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Abstract
Human phenomics is defined as the comprehensive collection of observable phenotypes and characteristics influenced by 
a complex interplay among factors at multiple scales. These factors include genes, epigenetics at the microscopic level, 
organs, microbiome at the mesoscopic level, and diet and environmental exposures at the macroscopic level. “Phenomic 
imaging” utilizes various imaging techniques to visualize and measure anatomical structures, biological functions, meta-
bolic processes, and biochemical activities across different scales, both in vivo and ex vivo. Unlike conventional medical 
imaging focused on disease diagnosis, phenomic imaging captures both normal and abnormal traits, facilitating detailed 
correlations between macro- and micro-phenotypes. This approach plays a crucial role in deciphering phenomes. This review 
provides an overview of different phenomic imaging modalities and their applications in human phenomics. Additionally, 
it explores the associations between phenomic imaging and other omics disciplines, including genomics, transcriptomics, 
proteomics, immunomics, and metabolomics. By integrating phenomic imaging with other omics data, such as genomics 
and metabolomics, a comprehensive understanding of biological systems can be achieved. This integration paves the way 
for the development of new therapeutic approaches and diagnostic tools.
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KRAS	� Kirsten rat sarcoma viral oncogene 
homolog

MRI	� Magnetic resonance imaging
MRCP	� Magnetic resonance 

cholangiopancreatography
MRU	� Magnetic resonance urography
MRM	� Magnetic resonance myelography
MRA	� Magnetic resonance angiography
MRS	� Magnetic resonance spectroscopy
MMPs	� Matrix metalloproteinases
mAbs	� Monoclonal antibodies
NAFLD	� Non-alcoholic fatty liver disease
NSCLC	� Non-small cell lung cancer
NIRF	� Near-infrared fluorescence
ORR	� Objective response rate
OS	� Overall survival
PET	� Positron emission tomography
PDGFRA	� Platelet-derived growth factor receptor 

alpha
PFS	� Progression-free survival
PQS	� Panax quinquefolium saponins
PRKCD	� Protein kinase C delta
PD-1	� Programmed cell death 1
PD-L1	� Programmed death-ligand 1
PCSK9	� Proprotein convertase subtilisin/kexin 

type 9
RB1	� Retinoblastoma 1
STEMI	� ST-segment-elevation myocardial 

infarction
SPECT	� Single-photon emission computed 

tomography
SWI	� Susceptibility-weighted imaging
SUV	� Standard uptake value
TOF	� Time-of-flight
TP53	� Tumor protein 53
PTEN	� Phosphatase and tensin homolog deleted 

on chromosome 10
TCGA​	� The Cancer Genome Atlas
tPA	� Tissue-type plasminogen activator
TIMPs	� Tissue inhibitors of metalloproteinases
CRYM	� Thyroid hormone-binding protein 

μ-crystallin
TIA	� Transient ischemic attack
US	� Ultrasonography
vWF	� Von Willebrand factor

Introduction

Phenomics is a complex and cutting-edge field of science 
that involves high-dimensional phenotypic data on an organ-
ism-wide scale. It is a subject that involves biological, chem-
ical, and physical traits acquired through various approaches 

including biological sampling, questionnaires, and physical 
measures (Jin 2021). Since traditional multi-omics methods 
are insufficient in capturing the spatial aspects of human 
phenome, recently, molecular/medical imaging technologies 
emerged as a novel approach for this purpose. Therefore, we 
propose the term "phenomic imaging" to describe the utili-
zation of imaging approaches for the comprehensive analysis 
of human phenomics, which encompasses a diverse range 
of morphological, physiological, functional, and molecular 
characteristics. The main advantage of phenomic imaging 
is that it enables the acquisition of non-invasive, repeatable, 
and spatio-temporal dynamic data, which provides snapshots 
of dynamic and instant changes in organs of interest (Nagle 
et al. 2021).

Molecular/medical imaging is primarily used for disease 
diagnosis, whereas phenomic imaging is used for precise 
qualitative assessment, localization, and quantitative charac-
terization of phenotypes (Bai et al. 2020). Phenomic imaging 
captures planar or stereoscopic images of phenotypes, and 
assists in investigations of the relationship between imaging 
phenotypes and other biological features, thereby extracting 
highly representative and qualifiable structural or functional 
features from high-throughput data (Yu et al. 2022). By 
combining genomics, transcriptomics, proteomics, immu-
nomics, and metabolomics with phenomic imaging, we are 
able to visualize complex phenotypic data and explore the 
correlation between macro- and micro-phenotypes (Schroder 
et al. 2018; Shui et al. 2020; Wissler et al. 2019).

Phenomic imaging plays a vital role in acquiring accurate 
and reliable phenotypic data, which is the premise to ensure 
the accuracy and reliability of biological phenotype analysis. 
Besides its use in diagnosis, phenomic imaging can also 
be used for disease susceptibility assessment, prevention, 
and treatment (Shui et al. 2020; Zhao et al. 2022). With the 
combination of multi-omics, phenomic imaging allows us 
to visualize complex phenotypic data and explore the cor-
relation between macro- and micro-phenotypes (Fig. 1). 
This approach has the potential to uncover new insights and 
improve our understanding of the complex interplay between 
the various factors that contribute to an individual's pheno-
type (Diamanti et al. 2020).

