencing, raw datasets, and variant detection 
(Fig. 3). This approach can help identify the specific areas 
where improvements are needed to enhance the quality of 
the data. High-quality sequencing data improve the qual-
ity and comparability of profiling results. Confirming the 
quality of sequencing libraries before committing them to 
sequencing runs increases the chances of success. In next- 
and third generation sequencing-based genomics and tran-
scriptomics, important performance metrics for run-time 
sequencing quality include the number of reads or bases pro-
duced in the run, the percentage of bases called incorrectly 
at any one cycle, the percentage of bases with a base quality 
score, cluster density on the flow cell, and library complexity 
(Patel and Jain 2012). Raw read quality control assessments 
help filter out low-quality reads and trim low-quality bases 
at both ends of a read. After the mapping of preprocessed 
reads, sequencing alignment performance metrics can be 
used to assist in detecting biases in sequencing and mapping 
processes. In MS-based proteomics and metabolomics, the 
quality of datasets is greatly affected by instrument perfor-
mance. The better the instrument performance, the better the 
data. Key performance metrics of the instrument extracted 
from raw datasets include electrospray stability, cleanliness 
of the ion source, cleanliness of the inner components of the 
MS, fragmentation efficiency, and mass accuracy (Morgen-
stern et al. 2021). For example, the uniformity of MS1 inten-
sity distribution reflects the consistency of chromatographic 
spray and mass spectrometry sensitivity, while the uniform-
ity of MS2 intensity distribution reflects the consistency of 
fragment ion detection sensitivity. There is no universally 
accepted standard for pre-analytical performance metrics. 
Appropriate thresholds depend on specific library prepara-
tion protocols, sequencers or instruments, and algorithms. 
While these metrics can be calculated for samples of inter-
est, the use of widely adopted reference materials facilitates 
better understanding of performance across different assays 
and laboratories.

In cases where reference datasets are either unavail-
able or do not contain the features of interest, alternative 
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methods can be employed to assess the performance. One 
such method involves evaluating the reproducibility of rep-
licates, which compares the results of multiple measure-
ments conducted on the same sample. Another approach is 
to utilize built-in truth from multi-sample reference materi-
als, whereby a known standard is employed to evaluate the 
accuracy of the experiment.

The performance of variants calling results can be 
assessed by the repeatability and reproducibility of techni-
cal replicates or the Mendelian consistent ratio of family 
members. Technical replicates share the same variant calls 
and de novo mutations are rare; therefore, the majority of 
discordant variants is likely to represent genotyping errors 
(Veltman and Brunner 2012). The advantage of those refer-
ence datasets independent metrics is that they can evaluate 
the precision of variant calling on the whole genome without 
being restricted to the benchmark regions. However, these 
metrics cannot indicate how many true variants should be 
identified, or what the recall rate is.

To assess the accuracy of quantitative omics, three levels 
of reference dataset-independent metrics can be employed 
based on the number of available reference materials 
(Fig. 2). If a single reference material is available, the repro-
ducibility between technical replicates is used to assess the 
performance of profiling results. However, a high correlation 
between two replicates of the same sample is not enough to 
ensure to accuracy in detecting differences between sample 

groups, because the replicates may share the same technical 
biases. If a pair of RMs is available, fold changes of features 
between sample pairs are expected to be the same as the 
designed expression signal ratios. If three or more RMs are 
available in a suite, PCA-based metrics can be used to assess 
the performance of distinguishing the intrinsic biological 
differences between sample groups.

Utilization of Reference Materials

Identifying reliable biomarkers that can accurately predict 
disease risk or response to treatment is a critical goal of 
omics-based cohort studies. Large cohort studies that involve 
collecting samples over a long period of time and profiling 
the samples with multiple platforms at multiple labs may 
suffer from issues related to data incomparability and batch 
effects, which add difficulties for biomarker discovery. In 
this section, we discuss how omics RMs can be integrated in 
large cohort studies to enhance the rigor and reproducibility 
of biomarker discovery (Fig. 4).

To ensure accurate and reliable results from large-scale 
analysis of precious cohort samples, it is important to assess 
the suitability of experimental and analytical pipelines using 
reference materials prior to initiating the data generation pro-
cess. The first important step is to choose the suitable RMs 
based on study design and instruments available. Points of 

Fig. 3  Schematic overview of multiomics profiling and quality con-
trol workflows showing the use of reference materials. Omics ref-
erence materials can evaluate all steps of sequencing workflow, 

including sample or library preparation, sequencing, raw reads, and 
profiling. Illustrated is the workflow of sequencing and key perfor-
mance metrics for each step
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consideration include the availability of RMs, their compara-
bility to the test material, and whether the assigned property 
values and their confidence levels include the features of 
interest. The matrix composition of RMs is a critical con-
sideration in the QC process of LC–MS. The performance 
indicators, such as calibration effectiveness, extraction effi-
ciency, column performance, and ion suppression level, are 
directly influenced by the composition of the sample matrix. 
To ensure accurate and reliable performance assessment, it 
is recommended to employ RMs with a matrix composition 
as similar as possible to that of the study samples.

