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Abstract
It is widely recognized that tumor immune microenvironment (TIME) plays a crucial role in tumor progression, metastasis, 
and therapeutic response. Despite several noninvasive strategies have emerged for cancer diagnosis and prognosis, there 
are still lack of effective radiomic-based model to evaluate TIME status, let alone predict clinical outcome and immune 
checkpoint inhibitor (ICIs) response for hepatocellular carcinoma (HCC). In this study, we developed a radiomic model 
to evaluate TIME status within the tumor and predict prognosis and immunotherapy response. A total of 301 patients who 
underwent magnetic resonance imaging (MRI) examinations were enrolled in our study. The intra-tumoral expression 
of 17 immune-related molecules were evaluated using co-detection by indexing (CODEX) technology, and we construct 
Immunoscore (IS) with the least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression method 
to evaluate TIME. Of 6115 features extracted from MRI, five core features were filtered out, and the Radiomic Immunoscore 
(RIS) showed high accuracy in predicting TIME status in testing cohort (area under the curve = 0.753). More importantly, RIS 
model showed the capability of predicting therapeutic response to anti-programmed cell death 1 (PD-1) immunotherapy in 
an independent cohort with advanced HCC patients (area under the curve = 0.731). In comparison with previously radiomic-
based models, our integrated RIS model exhibits not only higher accuracy in predicting prognosis but also the potential 
guiding significance to HCC immunotherapy.

Keywords Hepatocellular carcinoma · Tumor immune microenvironment · Radiomic · Prognosis · Immunotherapy 
response
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HCC  Hepatocellular carcinoma
ICI  Immune checkpoint inhibitor
IS  Immunoscore
LASSO  Least absolute shrinkage and selection operator
MRI  Magnetic resonance imaging
NLR  Neutrophil-to-lymphocyte ratio
OS  Overall survival
PD-1  Programmed cell death 1
PD-L1  Programmed cell death ligand 1
PR  Partial response
PD  Progressed disease
RIS  Radiomic Immunoscore
RS  Radiomic Score
SD  Stable disease
TCGA   The Cancer Genome Atlas
TCIA  The Cancer Imaging Archive
TIME  Tumor immune microenvironment
TMA  Tissue microarray

Introduction

A growing number of studies have shown that tumor immune 
microenvironment (TIME) is associated with prognosis, 
progression, metastasis, and therapeutic response (Abdul 
Sater et al. 2020; Binnewies et al. 2018; Fridman et al. 
2017). Immune checkpoint inhibitors (ICIs) using antibodies 
against programmed cell death 1 (PD-1) or programmed 
death ligand 1 (PD-L1) had achieved great success in cancer 
treatment, meanwhile not all patients responded to the ICIs 
immunotherapy (Xu et al. 2022). Retrospective analyses 
of patient populations treated with ICIs have revealed that 
complicated heterogeneity of the intra-tumoral immune 
microenvironment contributes largely to distinct response 
and tumor progression after treatment (Binnewies et al. 
2018; Fridman et al. 2017). Currently, the most commonly 
used method for assessing the immune status of tumor 
patients is the immune score, which was applied to predict 
clinical outcomes in patients with cancer (Galon et  al. 
2006; Mlecnik et al. 2011). But previous evaluations of 
immune score was mostly based on multiple sections of 
immunohistochemistry or only a single or a small number 
of immune cells, which cannot provide comprehensive and 
detailed information for TIME evaluation, and biopsies 
are needed to evaluate the immune score, which not only 
caused trauma to the patients but also had the potential to 
promote tumor metastasis. It would be valuable to develop a 
noninvasive method to evaluate TIME, and it is also critical 
to predict immunotherapy response through TIME value.