Phenomic Imaging Modalities

The study of human anatomy has long been a fundamental 
part for us to understand the human body. However, many 
observable characteristics of organs and systems have 
remained enigmatic in relation to microscopic components 
such as small molecules and genetic materials (Bellis 2021). 
Technological advances have enabled us to shed light on this 
mystery by facilitating the depiction of observable features 
with unprecedented precision. The invention of microscope, 
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for instance, allowed the visualization of microscopic struc-
tures, significantly contributing to our understanding of the 
infinitesimal (Muthumbi et al. 2019). Medical imaging tech-
nologies have also played a crucial role in the development 
of radiomics by providing non-invasive, real-time, and high-
resolution images of various organs and tissues both in vivo 
and in vitro since the 20th century.

Phenomic imaging technologies include X-ray, computed 
tomography (CT), magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), single-photon emission 
computed tomography (SPECT), ultrasound (US), and other 
imaging modalities (Fig. 2). Each imaging technique has the 
potential to reveal unique characteristics of research subjects 
at different levels, from the molecular level of metabolism 
and biochemical processes to the cellular level of cell fea-
tures and the organismal level of different organs (Li et al. 
2011).

X‑Ray

There are two types of X-rays used in phenomic imag-
ing: hard X-rays and soft X-rays. Hard X-rays have shorter 
wavelengths and greater energy, while soft X-rays have 
longer wavelengths and lower energy. X-ray imaging works 
by utilizing the radiation characteristics of X-rays, which 
include penetration, fluorescence, photographic, and ioni-
zation effects. Different tissues absorb X-rays at different 
rates due to differences in their physical densities (Guillou 
et al. 2022). Diagnostic X-ray imaging has been an essential 

tool in patient diagnosis and management for over 100 years, 
evolving significantly over time (Aksoy et al. 2021).

Computed Tomography (CT)

CT is an imaging modality that uses X-rays to produce 
three-dimensional (3D) images of internal organs based on 
reconstructed tomographic measurements taken from dif-
ferent angles. The first CT scanner was invented by God-
frey Hounsfield in 1977 (Goodman and McHugh 1997), and 
since then, CT equipment has evolved to the fifth generation, 
with an expanded inspection scope from the brain to the 
whole body. Contrast-enhanced CT is another type of CT 
scan that is commonly used to highlight lesions in normal 
tissue, and materials can be differentiated further by apply-
ing different X-ray spectra and analyzing the differences in 
attenuation (Nagayama et al. 2022). Dual-energy CT is also 
available, which obtains an additional attenuation measure-
ment with a second X-ray spectrum to allow the differentia-
tion of multiple materials (Hsu et al. 2020). Multi-energy 
CT or spectral CT can even provide information about 
the elemental composition of an object by measuring the 
energy-dependent material-specific X-ray attenuation in 
three or more distinct energy regimes (McCollough et al. 
2015). Photon counting CT has demonstrated great poten-
tial in providing high-quality images with reduced radiation 
dose, making it a promising tool for a wide range of clini-
cal and research applications, including diagnostic imaging, 
tissue characterization, and material analysis (Si-Mohamed 
et al. 2022; Willemink et al. 2018).

Fig. 1   The process for conducting phenomic imaging studies involves 
three main steps: image analysis, integration of data from other 
omics, and data analysis. The first step involves analyzing images to 
extract features related to the traits being studied. The second step 
involves combining imaging data with data from other omics fields 
to better understand how the traits are influenced by various factors. 

Finally, data analysis techniques are used to validate hypotheses about 
the relationships between the traits and other biological features. 
Overall, this approach allows researchers to obtain more comprehen-
sive understanding of an individual's phenotype and the underlying 
biological mechanisms
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Magnetic Resonance Imaging (MRI)

MRI utilizes the nuclear magnetic resonance of atoms in 
the body's tissue induced by radio waves (Bloch et al. 1946; 
Purcell et al. 1946). Variations in relaxation time of different 
tissues generate different signals on MR images. Magnetic 
resonance hydrography can display the entire liquid pipeline 
system in the human body without a contrast agent, such 
as magnetic resonance cholangiopancreatography (MRCP), 
magnetic resonance urography (MRU), and magnetic reso-
nance myelography (MRM). Magnetic resonance angiogra-
phy (MRA) uses the liquid flow effect principle to display 
blood vessel structures in the form of time-of-flight (TOF) 
(Li et al. 2021). Susceptibility-weighted imaging (SWI) can 
show the differences in magnetic susceptibility between 

normal tissues or between normal tissues and lesions. 
Magnetic resonance spectroscopy (MRS) can detect minia-
ture biochemical differences in normal tissues and lesions 
because the resonance frequency of 1H differs in different 
compounds (Reynolds et  al. 2017). Diffusion-weighted 
imaging (DWI) and diffusion tensor imaging (DTI) can 
reflect the diffusion of water molecules in tissues or lesions 
and their restricted degree. Blood oxygen level-dependent 
(BOLD) imaging can localize brain function during spe-
cific brain activities. Dynamic contrast-enhanced MRI 
(DCE-MRI) and dynamic susceptibility contrast MRI (DSC-
MRI) are both valuable MRI techniques that utilize con-
trast agents to visualize and assess blood vessels and blood 
flow in the body (Smith et al. 2012). Chemical exchange 
saturation transfer (CEST) is a contrast mechanism in MRI 

