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Abstract
Alternative splicing exists in most multi-exonic genes, and exploring these complex alternative splicing events and their 
resultant isoform expressions is essential. However, it has become conventional that RNA sequencing results have often 
been summarized into gene-level expression counts mainly due to the multiple ambiguous mapping of reads at highly 
similar regions. Transcript-level quantification and interpretation are often overlooked, and biological interpretations are 
often deduced based on combined transcript information at the gene level. Here, for the most variable tissue of alternative 
splicing, the brain, we estimate isoform expressions in 1,191 samples collected by the Genotype-Tissue Expression (GTEx) 
Consortium using a powerful method that we previously developed. We perform genome-wide association scans on the 
isoform ratios per gene and identify isoform-ratio quantitative trait loci (irQTL), which could not be detected by studying 
gene-level expressions alone. By analyzing the genetic architecture of the irQTL, we show that isoform ratios regulate edu-
cational attainment via multiple tissues including the frontal cortex (BA9), cortex, cervical spinal cord, and hippocampus. 
These tissues are also associated with different neuro-related traits, including Alzheimer’s or dementia, mood swings, sleep 
duration, alcohol intake, intelligence, anxiety or depression, etc. Mendelian randomization (MR) analysis revealed 1,139 
pairs of isoforms and neuro-related traits with plausible causal relationships, showing much stronger causal effects than on 
general diseases measured in the UK Biobank (UKB). Our results highlight essential transcript-level biomarkers in the human 
brain for neuro-related complex traits and diseases, which could be missed by merely investigating overall gene expressions.
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Introduction

Alternative splicing is an essential mechanism in diversi-
fying the genetic and proteomic landscapes in eukaryotes 
(Thakur et al. 2019). It is a crucial process by which pro-
teins with different functions are produced from a single 
gene through patterned joining and excising of the introns 
and exons within the gene (Nature Portfolio 2022). Alterna-
tive splicing occurs in around 95% of multi-exonic genes in 
humans (Nilsen and Graveley 2010; Pan et al. 2008), and 
is subjected to tissue-specific regulations (Zaghlool et al. 
2014). It is a process that is most complex in the nervous 
system (Yeo et al. 2004). In the central nervous system, 
our brain has the highest level of alternative splicing out of 
all tissues in the human body (Porter et al. 2018; Xu et al. 
2002).

Genetic regions that control and regulate these alter-
native splicing events, often known as splicing quantita-
tive trait loci (sQTL), have been successively discovered 
in large-scale genome-wide association studies (GWAS) 
(Ardlie et al. 2015; Battle et al. 2014; Park et al. 2018), and 
recent studies have shown sQTL landscapes in human brain 
sub-tissues (Takata et al. 2017; Walker et al. 2019; Zhang 
et al. 2020). These studies used percent spliced index (PSI, 
ratios between exon-included and exon-excluded reads) 
values (Schafer et al. 2015) calculated directly from RNA-
sequencing data to obtain splicing scores representing splic-
ing patterns in genes prior to sQTL discoveries. Expressed 
isoform ratios per gene were also considered as phenotypes 
in mapping sQTL (Lappalainen et  al. 2013). However, 
directly mapping isoform level quantitative trait loci (QTL) 
has always been challenging due to the difficulty in quantify-
ing isoform expressions using short RNA-sequencing reads.

Here, we aim to discover the QTL regulating expressed 
isoform ratios per gene (i.e., irQTL) across brain tissues, 
where the isoform expressions were quantified using our 
previously developed isoform expression estimation method, 
X-matrix alternating expectation–maximization (XAEM) 

(Deng et al. 2019), which outperforms the other state-of-
the-art methods in isoform estimation. We quantify isoform 
ratios in multi-isoform genes in 1,191 samples from 13 brain 
tissues and carry out GWAS analysis of the isoform ratios 
with the genotyping data to acquire cis-irQTL. These irQTL 
regulate the relative proportions across the isoforms per gene 
instead of the overall gene expression. We show that genes 
with such irQTL genetic basis in the brain contribute sig-
nificantly to neuro-related phenotypes.