Medical imaging plays a vital role in the diagnosis 
of diseases since its discovery, especially in oncologic 
diagnosis and treatment guidance (Aerts et al. 2014). As 
technology has advanced, the image provided us with 

more information than before. The so-called radiomics 
was emerging during these years. Based on the image-
based signature, radiomics can achieve precision diagnosis 
and give treatment guidance (Lambin et al. 2017). Recent 
studies have revealed that radiomic signature was able to 
estimate the abundance of cluster of differentiation 8 (CD8) 
cells inside tumor, discriminate inflamed tumors from 
immune-desert tumors and predict response to anti-PD-1 
and anti-PD-L1 immunotherapy (Sun et al. 2018). Computed 
tomography (CT)-based Radiomic Score was related to the 
neutrophil-to-lymphocyte ratio (NLR) in the TIME, and 
the Radiomic Score was correlated with prognosis and 
immunotherapy response in advanced gastric cancer patients 
(Huang et al. 2022). According to previous studies, radiomic 
features were associated with macrovascular invasion (Xu 
et al. 2019), prognosis (Xu et al. 2019; Zhang et al. 2020), 
pathologic grade (Wu et al. 2019), and recurrence (Zhao 
et al. 2021; Zhou et al. 2017). Radiomic model was also used 
to predict the protein expression inside tumor (Tian et al. 
2021; Wang et al. 2020; Yang et al. 2021). Other studies 
had shown that radiomic model was able to predict the 
treatment response of several cancers such as rectal cancer 
(Blazic et al. 2017; Liu et al. 2017; Nie et al. 2016), cervical 
cancer (Lucia et al. 2018), glioblastoma (Kickingereder et al. 
2016), gastric cancer (Jiang et al. 2020), and hepatocellular 
carcinoma (HCC) (Yuan et al. 2020).

HCC is a highly malignant cancer and it becomes the 
fourth most common cause of cancer-related death in the 
world (Foerster et al. 2022; Yang et al. 2019a). The liver is 
an important and critical component in the defense against 
blood-borne infection, for its receiving both vein blood and 
arterial blood, and it is continuously exposed to blood-borne 
pathogens; thus, it has a plethora of innate and adaptive 
immune cells (Jenne and Kubes 2013). The balance of 
the microenvironment is critical and it plays an important 
role in HCC development (Makarova-Rusher et al. 2015). 
For example, the enrichment of CD8 + T lymphocytes in 
TIME is associated with a better prognosis (Flecken et al. 
2014; Garnelo et al. 2017). At present, the major treatment 
options for very early stage and early stage HCC are surgical 
resection, ablation, and transplantation (Llovet et  al. 
2021). Over the past decades, immunotherapy has been 
widely used in the treatment of HCC. Immune checkpoint 
inhibitors (ICIs) like atezolizumab and bevacizumab have 
become the first-line therapeutic method for advanced HCC 
(Foerster et al. 2022). But not all patients benefit from ICIs. 
Nivolumab, an anti-PD-1 antibody, has achieved an overall 
response rate of 14% with a median response duration of 
17 months (El-Khoueiry et al. 2017). To date, there are no 
robust biomarkers predicting response to ICIs in patients 
with HCC (Llovet et al. 2022). The clinical features, PD-L1 
expression, gene-expression profiling, and gut microbial 
diversity were used to predict response to ICIs (El-Khoueiry 
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et al. 2017; Haber et al. 2023; Hu et al. 2019; Sangro et al. 
2020; Yu et  al. 2021; Zheng et  al. 2019). For clinical 
features and gut microbial, they are lack of accuracy, and 
for PD-L1 expression and gene-expression profiling, they 
are invasive methods and might cause metastasis. Therefore, 
a noninvasive and reliable method needs to be developed.

Here we developed a new method to evaluate TIME 
within tumor and predict outcomes in patients with HCC. 
We detected 17 immune-related protein markers expression 
inside tumor. TIME value was evaluated by the expression 
of immune-related markers. Afterward, we developed a 
radiomic model using a machine learning method to predict 
the TIME value and investigate its potential of predictive 
power for prognosis and anti-PD-1 immunotherapy response.