Fig. 2   There are several biomedical imaging modalities that are 
currently available in medical research and clinical settings. These 
include X-ray, computed tomography (CT), magnetic resonance 
imaging (MRI), positron emission tomography (PET), single-photon 
emission computed tomography (SPECT), ultrasonography (US), 
endoscopy, Raman imaging, and terahertz imaging. Each of these 

modalities has its own unique strengths and limitations, making 
them suitable for different types of applications. For example, some 
modalities are better for visualizing soft tissues, while others are 
more effective at detecting changes in metabolic activity or molecular 
structure
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that provides distinct advantages for quantitative imaging. 
It offers valuable insights into various biophysical and bio-
chemical tissue parameters that are closely associated with 
exchange-coupled magnetization pools (van Zijl et al. 2018). 
MRI has high image resolution, excellent image contrast, 
and is free of ionizing radiation, making it ideal for surgical 
procedures like tumor resection, grading brain/heart infarc-
tion, and evaluating inflammation. As a result, it has become 
an essential tool in clinical medicine and medical research.

Positron Emission Tomography (PET)

The PET technique was invented in 1975 by Michel Ter-
Pogossian, Michael E. Phelps, and Edward J. Hoffman 
(Ter-Pogossian et al. 1975). PET uses positron-emitting 
radiotracers to label body metabolites. It is a representa-
tive imaging technique that reflects metabolic changes and 
provides metabolic information to allow general evaluations 
of patients (Wang et al. 2023). PET/CT and PET/MRI have 
integrated the advantages of radiology and molecular imag-
ing, providing both anatomical and functional information 
to permit lesion analysis from a single platform (Zhang 
et al. 2021). A standard PET system contains only a small 
portion of the body within its field of view (FOV) despite 
the systemic tracer injection and presence of the radiotracer 
throughout the entire body. Therefore, a 200-cm FOV total-
body PET scanner has much higher sensitivity than a typi-
cal 20-cm FOV scanner. The TOF information provides a 
more accurate location of the annihilation event, leading to 
improved signal-to-noise ratio (SNR) in the reconstructed 
image (Cherry et al. 2018).

Single‑Photon Emission Computed Tomography 
(SPECT)

SPECT, or single-photon emission computed tomography, 
is a molecular imaging technique that uses gamma rays 
emitted from radioisotopes to produce tomographic images 
of radiotracer distribution (Bajc et al. 2019). It has been 
widely used in clinical nuclear medicine, nuclear cardiol-
ogy, and nuclear neurology for several decades. SPECT was 
first developed for clinical application and has since become 
commercially available (Hutton 2014). Recently, hybrid 
SPECT/CT systems have been developed, which combine 
the functional information of SPECT with the anatomical 
information of CT to provide more accurate imaging data 
and pathophysiologic information about diseases (Dickson 
et al. 2023; Israel et al. 2019). These systems have shown 
significant clinical value in areas such as oncology (Schmid-
konz et al. 2018), neurology (Sood et al. 2021), and cardiol-
ogy (Scully et al. 2020; van de Burgt et al. 2021).

Ultrasound (US)

US was first applied to the human body by Karl Theo Dussik 
to outline the human brain ventricles (Shampo and Kyle 
1995). Us or sonography is based on the acoustical imped-
ance of moving sound waves and is used for medical diag-
nosis. Sonography diagnosis has several modes, including 
A-mode, B-mode, M-mode, and Doppler mode. A-mode 
provides the simplest and most original information from 
echo, a function of depth. B-mode utilizes probes with sen-
sor arrays to construct two-dimensional (2D) information. 
M-mode records the signal of motion by applying pulse 
waves, while Doppler mode utilizes the principle of Dop-
pler to record the speed and direction of blood flow (Yao 
et al. 2017). Ultrasonography is commonly used in various 
medical specialties such as orthopedics, gynecology and 
obstetrics, otolaryngology, and urology. It can also be used 
for angiology, gastroenterology, and colorectal surgery with 
specific probes (Tessler et al. 2018).

Others

Various imaging modalities can provide insights into human 
phenomics. For instance, 3D human body scanning tech-
nology can produce digitized information of face and body 
shape (Pleuss et al. 2019). Endoscopes, such as laryngo-
scopes and bronchoscopes, can provide real-time views of 
human respiratory and digestive tract tissues. Ventriculos-
tomy and thoracoscopy can be used to obtain images of the 
body cavity during surgical operations, contributing to the 
diagnosis and treatment of mucosal tissue diseases. Raman 
imaging can provide information about molecular composi-
tion and cellular structure, allowing for the differentiation 
of tumors from normal tissue under surgical or ex vivo con-
ditions (Ramya et al. 2021). Terahertz waves can be used 
for early caries detection, identification of ex vivo tissue 
samples, and intraoperative imaging for identifying tumor 
margins (Amini et al. 2021). Table 1 summarizes the imag-
ing modalities and their basic characteristics.

Applications

In traditional scientific research, the correlation between 
macroscopic features and microscopic phenotypes is 
observed to bring about high accuracy and feasibility, albeit 
with an inefficient and prolonged verification process, lead-
ing to a drop in the bench-to-bedside transition incidence. 
The human body has numerous measurable phenotypes 
from micro to macro, and their associations grow exponen-
tially. Hence, phenomenological research aims to expedite 
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the discovery of these connections between macro- and 
micro-phenotypes to accelerate the transition from scientific 
research to clinical practice (Jin 2021).