At each omics level, a variety of sample preparation 
methods, data generation platforms, and bioinformatic 
tools are available. By utilizing RMs in benchmark studies 
and proficiency test, researchers can gain insights into the 
strengths and limitations of various methods and technolo-
gies. This knowledge facilitates the selection of appropriate 
experimental and analytical procedures tailored to the spe-
cific goals, samples types, and available resources.

RMs can also be effectively used to optimize protocols 
and parameters by identifying and troubleshooting potential 
issues. For example, in genomics and transcriptomics by 
NGS, sequencing performance is influenced by the insert 
fragment size, which is associated with DNA shearing time. 
Longer shearing time produces shorter DNA fragments, and 
the insert fragment sizes must be measured to ensure that 
they fall within the expected molecular weight range (Fang 
et al. 2021). In MS-based proteomics and metabolomics, 
RMs can be used to assess mass-to-charge (m/z) ratio and 
chromatographic characteristics such as retention time, peak 
area, and peak shape, by comparing them to predefined 
acceptance criteria (Nakayasu et al. 2021). If the acceptance 
criteria are not met, corrective maintenance of the instru-
ments or verification of reagents should be performed until 
the system suitability meets the requirements. Furthermore, 
reference materials can be used to train laboratory techni-
cians to perform optimally in daily practice.

When conducting large-scale profiling of cohort samples, 
it's important to incorporate RMs into the experimental 
design to objectively monitor and evaluate the longitudinal 
stability of instruments and assays. In MS-based proteomic 
and metabolomic studies, RMs are typically run before and 
after a block of samples to monitor instrument performance 
drift and to ensure optimal settings are being used (Bittrem-
ieux et al. 2018). The block size is determined based on 
the expected performance drift over time and the separation 
length. In genomics and transcriptomics, DNA and RNA 
reference materials can be added to each batch of samples 
to be sequenced (Ren et al. 2023; Yu et al. 2023). This helps 
monitor the stability and comparability of analytical instru-
ments across different batches, assays, and labs.

After large-scale profiling, datasets of both cohort sam-
ples and RMs are obtained. Datasets from the same RMs can 
reveal batch effects across labs, platforms, and time points. 
To eliminate batch effects, cohort sample datasets can be 
aligned to a common RM, removing unwanted variation 
and increasing comparability and statistical power, leading 
to greater confidence in biological insights from combined 
datasets of multiple batches. Sometimes, large-scale stud-
ies take a long time to complete and sequencing technolo-
gies can be updated, or new cohorts are needed to address 
important scientific questions. In such cases, bridge studies 
can be performed to compare the comparability of novel and 
historical protocols by using common RMs in both studies.

To ensure quality control in quantitative omics studies, 
the utilization of multi-sample RMs is essential, especially 
when investigating differences between cases and controls 
or various disease subtypes. In most proteomic and metab-
olomic studies, the reproducibility within technical repli-
cates of a single reference material is commonly employed 
to evaluate dataset quality. Assessing the reproducibility of 
RMs is crucial for determining the stability and precision 
of an analytical method. However, relying solely on repro-
ducibility may not be sufficient for accurately identifying 

Fig. 4  Utilization of reference materials in large cohort study to enhance the rigor and reproducibility of biomarker discovery
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biological differences between sample groups, as technical 
biases can impact the absolute abundance of measurements 
without affecting the relative differences between sample 
groups (Yu et al. 2023; Zheng et al. 2023). To achieve sta-
tistical significance, at least three replicates for each RM are 
necessary. In a PCA plot, a high-quality dataset is expected 
to show both separation between sample groups and tight 
clustering of replicates from the same sample. This indicates 
that the technical variation is under control and that the bio-
logical differences between sample groups are significant. 
In contrast, a low-quality dataset may show overlapping or 
scattered sample groups, indicating a high level of technical 
variation or noise that could obscure the biological differ-
ences between the groups.

Challenges and Future Directions

High-throughput profiling technologies have revolutionized 
omics studies by enabling the generation of vast amounts of 
data in a relatively short period of time, allowing research-
ers to comprehensively study complex biological systems at 
an unprecedented level of resolution. However, performing 
high-throughput profiling is a highly complex and challeng-
ing process, and there are many potential sources of variabil-
ity that can impact the results and reproducibility. Therefore, 
rigorous QA/QC is crucial to ensure confidence in the result-
ing data and biological discoveries. The use of RMs is an 
important aspect of QA/QC in high-throughput technologies 
to ensure accurate and reliable results. In this review, we 
aim to offer a comprehensive overview of the significance 
of utilizing well-characterized RMs across different levels 
of omics research, including genomics, transcriptomics, pro-
teomics, and metabolomics. We provide insights into the 
characteristics, advantages, and limitations of RMs in each 
omics field, which are summarized in Table 2. Our goal is to 
assist researchers in making informed decisions when select-
ing suitable RMs for their specific research questions and 
analytical methods. Ultimately, the utilization of appropri-
ate RMs can greatly enhance the accuracy and reliability of 
omics research outcomes.