Materials and Methods

Patients and Specimens

The overall study design is shown in Fig. 1 and Fig. S1. The 
study was approved by Ethical Committee of Eastern Hepa-
tobiliary Surgery Hospital (EHBH) (EHBHKY2018-1–001) 
and Union Hospital Tongji Medical College in Huazhong 
University of Science and Technology (2020–0151-01). A 
total of 487 patients were recruited in our study. A writ-
ten informed consent was provided by every participant. 
After filtering, a total of 301 HCC patients in six independ-
ent cohorts were enrolled in this study (Table 1), including 
258 male and 43 female cases. EHBH cohort 1 included 
65 patients, EHBH cohort 2 included 104 patients, EHBH 
cohort 3 included 27 patients, and EHBH cohort 4 included 
45 patients, The Cancer Genome Atlas (TCGA) cohort 
included 27 patients, immunotherapy cohort included 35 
patients. Patients in EHBH cohort 1 and EHBH cohort 3 
were available with co-detection by indexing (CODEX) 
data and magnetic resonance imaging (MRI) images, and 
patients in EHBH cohort 3, EHBH cohort 4, TCGA cohort, 
and immunotherapy cohort were available with MRI images. 
Patients in immunotherapy cohort were treated with anti-
PD-1 antibody immunotherapy. Detailed clinicopathological 
characteristics are shown in Table 1 and Table S1.

The inclusion criteria of HCC patients were as follows: 
(1) qualified MRI images and CODEX images; (2) MRI 
images were collected before treatment; for patients treated 
with anti-PD-1 immunotherapy, MRI images were collected 
before and after treatment; (3) complete follow-up records. 
Finally, a total of 301 HCC patients were enrolled in our 
study (Table 1; Fig. S2). Among them, 241 patients were 
treated with surgical resection at Eastern Hepatobiliary 
Surgery Hospital (Shanghai, China) from January 2010 
to May 2016. Among them, 92 patients had both CODEX 
images and MRI images. In TCGA cohort, all of the patients 

received pharmaceutical therapy and radiation therapy. In 
immunotherapy cohort, all of the patients received PD-1 
blockade. The PD-1 blockade used in the study included 
pembrolizumab (200 mg IV every 21 days), camrelizumab 
(200 mg IV every 21 days), tislelizumab (200 mg IV every 
21 days), and sintilimab (200 mg IV every 21 days).

We used computer-generated random numbers to assign 
65 patients (EHBH cohort 1) to the training cohort and 
27 patients (EHBH cohort 3) to the testing cohort. One 
hundred and four patients (EHBH cohort 2) are available 
with CODEX images, and 45 patients (EHBH cohort 
4) are available with MRI images. Twenty-five patients 
from 2003 to 2013 (TCGA cohort) were collected from 
the databases of TCGA (http:// tcgap ortal. org/) and The 
Cancer Imaging Archive (TCIA, https:// www. cance rimag 
ingar chive. net/), MRI images were available. Thirty-five 
patients (immunotherapy cohort) treated with anti-PD-1 
immunotherapy from September 2019 to May 2022 were 
collected from Union Hospital Tongji Medical College 
Huazhong University of Science and Technology, MRI 
images were available.

Construction of Immunoscore (IS)

We constructed IS based on CODEX images of tumor area 
from each patient. The CODEX work flow is shown in Fig. 1. 
CODEX was a commercialized and accessible multiplexed 
tissue imaging platform (Akoya Biosciences, Menlo Park, 
California, USA) which was developed by Garry P. Nolan 
and his colleagues (Schurch et  al. 2020). The CODEX 
technology uses oligonucleotide-conjugated antibodies and 
sequential fluorescent reporters, which can detect up to 60 
protein markers simultaneously in a single tissue (Phillips 
et al. 2021). Formalin-fixed, paraffin embedded (FFPE) 
tissue and tissue microarrays (TMAs) were used in our 
study. Tissue samples were obtained from HCC patients 
treated at Eastern Hepatobiliary Surgery Hospital. Written 
informed consent was obtained from all patients.