Imaging Genomics

Imaging genomics is an emerging field that aims to identify 
the associations between image phenotypes and genomic 
information using advanced image processing and analysis 
techniques (Cho et al. 2017). Medical imaging modalities 
such as CT, MRI, and PET are used to convert the structure 
and function of human organs or tissues into quantifiable 
features, which can reflect the underlying molecular and 
genotypic basis for the tissue of interest (Shin et al. 2016). 
The ultimate goal of imaging genomics is to develop imag-
ing biomarkers that combine phenotypes and genotypes to 
predict risk and/or outcome, which can accelerate the pro-
gression of precision medicine (Shui et al. 2020).

Imaging genomics can be performed using non-invasive 
multimodal (X-rays, CT, PET, MRI) or multiparametric 
(multiple MRI sequences, such as diffusion MRI, perfusion 
MRI) techniques. In cancer research, imaging genomics 
offers a more inclusive view of tumors compared to tumor 
biopsies (Chen et al. 2015). PET-based radiomic features 
can predict genetic alterations and complement the imag-
ing genomics approach by incorporating anatomical infor-
mation, thereby strengthening multiparametric prediction 
models. Moreover, imaging features extracted from PET or 
PET/CT allow in vivo functional and physiological activity 
assessment, and provide comprehensive information about 
tumors non-invasively. The association between imaging 
features and gene expression can provide valuable insights, 
such as applying imaging features in predicting oncogene 
expressions. Gevaert et al. (2012) were the first one to use 
the imaging genomic approach to identify prognostic imag-
ing biomarkers by correlating imaging features to metagenes 
and aggregated gene expression patterns in lung cancer. In 
another study, associated features were incorporated into 
multiparametric models to predict mutations in specific 
genes or genetic pathways (Vlachavas et al. 2019).

Several studies have investigated the potential of 
18F-Fluorodeoxyglucose-positron emission tomography 
(18F-FDG-PET) in assessing Kirsten rat sarcoma viral onco-
gene homolog (KRAS) mutations (Chen et al. 2014, 2015; 
Lovinfosse et al. 2016), but their findings have been incon-
sistent. While some studies have found significant associa-
tions between standard uptake value (SUV) intensity fea-
tures like SUVmax, SUV histogram features, and volumetric 
features and KRAS mutation (Chen et al. 2014), others have 
refuted these findings and found no meaningful association 
between PET parameters and KRAS status (Lovinfosse et al. 
2016).

Imaging genomics can be used to develop imaging bio-
markers as surrogates for genetic testing, a unique advan-
tage of this field (Hu et al. 2017). Many previous studies 
have attempted to predict various hallmark mutations non-
invasively, such as isocitrate dehydrogenase (IDH) (Arita 
et al. 2018; Bisdas et al. 2018), tumor protein 53 (TP53) 
(Hu et al. 2017), epidermal growth factor receptor (EGFR) 
(Akbari et al. 2018; Li et al. 2018b), and 1p/19q codeletion 
(Shofty et al. 2018; Zhou et al. 2017). These gene muta-
tions are reliable prognostic biomarkers in glioblastoma 
and are associated with MRI features. Additional imaging 
markers predicting clinically relevant gene expression have 
also been identified, such as Ki-67 (Li et al. 2017), alpha 
thalassemia/mental retardation syndrome X-linked (ATRX) 
(Li et al. 2018a), branched-chain amino acid transami-
nase 1  (BCAT1) (Cho et al. 2017), platelet-derived growth 
factor receptor alpha  (PDGFRA) (Hu et al. 2017), phos-
phatase and tensin homolog deleted on chromosome 10 
(PTEN) (Zinn et al. 2017), retinoblastoma 1 (RB1) (Hu et al. 
2017), and CD3 RNA expression (Narang et al. 2017).

Imaging genomics also enables the correlation of MRI 
features with clinically available genomic assays to provide 
prognostic scores for cancer recurrence and guide treat-
ment decisions (Grimm et al. 2017).These investigations 
shed light on local tumoral environments, which advances 
our understanding of tumor biology and identifies potential 
imaging surrogates of molecular subtypes. Additionally, arti-
ficial intelligence (AI) can efficiently process a large quantity 
of medical imaging data, providing a scientific approach to 
computer-assisted medical diagnosis. AI technologies, such 
as deep learning, have made significant progress in medical 
image recognition and genome analysis. AI-assisted cardiac 
imaging genomics has demonstrated promising results in 
solving cardiovascular research challenges, such as complex 
disease classification, clustering, and predictive modeling 
tasks. These studies aim to identify and characterize genetic 
variants influencing functional, physiological, and anatomi-
cal phenotypes derived from cardiovascular imaging (Bai 
et al. 2020).

Imaging Transcriptomics

The combination of transcriptomic and imaging data is 
referred to as "imaging transcriptomics" (Martins et al. 
2021). Transcriptomics involves the study of RNA tran-
scripts, which act as intermediates between DNA and pro-
tein. It provides functional context to essential genes and 
regulatory mechanisms that exhibit selective expression 
patterns in pathogenesis (Wang et al. 2009). In recent years, 
researchers have explored the integration of transcriptomic 
expression profiles with imaging features to non-invasively 
study the molecular characteristics of various tumor types 
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and predict clinical outcomes (Cruickshank-Quinn et al. 
2018; Li et al. 2020).