By incorporating well-characterized RMs into omics 
research, researchers can overcome various challenges and 
limitations. RMs provide a standardized reference point 
that enables calibration and quality control throughout 
the experimental workflow. They serve as valuable tools 
for method optimization, validation, and troubleshooting, 
allowing researchers to assess the performance of their ana-
lytical methods and identify any potential biases or errors. 
Furthermore, the use of RMs facilitates inter-laboratory 
comparisons and promotes data harmonization, enabling 
the integration and comparison of results across different 
studies and platforms. Although the profiling of RMs may 

entail additional costs, implementing a thorough QA/QC 
methodology is important for evaluating and monitoring 
the performance of data generation processes. This upfront 
investment contributes to the long-term reliability and accu-
racy of the results, minimizing potential errors and ensuring 
the accuracy and reliability of the omics research.

The careful selection of RMs is crucial to ensure their 
relevance and applicability to the study at hand. Research-
ers should consider the intended use of the study and choose 
RMs that closely resemble the properties of the samples 
being investigated. Additionally, the selected RMs should be 
qualitatively and quantitatively representative of the entire 
collection of samples included in the study. This ensures 
that the RMs effectively mimic the characteristics of the 
biological samples, enabling accurate and meaningful com-
parisons and interpretations. When studying specific genetic 
or phenotypical features that vary among different ethnic 
groups, it is important to choose RMs that match the ethnic-
ity of the study samples. This approach ensures that the RMs 
accurately reflect the characteristics of the study popula-
tion, enabling the assessment of the detection performance 
of those specific genetic or phenotypical features (Hardwick 
et al. 2017).

As profiling methods continue to advance and new tech-
nologies emerge, the reference datasets for existing RMs 
will undergo continuous updates and refinements. One 
example of this is the utilization of long reads in genomic 
sequencing. Long reads are particularly valuable for profil-
ing repetitive and complex regions, which are challenging to 
be mapped by short reads (Wenger et al. 2019). By incorpo-
rating long reads, benchmark variants in these regions can 
be better characterized (Wagner et al. 2022). Additionally, 
long-read technologies enable precise transcript detection 
and RNA modifications (Leger et al. 2021; Soneson et al. 
2019). In proteomics, MS techniques are extensively used 
to study post-translational modification (PTMs) of proteins 
(Zecha et al. 2022). The reference materials will expand to 
encompass more omics types along with the development 
of technologies. For example, reference datasets of DNA 
epigenomics for DNA RMs can be developed, RNA RMs 
can include small RNA profiling and RNA modification 
reference datasets, and protein RMs can incorporate PTM 
reference datasets.

Challenges persist in the global promotion and adoption 
of reference materials and reference datasets. First, regula-
tory challenges, especially across different regions of the 
world, can pose additional obstacles in adopting a universal 
RM (Guerrier et al. 2012; Krogstad et al. 2010). Biological 
RMs, especially those intended for human genomics and 
transcriptomics, which are frequently derived from human 
specimens, require stricter adherence to informed consent 
principles and governmental controls. Currently, there is no 
single, comprehensive international model for governing 
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human genetic resources. The distinct nature of informed 
consent across different countries, influenced by diverse 
cultures and social traditions, necessitated addressing legal, 
ethical, and logistical aspects related to genetic materials 
and data utilization while respecting each nation's sover-
eignty and cultural norms. International collaboration and 
agreements are imperative in addressing these challenges 
and ensuring the conscientious and equitable utilization of 
human genetic resources worldwide (Gainotti et al. 2016; 
van Belle et al. 2015).

Second, we strongly recommend that QC data should be 
made available alongside the study samples in databases or 
repositories that adhere to the FAIR principles (Findable, 
Accessible, Interoperable, and Reusable), which is crucial 
for enhancing data management and sharing (Conesa and 
Beck 2019; Wilkinson et al. 2016). Currently, QC informa-
tion is often omitted from scientific publications, leading to 
uncertainty about the performance methodology used. In the 
future, guidelines may be developed to mandate the inclu-
sion of QC metrics in data submissions to public reposito-
ries, similar to existing guidelines for other aspects of data 
reporting. Coupling comprehensive QC information to the 
experimental data will allow for quick assessment of the reli-
ability of an experiment, which is crucial in light of recent 
reports of the general reproducibility crisis in various scien-
tific fields (Anonymous 2021; Baker 2016; Shi et al. 2017). 
It is essential to prioritize and formalize QC practices to 
ensure the quality and reproducibility of high-throughput 
multiomics profiling results by fully utilizing well-charac-
terized RMs and appropriate QC metrics.

Conclusion

In this review, we summarized reference materials across 
all levels of omics, including (epi-)genomics, transcrip-
tomics, proteomics, and metabolomics. We have offered 
a comprehensive overview of leveraging omics reference 
materials to enhance data quality. This initiative is geared 
toward promoting robust scientific research and advancing 
our understanding of complex biological systems through 
the thoughtful application of omics technologies.
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