We selected 17 immune-related biomarkers for CODEX 
staining: Foxp3, PD-L1, PD-1, CD163, CD45, CD45RO, 
CD107A, CD21, CD68, CD8, CD3, CD4, CD11C, human 
leukocyte antigen DR (HLA-DR), CD44, CD20, and CD31. 
Among these biomarkers, some are biomarkers for cells, 
for example: Foxp3 (regulatory T cells), CD8 (cytotoxic T 
cells), CD20 (B cells); some biomarkers are expressed in 
a variety of cells: PD-L1, PD-1, HLA-DR, CD44, CD31. 
PD-L1 and PD-1 were regarded as immune check points 
(Chiu et al. 2020; Tichet et al. 2023); HLA-DR is an isotype 
of human leukocyte antigen; CD44 is a tumor biomarker 
and the expression of CD44 is related with tumor initiation 
and progression (Xu et al. 2020). CD31 is mainly expressed 
on the junctions of confluent endothelial monolayers (Pad-
dock et al. 2016). The antibodies panel is shown in Table S2. 

http://tcgaportal.org/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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Fig. 1  The establishment of radiomic immunoscore (RIS). Tis-
sue microarray was incubated with 17 immune-related markers, and 
CODEX image was generated through image processing. Immu-
noscore (IS) was constructed based on the expression of immune-

related markers. A predictive model for IS, referred as RIS was devel-
oped. The RIS was found to be associated with prognosis and could 
provide guidance for immunotherapy
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CODEX processor software (Akoya Biosciences, version 
1.7) was used to process the CODEX images. CODEX Mul-
tiplex Analysis Viewer (Akoya Biosciences, version 1.5.0.8) 
was used to analyze the protein expression inside each 
tumor. All of the markers were normalized by the CODEX 
Multiplex Analysis Viewer.

Among the seventeen immune-related molecules, we used 
least absolute shrinkage and selection operator (LASSO) 
Cox regression model with tenfold cross-validation to select 
the most useful prognostic features. The 'glmnet' package 
was used to perform the LASSO Cox regression model 
analysis. Complete details are provided in Supplementary 
Materials.

Radiomics Workflow

The radiomics workflow is shown in Fig. 1. All tumors 
were manually delineated by reader 1 (KS, with a 6-year 
work experience in liver imaging), reader 2 (WL, with a 
5-year work experience), and reader 3 (JL, with an 8-year 
work experience) on the T1-weighted images, T2-weighted 
images, diffusion-weighted images with b values of 600 s/
mm2, enhanced arterial phase, portal venous phase and 
delayed phase using ITK-SNAP software (Version 3.6). 
Reader 4 (NJ, with 20 years of experience in liver imaging) 
independently performed the segmentation to evaluate 
test–retest and inter-reader reproducibility, respectively. 
The reproducibility was subject to the intraclass correlation 
coefficient.

Feature extraction and image preprocessing were per-
formed with the 3D Slicer software (version 4.9.0). Images 
were resampled to a voxel size of 1 × 1 × 1 mm to standardize 
the voxel spacing; voxel intensity values were discretized 
using a fixed bin width of 25 HU to reduce image noise and 
normalize intensities, allowing for a constant intensity reso-
lution across all tumor images. We extracted 1223 radiomic 
features from each three-dimensional segmentation, giving 
a total of 6115 features for every lesion.

Construction of Radiomic Immunoscore (RIS)

Among 6115 features, the coefficient of variation (CV) of 
each feature was evaluated, and then Mann–Whitney test, 
LASSO method with tenfold cross-validation was used to 
select the predictive radiomic features from EHBH cohort 
1 (Fig. S5a, b). Finally, five predictive radiomic features 
were filtered out (Table S3). The RIS was built using ridge 
regression model. The optimal cutoff value for RIS was 
determined by Youden’s index in the training cohort.

Clinical Data

Clinical and laboratory data were collected from electronic 
patient records, including age, gender, tumor node metastasis 
(TNM) stage, and metastasis. Tumor staging stratification 
was performed on the basis of the American Joint Committee 
on Cancer TNM Staging Manual, 8th edition (Chun et al. 
2018). Outcome data included overall survival and clinical 
benefit. Overall survival was defined as the time to death 
from any cause within five years after treatment. Clinical 

Table 1  Clinical characteristics 
of patients in all cohorts

Variables EHBH 
cohort 1 
(n = 65)

EHBH cohort 
2 (n = 104)

EHBH 
cohort 3 
(n = 27)

EHBH 
cohort 4 
(n = 45)

TCGA 
cohort 
(n = 25)

Immunotherapy 
cohort (n = 35)