The combination of structural medical imaging modali-
ties like X-rays, MRI, and CT with transcriptomics has led 
to significant advances in the treatment of clinical diseases. 
For instance, a study used MRI to image markers of cer-
ebral small vessel disease and identified 66 candidate genes 
through transcriptome-wide association analysis, highlight-
ing the role of the cerebrovascular matrix and inflammatory 
mechanisms in this disease (Persyn et al. 2020). Another 
study correlated MRI phenotypes with The Cancer Genome 
Atlas (TCGA) to non-invasively detect key cancer genomic 
components responsible for cell migration and invasion in 
glioblastoma (GBM) multiforme (Brisse et al. 2017). In a 
study of non-small cell lung cancer (NSCLC) patients, imag-
ing transcriptomics signatures based on serum microRNA 
(miRNA) levels and CT texture features were established 
to predict objective response rate, overall survival, and 
progression-free survival, facilitating precision treatment 
development (Fan et al. 2020). Transcriptomics approaches 
were also used to study biological pathways associated with 
lung function measured by CT in chronic obstructive pulmo-
nary disease patients (Cruickshank-Quinn et al. 2018). These 
findings demonstrate the potential of imaging transcriptom-
ics to advance our understanding of the molecular basis of 
diseases and improve patient outcomes (Martins et al. 2021).

Combining transcriptomics with medical imaging tech-
niques has opened up new possibilities for non-invasive 
disease diagnosis, prognosis, and treatment. For example, 
in a study of GBM multiforme, MRI was used to obtain 
phenotype data of edema, tumor, and necrosis, which were 
then correlated with TCGA to identify key cancer genomic 
components responsible for cell migration and invasion. 
This approach provided a new diagnostic method for GBM 
multiforme and revealed molecular correlates of cancer 
subtypes and cell invasion (Brisse et al. 2017). Similarly, a 
study of NSCLC used serum miRNA levels and CT texture 
features to establish imaging transcriptomics signatures that 
predicted the objective response rate (ORR), overall survival 
(OS), and progression-free survival (PFS) in patients. These 
findings could potentially lead to the development of preci-
sion treatment for NSCLC (Fan et al. 2020).

Other studies have focused on the relationship between 
medical imaging and tumor biology. In one study of 
low–intermediate-risk prostate cancer, MRI results were 
found to be associated with the biological features of aggres-
sive prostate cancer, potentially improving treatment options 
for patients (Houlahan et al. 2019). For clear cell renal cell 
carcinoma (ccRCC), a study correlated quantitative data 
obtained from multiphase CT with the expression of selected 
miRNA to reveal that the quantitative value of CT examina-
tion was related to miR-21-5p, suggesting that patients with 
ccRCC could benefit from non-invasive texture parameter 

evaluation of biopsy results (Marigliano et al. 2019). These 
examples highlight the potential for imaging transcriptomics 
to provide a more comprehensive understanding of disease 
mechanisms and improve patient outcomes.

Imaging Proteomics

Imaging proteomics is a research field that aims to ana-
lyze the complex relationship between proteomics, imag-
ing biomarkers, and extracted imaging features. Proteom-
ics research involves the study of the proteome, including 
the identification of protein targets and abnormal signaling 
pathways, and it mainly utilizes mass spectrometry. On the 
other hand, imaging modalities such as PET, MRI, and CT 
are used to extract structural and functional characteristics 
of biological tissues, organs, and even the entire body. By 
analyzing the relationship between targets and image fea-
tures, potential disease correlations and biomarkers can be 
identified (Schroder et al. 2018).

Functional molecular imaging techniques, such as PET 
and SPECT, and non-radionuclide-based methods, such as 
fMRI, have been widely used to develop potential biomark-
ers for the diagnosis, monitoring, and prognosis of Alzhei-
mer's disease (AD) (Wang et al. 2021). These techniques can 
detect behavioral responses in the neocortex by capturing 
the unique compositional characteristics of the postsynaptic 
proteome in each brain region and the extensive glucose 
metabolism. Blood protein biomarkers have also been stud-
ied extensively, and they can detect many pathobiological 
changes of various categories, including metabolic, neu-
ronal, axonal, glial, inflammatory, and vascular levels (Park 
et al. 2019; Westwood et al. 2016).

PET can quantify cerebral amyloid deposition, contrib-
uting to altered brain pathophysiology in AD by targeting 
and labeling related proteins. Using PET quantification that 
assesses the proteomic differences in the serum composition 
among AD patients, patients with cognitive impairment, and 
healthy individuals, numerous proteins, such as proprotein 
convertase subtilisin/kexin type 9 (PCSK9), coagulation 
factor XIII A1 subunit (F13A1), and donation after cardiac 
death (DCD), have been identified as potential markers for 
amyloid deposition. Such a breakthrough is a simple, non-
invasive approach to diagnosing AD severity or even pre-
dicting AD onset (Park et al. 2019; Westwood et al. 2016).