Materials and Methods

Samples Origin and Data Acquired

RNA Sequencing and Whole‑Genome Sequencing Data

RNA sequencing data used in this study were obtained 
from the genotype-tissue expression (GTEx) project (Ardlie 
et  al. 2015) portal (https:// www. gtexp ortal. org, version 
phs000424.v7.p2.c1). We considered 13 brain tissues, con-
sisting of 1,236 RNA sequencing samples from 172 indi-
viduals from the GTEx project (Fig. 2a). As an individual 
might die from different causes, the tissue(s) sampled from 
the individual was from diseased-free sampling sites. GTEx 
donors are aged between 21 and 70 with the following cri-
teria exclusion criteria: individuals with human immunode-
ficiency virus (HIV) infection or high-risk behaviors, viral 
hepatitis, metastatic cancer, chemotherapy or radiation ther-
apy for any condition within the past two years, and whole-
blood transfusion in the past 48 h or body mass index > 35 
or < 18.5 (Ardlie et al. 2015).

Whole-genome sequencing (WGS) data for these indi-
viduals were obtained from the GTEx portal under version 
phs000424.v7.p1. There are 6,496,708 markers called from 
WGS, including 5,987,177 SNPs and 509,531 InDels. The 
final sample size used for QTL analysis is 1,191 samples, for 
which both RNA-sequencing and whole-genome sequencing 
data are available.

GTEx cis‑eQTL Data

Cis-eQTL are genomic loci near the corresponding coding 
genes that explain a fraction of the genetic variance of the 
gene expression phenotypes (Glass et al. 2013). GTEx has 
summarized a list of cis-eQTL for each tissue type in its data 
portal. In this study, only cis-eQTL from the brain tissues 
were considered.

RNA‑Sequencing Mapping and Quantification

We acquired demultiplexed raw RNA sequencing FASTQ 
files from the GTEx portal and used the fast mapping and 

https://www.gtexportal.org
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isoform quantification tool XAEM (Deng et al. 2019), 
which has higher accuracy than popular methods such as 
Salmon (Patro et al. 2017) and Kallisto (Bray et al. 2016), 
to process the data for RNA sequencing alignment and iso-
form expression quantification. Mapping was performed 
using XAEM V0.1.0 with reference to the human reference 
genome hg19/GRCh37 (UCSC hg19 annotation). Isoform 
quantification was done subsequently using the default set-
ting in XAEM to produce isoform counts, normalized to 
transcripts per million (TPM) values, for each sub-brain 
tissue. Mapping and quantification were carried out sepa-
rately for each brain tissue.

Quality Control Measures

Quality control was carried out for isoform expression data 
after quantification using XAEM software. We considered 
in total 24,629 genes with 46,710 isoforms based on the 
human reference genome hg19/GRCh37. To identify the 
genetic regulation of isoform expression missed by eQTL 
analysis, we considered only multi-isoform genes, which 
led to a total of 9,401 genes with 31,482 isoforms after 
filtering. Of these 9,401 genes, 8,382 of them are protein-
coding genes, and the rest includes lncRNA, antisense-
RNA, pseudo-genes, etc. (Supplementary Table 3). Indi-
viduals with half or more than half of their genes having 
zero counts were removed for subsequent analyses, which 
reduced the original 1,671 viable samples in GTEx to the 
1,236 retained samples we started with. For the principal 
component analysis (PCA) and QTL mapping, only vari-
ants with minor allele frequency (MAF) > 0.05 were con-
sidered, which resulted in 6,164,423–6,316,616 variants 
across the brain tissues.

irQTL Mapping

In this study, we identify irQTL for 13 brain tissues. For 
genes with multiple isoforms, isoform ratios were defined 
as TPM values of isoforms divided by their respective 
gene-level TPM. PCA was carried out on the genomic kin-
ship matrix constructed via the whole-genome sequenc-
ing genotype data using PLINK (Purcell et al. 2007), to 
obtain a set of genomic principal components (PCs) to be 
used as covariates in the subsequent association scan. Age, 
sex, and the first three PCs were then used as covariates, 
whose effects were taken away from the isoform ratios 
using linear regression. The resulting values were used 
as covariates-corrected isoform ratios for downstream 
analyses. We performed cis-regulatory region association 
analysis by regressing the isoform ratio phenotypes on 
the genotype data using RegScan V0.5, a GWAS analysis 

tool for linear regression analysis with continuous traits 
maximally fast on large data sets with many phenotypes 
(Planell et al. 2021).

Locus Definition

Each cis-regulatory locus, as well as the irQTL region, was 
defined as the ± 1 Mb region around the corresponding 
gene. The SNP with the lowest p-value within each locus 
was selected as the lead variant, and the associations hav-
ing p < 5 × 10

−8 were retained for the subsequent analyses. 
These significant irQTL from each brain tissue were then 
compared with the cis-eQTL by the GTEx Consortium of the 
corresponding gene. We focused on the irQTL with eQTL 
p-values greater than 0.05 as the final set of irQTL.