Gender
 Female 10 12 1 5 12 2
 Male 55 92 26 40 13 33

Age
  > 60 26 32 2 27 12 6
  ≤ 60 39 72 25 18 13 29
Stage
 I 48 93 17 36 6 1
 II 2 0 4 5 8 1
 III 5 7 0 3 8 15
 IV 10 4 6 1 1 17
 Unknown 0 0 0 0 2 1

Metastasis
 M0 55 100 21 44 20 16
 M1 10 4 6 1 1 17
 Mx 0 0 0 0 4 2
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benefit was defined as stable disease (SD) after five months 
of treatment or partial response (PR) or complete response 
(CR) within the first five months of treatment according to 
RECIST 1.1 (Eisenhauer et al. 2009).

Statistical Analysis

We compared two groups by performing Student's t test 
for continuous variables. Survival curves were generated 
according to the Kaplan–Meier method and compared 
using the log-rank test. Univariate and multivariate analyses 
were performed using the Cox proportional hazards model. 
p value < 0.05 was considered as significant in two-tailed 
and one-tailed analyses. The area under the curve (AUC) 
and 95% CI (DeLong method) were determined from the 
receiver operating characteristic curve. The logistic and 
Cox regression coefficients were generated to generate 
nomograms. Calibration plots were generated to explore the 
performance characteristic of the nomograms. Nomograms 
and calibration curves were generated using ‘rms’ package 
with R software (version 3.6.3). Statistical analyses were 
done with R software (version 3.6.3).

Results

Evaluation of TIME Value

We detected 17 immune-related markers inside tumor using 
CODEX technology (Fig. 2a). The relative spatial interac-
tion of each protein marker is shown in Fig. 2b. Among all 
patients with CODEX data, a positive correlation between 
the expression of CD45 and CD44, CD4 and CD45 inside 
tumor was observed (R > 0.9, p < 0.0001) (Fig. 2c). Using 
EHBH cohort 1 as discovery cohort, we first used LASSO 
Cox regression model with tenfold cross-validation to build 
a prognostic classifier, which includes five immune-related 
markers (CD68, HLA-DR, CD44, CD20, CD31) out of 17 
immune-related markers (Fig. 2d, e). Then we developed IS 
using these five immune-related markers to evaluate TIME. 
Patients were classified as high IS and low IS according to 
the optimum cutoff 0.672 determined by 'survminer' package 
in EHBH cohort 1. We found that the expression of PD-1 
was significantly higher in the high IS group than that in 
the low IS group (p value < 0.05) (Fig. S3). Accordingly, 

we defined the high IS group as immunosuppressive TIME, 
and the low IS group as immune-activated TIME. We also 
found in immunosuppressive TIME, the expression of 
CD20, CD31, CD44, and CD163 was relatively higher than 
in immune-activated TIME (p value < 0.05) (Fig. S3).

We compared the overall survival in high IS group 
and low IS group. The 5-year overall survival (OS) in 
the high IS group was 28.6%, while in low IS group was 
78.4% in EHBH cohort 1 (Fig. 2f). We then checked the 
IS performance with an independent validation cohort 
(EHBH cohort 2). The 5-year OS in high IS group was 
44.0% while in low IS group was 63.0% in EHBH cohort 
2 (Fig. 2g). Multivariate Cox regression analysis adjusting 
for clinicopathological variables further confirmed the 
IS as an independent prognostic factor for OS prediction 
(Tables S4, S6–S8). IS was also associated with TNM stage 
of HCC patients, IS of patients in stage III and stage IV was 
significantly higher than that of the patients in stage I and 
stage II (p value < 0.05) (Fig. S4a). In addition, the value of 
IS was significantly higher in patients with metastasis than 
that in non-metastasis patients (p value < 0.05) (Fig. S4b), 
which indicated that the state of TIME changes as metastasis 
occurs.