Imaging proteomics can improve clinical diagnosis 
and help promote our understanding of specific disease 
mechanisms. For example, PET imaging combined with 
proteomic analysis has been used to measure the heart's 
glucose uptake capacity during cardiopulmonary activity 
assessment. Guo et al. found that panax quinquefolium 
saponins (PQS) can significantly improve cardiac func-
tion and glucose utilization, they also showed that PQS 
blocks neovascularization by affecting the expression level 
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of protein kinase C delta (PRKCD), a target of PQS (Guo 
et al. 2018). In another study, an analysis was performed 
using the rubidium-82 PET imaging results of the cardiac 
function and myocardial blood flow reserve for 97 patients. 
This analysis led to the discovery of new potential targets 
within the coronary arteries, including galectin-4 (Gal4), 
growth differentiation factor 15 (GDF15), tissue-type 
plasminogen activator (tPA), and von Willebrand factor 
(vWF), demonstrating a correlation between protein mark-
ers and endothelial-independent coronary microvascular 
dysfunction (Schroder et al. 2018).

PET imaging is one of the first techniques to predict the 
response to neoadjuvant therapy in esophagogastric can-
cer. 18F-Fluorothymidine (18F-FLT), a marker of tumor cell 
proliferation, is useful in detecting locally advanced gastric 
cancer, which is more sensitive than 18F-FDG-PET (Her-
rmann et al. 2007). Future correlation studies between PET 
imaging and proteomics may further promote the develop-
ment of personalized gastric cancer treatment. In conclu-
sion, functional molecular imaging techniques and imaging 
proteomics have shown great promise in identifying specific 
biomarkers for diagnosing, monitoring, and predicting the 
prognosis of various diseases. The identification of specific 
biomarkers can also elucidate treatment responses or drug 
resistance on the molecular, protein, or even metabolic level.

The advancement of MRI, US, and CT imaging tech-
niques has enabled better understanding of the cardiopulmo-
nary structure and functions (Hemnes et al. 2020). The com-
bination of imaging techniques and proteomic analysis has 
allowed for the identification of abnormalities in axonal or 
vascular damage markers, metabolic anomalies, and mech-
anisms underlying brain injury or atrophy (Herman et al. 
2018; Wright et al. 2019).Proteomic analysis in conjunction 
with postoperative MRI imaging has shown a correlation 
between levels of matrix metalloproteinases (MMPs) and 
tissue inhibitors of metalloproteinases (TIMPs) with clini-
cal outcomes, ventricular dysfunction, and pulmonary artery 
remodeling (Schafer et al. 2021). In addition, imaging tech-
niques like MRI and CT can provide information about the 
body's fat compositions, and by combining imaging results 
with proteome analysis, potential agents like Cajanolactone 
A have been identified for preventing postmenopausal obe-
sity and fatty liver (Luo et al. 2020). Machine learning has 
been utilized to non-alcoholic fatty liver disease (NAFLD) 
and identify biological players in liver fat accumulation 
(Atabaki-Pasdar et al. 2020). The combination of transcrip-
tomics, proteomics, copy number alterations, and radiomic 
image features has characterized primary tumors in patients 
with epithelial ovarian cancer, and correlations between 
proteins and CT-based imaging features have shown pos-
sible associations between tumor heterogeneity and protein 
abundance (Lu et al. 2019). Furthermore, the investigation 
of drugs or target ligands is continuously being explored to 

support the future diagnosis of diseases through imaging 
targets (Rothlisberger et al. 2017).

Imaging Immunomics

Imaging immunomics is a rapidly growing field that aims 
to identify imaging biomarkers to support clinical decision-
making and enhance the understanding of disease biol-
ogy, allowing for assessment of the physiological state and 
changes throughout the disease progression and therapeutic 
sequence (Limkin et al. 2017). Various imaging techniques 
are used for evaluation, including radiomic methods with 
CT, MRI, PET, near-infrared fluorescence (NIRF), and 
radiolabeled small molecules, antibodies, and fragments to 
image immune status, tumor microenvironment, and changes 
throughout therapy (Shields et al. 2018). Labeled mono-
clonal antibodies (mAbs) represent a promising tool for 
immuno-PET theranostic approaches, offering a non-inva-
sive method to assess in vivo target expression and distribu-
tion (Wei et al. 2020). Immuno-PET combines the excellent 
targeting specificity of mAbs with the superior sensitivity 
and resolution of PET, and represents a paradigm shift for 
molecular imaging modalities (Knowles and Wu 2012).

The field of imaging immunomics has made significant 
progress in recent years, with various imaging methods 
being employed to evaluate immune status, tumor microen-
vironment, and changes throughout therapy (Keyaerts et al. 
2016; Pandit-Taskar et al. 2016). Immuno-PET, in particu-
lar, has emerged as a promising tool for molecular imaging, 
allowing for the non-invasive assessment of in vivo target 
expression and distribution (Nagle et al. 2021). Immuno-
PET has been successfully used to image chronic cardiac 
rejection and various cancers, and there is much interest in 
using it to target antigens of pathogenic bacteria and viruses. 
A predictive radiomics model has been developed to tar-
get immune components and patient response to immune 
checkpoint therapy (Sun et al. 2018). Anti-CD8 immuno-
PET has proven to be a sensitive tool for detecting changes 
in systemic and tumor-infiltrating CD8 T-cell expression, 
while immuno-PET imaging of inducible T-cell costimu-
lators (ICOS), enables the sensitive and specific detection 
of activated T cells (Xiao et al. 2020). Immuno-PET stud-
ies of programmed death-ligand 1(PD-L1) have also shown 
promise in predicting the effectiveness of programmed cell 
death 1(PD-1)/PD-L1 checkpoint blockade therapy (Vento 
et al. 2019).