Stratified Linkage Disequilibrium Score Regression 
(S‑LDSC)

We used S-LDSC (Bulik-Sullivan et al. 2015) to test whether 
the annotated genic regions are enriched for heritability of a 
certain trait, where the GWAS summary statistics were avail-
able via linkage disequilibrium (LD) hub (LD-Hub) (Zheng 
et al. 2016). The summary statistics were harmonized by the 
munge_sumstats.py procedure of the LDSC software. LD 
scores of HapMap3 SNPs (Altshuler et al. 2010) (major his-
tocompatibility complex region excluded) for the annotated 
genes in each brain tissue were pre-computed using a 1-cM 
window (default). The heritability enrichment in each tissue 
was evaluated by an enrichment score, defined as the pro-
portion of heritability captured divided by the proportion of 
annotated SNPs. The LDSC-v1.2 baseline annotations were 
fitted as covariates as LDSC suggested (Bulik-Sullivan et al. 
2015; Gazal et al. 2017), which controls the residual vari-
ance in the chi-squared statistics and thus produces a more 
robust estimation of heritability enrichment on our desired 
annotation. For each tissue, we ran a separate model to test 
the heritability enrichment at the tissue-specific irQTL. 
This fits our hypothesis testing purpose, meanwhile avoid-
ing potential multi-collinearity due to the similarity across 
brain tissues.

Mendelian Randomization (MR) Analysis

Prior to the analysis, we extracted 152 neuro-related traits 
from LD-Hub and 200 UK Biobank (UKB) diseases with 
international classification of diseases (ICD) codings from 
Neale’s lab GWAS results. From the original 152 neuro-
related traits, we removed the duplicated traits from dif-
ferent sources and highly correlated traits e.g., defined 
by alternative phenotype codings. This resulted in 114 
neuro-related phenotypes for subsequent analysis. We 
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conducted an MR analysis between the isoform ratios and 
114 neuro-related traits and the 200 UKB diseases using 
the standard inverse-variance weighted (IVW) method for 
all the cis-irQTL and the MR Egger regression (Bowden 
et al. 2017) for the cis-irQTL with at least three independ-
ent instruments after LD-clumping ( r2 < 0.001 ). Here, the 

cis-irQTL were used as genetic instruments, and the cod-
ing alleles were matched between the exposure isoforms 
and the outcome phenotypes before estimating potential 
causal effects.
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Results

We aim to identify irQTL in 13 sub-brain tissues, where 
RNA and DNA sequencing data are both available in 1,191 
GTEx consortium samples. The overall workflow is illus-
trated in Fig. 1a. After RNA sequencing reads mapping 
and quantification, isoform counts were estimated using 
XAEM for each sub-brain tissue. For the multi-isoform 
genes, the isoform ratios were defined as the isoform 
TPM values divided by their corresponding gene-level 
TPM values. Cis-regulatory region association analysis 
was performed on each isoform ratio phenotype, where 
fixed effects including sex, age, and the first three genomic 
principal components (PCs) were corrected for the pheno-
type. The corrected phenotypic values were also used in 
downstream analyses.

The association analysis identified 7,099 cis-irQTL in 
the brain ( p < 5 × 10

−8 , equivalent to an estimated false 
discovery rate (FDR) of 9.6 × 10

−5 to 5.1 × 10
−4 across dif-

ferent tissues), where 4,241 of those did not show any effect 
as gene expression quantitative trait loci (eQTL) on gen-
eral gene expression levels ( peQTL > 0.05 ) (Fig. 1b,e). For 
these irQTL, the corresponding genes have relatively stable 
expression levels in the brain tissues, but the proportions 
of their isoforms are genetically regulated by the irQTL. 
Taking the frontal cortex as an example, 493 irQTL were 
detected for 265 genes whose overall expressions do not 
show eQTL effects (Fig. 1b, Supplementary Table 1). We 
cross-referenced these detected irQTL in the latest sQTL 
results using sQTLseekeR (Monlong et al. 2014) by the 
GTEx Consortium. Based on the same significance threshold 
( p < 5 × 10

−8 ), GTEx reported 1,126 irQTL out of the total 
4,241 irQTL as sQTL (Fig. 1b, Supplementary Table 3). 
We also cross-referenced the detected irQTL in the sQTL 

reported by the recent testing for heterogeneity between 
isoform-eQTL effects (THISTLE) method. As THISTLE 
utilizes a heterogeneity test per gene for sQTL discovery, we 
compared the sGene (genes with significant splicing QTL) 
counts between the irQTL and THISTLE sQTL results. 
Overall, the discovered irQTL mapped to 874 sGenes, where 
96 overlap with THISTLE sGenes.