Development and Validation of RIS

Based on the extracted features of MRI images from HCC 
patients, we developed a radiomic model to predict IS. 
Among 6115 radiomic features, we finally filtered out five 
predictive radiomic features by the LASSO method and 
tenfold cross-validation (Fig. S5a, b). The five predictive 
radiomic features: Maximal correlation coefficient (MCC) 
of glcm-T1WI (LHH filtered), Contrast of glcm-T1WI (HLH 
filtered), GrayLevelVariance of glrlm-T1WI (HHL filtered), 
RunVariance of glrlm-Delayed phase (LHH filtered), and 
RunVariance of glrlm-Delayed phase (HLH filtered). Based 
on these predictive features, a total of six predictive mod-
els were tested, including the logistic regression model, 
support vector machines (SVM), ridge regression model, 
random forest, extreme gradient boosting (XGBoost), and 
linear regression model in the testing cohort, AUC was 
used to evaluate the performance of the model. Finally, we 
chose ridge regression model for its best performance in 
the testing cohort (Fig. S5c). The optimum cutoff of RIS 
was 0.426, determined using Youden's index in the train-
ing cohort. Accordingly, patients were classified into high 
RIS group (RIS ≥ 0.426) and low RIS group (RIS < 0.426). 
The ability of RIS to classify immunosuppressive TIME 
versus immune-activated TIME was shown to have an AUC 
of 0.708 [95% confidence interval (CI) 0.574–0.832] in the 
training cohort (EHBH cohort 1) (Fig. 3a), meanwhile it was 

Fig. 2  Construction and prognosis value of IS. a Images of a single 
tissue region color for each antibody. Scale bar, 10  um. b Spatial 
interaction of each immune-related markers. c Correlation between 
17 immune-related markers. d Tuning parameter (λ) selection in the 
LASSO model used via tenfold cross-validation. e LASSO coefficient 
profiles of the 17 markers. f Kaplan–Meier analyses of OS accord-
ing to IS signature in discovery cohort (EHBH cohort 1). g Validation 
cohort (EHBH cohort 2)

◂
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0.753 (95% CI 0.563–0.942) in the testing cohort (EHBH 
cohort 3) (Fig. 3b).

Prognostic Value of RIS

We further assessed the prognostic value of RIS in an inde-
pendent validation cohort (EHBH cohort 4). For the low 
RIS group, the overall 5-year survival was 64.3% whereas 
it was 38.7% for the high RIS group (Fig. 3c). In combined 
cohort (EHBH cohort 4 plus TCGA cohort), we observed the 
overall survival rate was 62.5% in low RIS group and 43.5% 
in high RIS group (Fig. 3d). Representative patients with 
immune-activated TIME and immunosuppressive TIME 
with their MRI images and CODEX images are shown in 
Fig. 3e. By performing multivariate Cox regression analy-
sis adjusting for clinicopathological variables, the RIS was 
found as an independent prognostic factor for predicting OS 
(Tables S5–S10). An integrated model combing radiom-
ics, clinical, and pathologic features consistently improved 
prognostic accuracy. A nomogram predicting the survival of 
HCC patients was established based on RIS, IS, and other 
clinicopathological factors (Fig. 4a). In addition, 500-sample 
bootstrapped calibration plot revealed the good predictive 
accuracy of the nomogram for the prediction of a 5-year 
survival rate (Fig. 4b). C-index was used to evaluate the 
predictive accuracy of the RIS-based nomograms, which 
was 0.646.

We also built a radiomic model based on the clinical data 
and radiomic features of the patients, called Radiomic Score 
(RS). LASSO-logistic regression model was used to filter 
out radiomic features. Then an integrated model was built 
based on RS, clinical, and pathologic features, a nomogram 
predicting the survival of HCC patients was established 
based on RS and clinicopathological factors (Fig.  S6). 
500-sample bootstrapped calibration curve was also plotted 
and C-index was 0.617 (Fig. 4c). We also compared the 
predictive effects of IS, RIS, clinical model, and radiomic 
model (RS) (Fig. 4d), and the construction of clinical model 
and radiomic model is shown in Supplementary Material.

Predictive Value of RIS for Anti‑PD‑1 
Immunotherapy Response

To further assess the potential predictive value of RIS, we 
evaluated the association between RIS and the response 
to anti-PD-1 immunotherapy response for HCC patients. 