The use of imaging immunomics can be expanded to the 
detection and assessment of inflammatory diseases. PET 
imaging targeting microglia and lipopolysaccharide has 
been studied for evaluating medications for cognitive defi-
cits associated with neuroinflammatory dysfunction (Wissler 
et al. 2019). Another study utilized PET imaging targeting 
c-reactive protein to investigate the relationship between 
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peripheral inflammation, blood–brain barrier permeability, 
and behavioral symptoms like depression (Turkheimer et al. 
2021). These imaging methods have provided new insights 
into understanding how inflammation affects brain homeo-
stasis and how it could be manipulated to treat cognitive and 
behavioral symptoms associated with inflammatory diseases.

Recent studies have highlighted the potential of molecular 
imaging in evaluating the effectiveness of targeted drugs 
for immune-mediated inflammatory lung diseases. Rituxi-
mab, a mAb that targets CD20-expressing B lymphocytes, 
has shown promising results in treating such diseases. In 
addition, antibody-guided PET/MRI has emerged as a state-
of-the-art approach for the molecular imaging of invasive 
pulmonary aspergillosis, offering new insights into the 
underlying mechanisms of targeted drug imaging (Thorn-
ton 2018).

There are also exciting developments in the use of molec-
ular imaging for non-invasive imaging of lung adenocarci-
noma. For instance, mAb109 is a new platform for develop-
ing novel imaging agents for this type of cancer. Studies 
have shown that 64Cu-NOTA-mAb109/Cy5.5-mAb109 
exhibits high specificity and sensitivity for A549 tumors and 
human lung adenocarcinoma tissues (Zhu et al. 2020). Fur-
thermore, a CD146-targeting probe has been developed as a 
PET and NIRF imaging agent for hepatocellular carcinoma. 
This probe showed high affinity and specificity for CD146-
expressing liver malignancies, and correlated tracer uptake 
with in situ CD146 expression, indicating its potential for 
early detection, prognostication, and image-guided surgical 
resection of liver tumors (Hernandez et al. 2016).

Immuno-PET has the potential to revolutionize person-
alized medicine by enabling better patient selection for 
antibody-based therapies and improving drug development. 
Despite being relatively expensive, it has been shown in 
several large multi-center randomized clinical trials to be 
a valuable primary patient screening method that can help 
avoid unnecessary procedures (Zhu et al. 2020). By provid-
ing accurate diagnoses and assisting physicians in optimiz-
ing therapeutic decisions, immuno-PET can contribute to 
improving clinical practice and personalized medicine.

Imaging Metabolomics

Metabolomics provides a comprehensive view of the meta-
bolic network in a certain disease condition and can help 
identify important biomarkers or therapeutic targets. As 
metabolite levels are highly responsive to changes in tissue 
biology, metabolomics can differentiate between tumor and 
benign tissue or tumor subtype-specific features, including 
those associated with disease stage (Zaimenko et al. 2017). 
Multiparametric MRI can also report on aspects of tumor 
biology that influence metabolism, which is important in 
understanding the biological heterogeneity of solid tumors. 

Techniques that image biological heterogeneity may help 
guide tissue sampling for metabolomics and related stud-
ies (Glaab et al. 2019). Combining the information from 
metabolomics and imaging techniques can provide a more 
complete understanding of tumor biology and guide person-
alized treatment decisions.

Metabolomics, when combined with PET imaging, can 
provide insights into metabolic changes in various diseases. 
For instance, C–C motif chemokine ligand 5 (CCL5) was 
found to be essential in maintaining hippocampal integ-
rity and energy metabolism, as revealed by metabolomics 
and FDG-PET analysis (Ajoy et al. 2021). The combina-
tion of 18F-FDG, 18F-fluorodihydroxyphenylalanine-PET 
(18F-DOPA-PET), and metabolomics data improved the 
accuracy of Parkinson's disease diagnosis (Glaab et  al. 
2019). In pulmonary arterial hypertension, metabolic repro-
gramming, including upregulated glutamine and altered 
glycine and choline metabolism, can be detected through 
PET imaging in mouse models (Izquierdo-Garcia et  al. 
2018). Radiation-induced metabolism shifts in hepatocel-
lular carcinoma lesions, involving increased glycolysis and 
impaired gluconeogenesis, were revealed using FDG-PET 
and metabolomics (Chung et al. 2021). In type 2 diabetes 
and insulin resistance, correlations were found among PET/
MRI parameters, metabolites from metabolomics profil-
ing of subcutaneous adipose tissue and plasma, which pro-
vided new insights into the research area (Diamanti et al. 
2020). High expression of thyroid hormone-binding pro-
tein μ-crystallin (CRYM) was associated with low choline 
uptake in 18F-fluoromethylcholine (FMC) PET/MRT studies 
of prostate cancer patients, suggesting that CRYM expres-
sion may be a potential biomarker for prostate cancer (PCa) 
diagnosis and prognosis (Aksoy et al. 2021).