The majority of the detected irQTL lead variants are cen-
tered at the transcription start sites (TSS) (Fig. 1c), which is 
a feature also seen in eQTL (Fig. 1d) and even protein QTL 
(pQTL) in the human plasma (Sun et al. 2018). Nevertheless, 
we found that the lead variants of cis-eQTL were gener-
ally more condensed around the TSS of the corresponding 
genes than those of cis-irQTL. This could be caused by two 
reasons: (1) different isoforms of the same gene had dif-
ferent regulatory elements for their transcription; (2) the 
isoform expressions were estimated and thus had lower sta-
tistical power compared to the corresponding overall gene 
expressions given the same sample size, as unlike for gene 
expression where one could count the sequencing reads for 
quantification, the shared reads between isoforms provide 
incomplete information for isoform expression.

In each brain tissue, we annotated the genomic regions 
for the corresponding irQTL and applied S-LDSC (Bulik-
Sullivan et al. 2015) to estimate and test for heritability 
enrichment of complex traits. We considered the 114 neuro-
related traits (Supplementary Table 4) whose GWAS sum-
mary statistics are available through LD-Hub (Zheng et al. 
2016). Across the 13 (tissues) × 114 (traits) = 1,482 enrich-
ment tests, the distribution of the S-LDSC reported p-values 
significantly deviated from the null (Supplementary Fig. 5). 
With FDR of less than 0.05, three brain tissues were found 
to be significantly associated with 13 neuro-related traits 
via the genetic regulation of isoform proportions per gene 
instead of gene expression levels (Fig. 2a), as the genome 
annotation of the detected irQTL does not carry any nominal 
eQTL effect. Such heritability enrichment on irQTL genes 
was also significantly higher than that on the other coding 
genes (Fig. 2b). The frontal cortex (BA9) was associated 
with Alzheimer’s or dementia, mood swings, nervous feel-
ings, sensitivity or hurt feelings, sleep duration, alcohol 
intake, and contraceptive pill intake; the cortex was found 
to be associated with educational attainment, alcohol intake, 
intelligence, and knee pain; the cervical spinal cord was 
found to be connected to anxiety or depression.

We subsequently extracted the established genotype–phe-
notype association records of the corresponding irQTL LD-
clumped ( r2 < 0.001 ) significant variants from the same set 
of 114 neuro-related traits. We conducted inverse-variance 
weighted (IVW) MR analysis for all the isoform-trait pairs 
and an MR Egger regression (Bowden et al. 2017) for the 
irQTL with at least three instrumental variants after LD-
clumping (Supplementary Table 5). This procedure revealed 

Fig. 1  irQTL workflow and summary statistics. a RNA sequenc-
ing data of 1,191 samples from 13 brain regions were obtained from 
the GTEx Consortium. Alignment and isoform quantification were 
analyzed using the XAEM software based on TPM for each sam-
ple. For multi-isoform genes, the isoform ratio for each isoform was 
calculated as the TPM value for each isoform divided by the overall 
corresponding gene expression TPM value. PLINK was used for cal-
culating the genomic kinship matrix and three PCs. Fixed effects of 
age, sex, and the first three PCs were removed from the isoform ratios 
phenotypes. The phenotypes were inverse-Gaussian transformed prior 
to GWAS analysis using RegScan. The lead variants of the mapped 
irQTL were passed onto subsequent analysis, including causal infer-
ence referencing the PhenoScanncer database. b The sample size 
in irQTL mapping and the corresponding detected irQTL count 
for each brain tissue, where the number that overlaps with GTEx-
reported sQTL ( p < 5 × 10

−8 is marked. c Lead variants locations 
of the mapped irQTL ( p < 5 × 10

−8 ) with respect to their distance 
to the transcription start sites (TSS). d Lead variants locations of the 
mapped eQTL ( p < 5 × 10

−8 ) with respect to their distance to the 
transcription start sites (TSS). e −log