Thirty-five patients who were treated with anti-PD-1 anti-
body were enrolled in our study. After treatment, 12 patients 
were defined as partial response (PR), nine patients were 
defined as stable disease (SD), and 14 patients were defined 
as progressive disease (PD) (Fig. 5c). Then we analyzed the 
association between RIS and responses to anti-PD-1 block-
ade. In terms of classification performance, the AUC was 
0.731 (95%CI 0.549–0.914) (Fig. 5a). In addition, patients in 
low RIS group benefit more from anti-PD-1 immunotherapy 
than high RIS group (Fig. 5b), implying that RIS model 
might be a practical strategy to predict immunotherapeutic 
response in advanced HCC patients. Since IS is associated 
with TNM stage, we also explore the relation between TNM 
stages and responses to immunotherapy (Fig. S7). We found 
that there was no strong relation between TNM stage and 
response to immunotherapy in immunotherapy cohort.

Discussion

TIME plays an important role in determining the prognosis 
and therapeutic effect in different types of cancers, including 
gastric cancer (Jiang et al. 2020), ovarian cancer (Zhang 
et al. 2003), colorectal cancer (Galon et al. 2006), and HCC 
(Wei et al. 2022). In our study, we detected 17 immune-
related markers inside the tumor of HCC patients, then we 
found CD44, CD20, CD68, HLA-DR, and CD31 as the 
prognosis-related markers using LASSO Cox regression 
model. According to previous studies, CD44 is upregulated 
in HCC patients and has shown to positively correlate 
with poor prognosis and reduced patient survival (Dhar 
et al. 2018; Endo and Terada 2000). CD20 expressed in B 
cells and CD20 + B cells are positively correlated with the 
oncological prognosis of cholangiocarcinoma (Liu et al. 
2022). CD68 is the marker of macrophages and elevated 
levels of CD68 were significantly related to poor overall 
survival in liver cancer (Wei et al. 2019; Zhang et al. 2022). 
Tumor HLA-DR expression is linked to early intrahepatic 
recurrence of HCC and low level of HLA-DR is associated 
with advanced tumor stage (Matoba et al. 2005). CD31 is 
the marker of endothelial cells, and the expression of CD31 
was upregulated in tumor tissues (Hectors et al. 2020; Zhu 
et al. 2021). In our study, we found the expression of CD20, 
CD31, CD44, and CD163 was relatively higher in immune-
activated TIME, which means those markers might be 
the activators in TIME. Some studies report the association 
between those markers and TIME, for instance, CD20 was 
the marker of B cell, and B cell was associated with tertiary 
lymphoid structures (Cao et al. 2023). Tumor-infiltrating B 
cells and plasma cells can serve as predictors of response 
to immune checkpoint inhibitors (Laumont and Nelson 
2023). Research found that CD31 was an independent 
prognostic factor for HCC patients (Liu et al. 2021). CD44 

Fig. 3  Performance of RIS in predicting TIME and prognosis in HCC 
patients. a Receiver operating characteristic curves of RIS in train-
ing cohort (EHBH cohort 1). b Testing cohort (EHBH cohort 3). c 
Kaplan–Meier analyses of overall survival of RIS in EHBH cohort 4. 
d Combined cohort. e Representative patients with immune-activated 
TIME and immunosuppressive TIME, along with their MRI images 
and CODEX images

◂



558 J. Wu et al.

1 3

Fig. 4  Nomogram based on RIS and clinicopathological factors and 
their calibration curve. a Nomogram predicting survival of HCC 
patients was established based on RIS and clinicopathological factors. 

b Calibration curves based on RIS for 5-year OS. c Calibration curves 
for 5-year OS based on RS and clinicopathological factors. d Time-
dependent ROC for IS, RIS, clinical model, and radiomic model (RS)
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Fig. 5  The association between RIS and responses to anti-PD-1 
immunotherapy. a ROC curves of RIS for predicting response to anti-
PD-1 immunotherapy. b RIS distribution in groups of clinical benefit 

patients and disease progressed patients. c RIS and MRI images of 
patients with different responses to anti-PD-1 immunotherapy
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is a malignant biomarker and it was upregulated in HCC 
cell lines and also in tumors (Kim et al. 2017). CD163 was 
a marker of M2-macrophage and an elevated level of CD163 
is associated with poor prognosis in patients with small cell 
lung cancer (Klein et al. 2023).