Collaboration between MRI and metabolomics has been 
observed in various research fields. One study investigat-
ing transient ischemic attack (TIA) patients found specific 
metabolomic profiles related to MR-DWI features, with 
11 common molecules identified, such as creatinine and 
lysophosphatidic acid (Purroy et al. 2016). Similarly, 41 
circulating metabolites were found to be significant in the 
early diagnosis of ischemic stroke, including DWI-posi-
tive lesions (Tiedt et al. 2020). In cardiovascular research, 
metabolites such as serine, citrate, and valine were found to 
be associated with left atrial function based on cardiovascu-
lar magnetic resonance (CMR) imaging (Koh et al. 2018). 
In patients with ST-segment-elevation myocardial infarc-
tion (STEMI), succinic acid was found to be significantly 
increased in the coronary sinus blood, and its release was 
associated with the degree of myocardial ischemia, as evalu-
ated by CMR imaging (Kohlhauer et al. 2018). In NAFLD, a 
cross-sectional analysis identified 10 serum metabolites with 
high diagnostic accuracy for advanced fibrosis, as shown 
by MR elastography (Caussy et al. 2019). Additionally, a 
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study combining multi-dimensional data from various omics 
imaging techniques, including metabolic parameters from 
NMR spectroscopy and mass spectrometry, MRS, and DTI, 
demonstrated the importance of the glycine-serine-threonine 
axis in intervertebral disc degeneration pathology (Wu et al. 
2021).

Challenges and Future Perspectives

In recent years, there has been growing interest in the combi-
nation of phenomic imaging modalities with omics studies, 
which involves high-throughput data extraction of quantita-
tive features from images and convert them into high-dimen-
sional data. This integration has been widely investigated in 
various fields, including imaging genomics, transcriptom-
ics, proteomics, immunomics, and metabolomics. Phenomic 
imaging studies involve in-depth analysis of phenotypic data 
to explore the internal causal relationship among genes, phe-
notypes, and the environment, offering promising perspec-
tives for future research (Marcu et al. 2019; Shui et al. 2020).

However, phenomics is a relatively new discipline, and 
its rapid development has faced some challenges. Individual 
omics data's heterogeneity, temporal dependency, sparsity, 
and irregularity limit the full utilization of biomedical infor-
mation, leading to further problems and challenges such as 
overfitting and the necessity of intensive computational 
resources for analysis of a large number of features. To 
address these issues, there is a need for the development 
of high-throughput techniques, as well as the advancement 
of AI technologies to assist in data analysis and phenomic 
imaging. Despite this, key considerations that need improve-
ment include data volume, data quality, temporality, domain 
complexity, and interpretability. With continued advance-
ments, phenomic imaging can help us appreciate the com-
plex interactions between perceived phenotypes and underly-
ing microscopic features, leading to a better understanding 
of the relationship between genes, environment, and pheno-
type (Arita et al. 2018; Bisdas et al. 2018; Shui et al. 2020).

Phenomic imaging, along with multi-omics, is rapidly 
advancing our understanding of disease pathogenesis and 
mechanism, leading to the development of targeted drugs 
and precise disease treatment. The integration of data from 
multiple sources and the use of AI tools have the potential 
to enable personalized management in clinical practice and 
herald an era of precision medicine. However, there are 
still challenges that need to be addressed, including feature 
enrichment, federated interference, model optimization, 
standardization, integration, and data sharing. Large-scale 
prospective studies with high-quality data acquisition are 
needed to improve the reproducibility of phenomic imag-
ing studies. Additionally, the time component of phenomic 

imaging should be considered to provide additional infor-
mation on the evolution of features.

Transpathology, which considers the integration of 
multi-scale pathological data, has the potential to advance 
the understanding of pathophysiological mechanisms. 
Similarly, recognizing phenomic imaging as a distinct 
branch of phenomics could accelerate progress in various 
areas, including scientific research, industry, and society 
as a whole. By combining phenomic imaging with other 
omics data, such as genomics and metabolomics, research-
ers can gain a more comprehensive understanding of bio-
logical systems, potentially leading to the development 
of new therapies and diagnostic tools. However, more 
research is needed to fully realize the potential of this 
emerging field, including standardization and data shar-
ing efforts, as well as large-scale prospective studies.

Conclusion

In conclusion, "Phenomic Imaging" exemplifies an 
advanced and interdisciplinary approach that utilizes 
diverse imaging techniques to comprehensively capture 
observable phenotypes and characteristics influenced by 
complex interactions at various biological scales. By inte-
grating genetic information, epigenetics at the microscopic 
level, organ functionality, microbiome dynamics at the 
mesoscopic level, and the impact of diet and environmen-
tal exposures at the macroscopic level, phenomic imaging 
provides invaluable insights into the intricacies of human 
phenomes.

This review offers a comprehensive overview of diverse 
phenomic imaging modalities and their applications in the 
field of human phenomics. It is evident that phenomic imag-
ing surpasses traditional medical imaging, not only facilitat-
ing disease diagnosis but also characterizing both normal 
and abnormal traits, thereby enabling a detailed correlation 
between macro- and micro-phenotypes.

Moreover, this approach reveals novel perspectives for 
understanding human health and disease, visualizing and 
quantifying anatomical structures, biological functions, met-
abolic processes, and biochemical activities. Such diverse 
information acquisition enhances the understanding of phe-
notypic variations.
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