In our study, we developed IS to evaluate TIME. We 
classified TIME as immunosuppressive and immune 
activated according to the level of IS and PD-1 expression. 
We found the immunosuppressive TIME was significantly 
related to poor overall survival in HCC patients. Based on 
patients' MRI radiomic features, we developed a radiomic 
prediction model to predict TIME status. The RIS was 
validated to have a superior performance to predict the 
prognosis of HCC patients. Since TIME status is associated 
with the effect of ICIs immunotherapy (Fridman et al. 2017), 
RIS was also validated as a predictor of responsiveness in 
ICIs immunotherapy.

There was a lot of research focusing on radiomic-based 
predicting model to predict TIME (Jiang et al. 2020; Perrone 
et al. 2022; Sun et al. 2018; Zheng et al. 2022), microvascular 
invasion (Yang et al. 2019b), the grade of HCC (Wu et al. 
2019), recurrence (Wen et  al. 2021), and prognosis of 
HCC (Long et al. 2019). In one study, Immunoscore was 
developed based on 27 immune features (Jiang et al. 2018), 
and later predicted Immunoscore based on CT images 
(Jiang et al. 2020). In another study, a radiomic model was 
developed to predict intratumor CD8 cells and response 
to immunotherapy and overall survival (Sun et al. 2018). 
In our research, we first developed an integrated model to 
predict both TIME and clinical outcomes simultaneously 
based on radiomic features. As compared with the RS model 
developed with radiomic data, RIS model obtained better 
performance and further exhibited its potential application 
for predicting immunotherapeutic response. There were a lot 
of studies focusing on the evaluation of TIME, estimation of 
CD8 cells inside tumor to discriminate TIME is a common 
method (Sun et al. 2018). But biopsies are needed for the 
estimation of cells, so this approach is relatively complex, 
and the acquisition of biopsies could potentially lead to 
tumor metastasis. Compared with previous studies, we have 
employed CODEX technology that can simultaneously detect 
17 immune-related biomarkers, which not only allows for a 
more comprehensive detection of immune microenvironment 
in tumors, but also avoids batch effects that may arise from 
multiple sections of immunohistochemistry. We also found 
that for patients with low RIS, they benefit more from 
anti-PD-1 immunotherapy. Therefore, for those patients, 
receiving anti-PD-1 immunotherapy after surgery might 
improve the prognosis.

Despite the above strengths, we also have some 
limitations in this study. First of all, due to limitations in 
technological, we did not have a large sample size in training 
cohort, further study with a larger sample size should be 

warranted in the future; Second, our study was retrospective 
study, a prospective study would be carried out to evaluate 
the potential value of RIS model for prognostic and drug 
effect prediction. Due to the inter-tumoral heterogeneity, 
TMA-based TIME evaluation cannot provide a global 
understanding of TIME status within the whole tumor 
nodule. Hence, multiple-spots biopsy might be used, and 
integrated analysis with radiomic image would be beneficial 
for establishing a more reliable and practical model. Non-
viral HCC, especially  nonalcoholic steaohepatitis (NASH)-
induced HCC is less responsive to immunotherapy (Pfister 
et al. 2021). In our study, the information of NASH-induced 
HCC patients has not been collected. In addition, HBV 
infection and liver cirrhosis are also associated with TIME 
in HCC (Lim et al. 2019; Yang et al. 2014; Zhang et al. 
2023). We had not considered the potential effect of hepatitis 
B virus (HBV) infection and liver cirrhosis in our study. For 
primary HCC and advanced HCC patients, the TIME might 
be different, as well as different tumor size. In our future 
research, we will consider these factors and make up for the 
limitations of our study.

Conclusion

In conclusion, we developed a noninvasive radiomic 
strategy nominated as RIS model which has been approved 
with higher accuracy to monitor TIME status, predict 
clinical outcome, and evaluate anti-PD-1 immunotherapy 
responsiveness for HCC patients. Further, we might 
investigate the radiomic signature for predicting and 
monitoring other types of immunotherapies.
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