10
p values comparison between 

irQTL and eQTL, where the 4,241 irQTL signals ( pirQTL < 5 × 10
−8 , 

and peQTL > 0.05 ) were annotated to test for heritability enrichment

◂
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Fig. 2  Genetic effects on complex traits mediated through irQTL. a 
Complex traits heritability enrichment signals at the irQTL regions, 
where the significant enrichment (FDR < 5%) results were high-
lighted. b Comparison of the heritability enrichment at irQTL genes 
and other genes for the significant traits in (a). c Example of the MR 
results for gene MMAB, whose two isoforms have genetically regu-
lated ratios in different tissues, showing plausible causal effects on 
multiple neuro-related phenotypes. d Quantile–quantile plot for the 

significance of all the MR causal effects tests in 114 neuro-related 
traits (in categories) and 200 UKB diseases. e Genotype–phenotype 
map of the significant irQTL of MMAB, as instruments for the MR 
discoveries for neuro-related phenotypes in (c). In each case, the nor-
malized isoform ratios of the two isoforms of the same gene sum up 
to similar values across different genotypes; thus the irQTL could not 
be mapped as significant eQTL
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1,092 isoform-trait pairs with plausible causal relationships 
(FDR less than 0.05, Supplementary Table 5). For compari-
son, we also conducted the same analysis for 200 UKB dis-
eases with ICD codes whose GWAS summary statistics were 
publicly available from Neale’s lab. This procedure revealed 
250 isoform-disease pairs with plausible causal relationships 
(FDR less than 0.05, Supplementary Fig. 3, Supplementary 
Table 6). As most of the 200 UKB diseases are not neuro-
related, we found, as expected, generally stronger signals 
of MR discoveries for the neuro-related traits than for the 
UKB diseases; for instance, the causal inference discoveries 
were enriched for the traits categories including educational 
attainment, sleep, psychiatric disorders, feelings, and alcohol 
intake (Fig. 2d). Taking the gene MMAB with the most MR 
discoveries as an example, its irQTL could be mapped in 
multiple tissues, leading to the downstream causal inference 
of its isoforms on multiple neuro-related phenotypes, such 
as sleep duration, insomnia, neuroticism, miserableness, 
and schizophrenia (results in the amygdala are illustrated 
in Fig. 2c). Reverse causal inference analysis did not reveal 
statistically significant effects of the complex traits on the 
isoform expressions (Supplementary Fig. 4). Vitamin B12 is 
involved in the production of sleep-regulating neurotransmit-
ter melatonin (Hashimoto et al. 1996; Mayer et al. 1996), and 
the protein product of MMAB was reported to catalyze the 
conversion of vitamin B12 into its final product adenosylco-
balamin (Safran et al. 2021). For the two isoforms of MMAB 
quantified via the XAEM algorithm, the genotype–pheno-
type maps of its irQTL in different tissues illustrated that 
these isoform-level mediators could not be detected in the 
standard eQTL analysis (Fig. 2e), as not the gene expression 
themselves but rather the relative proportions between the 
isoforms regulated the downstream phenotypes.

Discussion

We have conducted a series of investigations for brain 
irQTL, i.e., the cis-regulatory loci in the brain tissues that 
control the relative isoform proportions per gene instead of 
the expression levels. Besides identifying hundreds of irQTL 
that could not be detected as eQTL, we found that genes with 
such irQTL regulatory property harbor enriched heritabil-
ity for human complex traits, especially here for neuro- or 
nerve-related phenotypes. We also inferred that genetically 
regulated isoform distributions have downstream effects on 
the phenotypes via MR. Our analysis highlights the impor-
tance of quantifying and studying isoform expressions rather 
than general gene expressions. Some genetically regulated 
functional transcripts may only be detected when the iso-
forms are adequately quantified.

We used our previously developed XAEM algorithm 
to estimate isoform expression in the GTEx brain tissue 

samples. Although the isoform expression level could 
not be directly obtained from RNA sequencing reads, the 
XAEM algorithm allows powerful quantification of isoform 
expression for multi-isoform genes. The estimated isoform 
expressions allowed us to demonstrate the regulation of gene 
expressions that could not be well characterized without dis-
secting into isoforms. For isoform expression estimation, 
transcriptome annotation reference is a factor to be consid-
ered. The more comprehensive references, such as Ensembl 
(Cunningham et al. 2021) and GENCODE (Frankish et al. 
2020), contain much more transcripts, and many of them 
are not curated isoforms. Many exons in these references 
for a gene are only a few bases different from others, mak-
ing some isoforms very similar to each other. Too many of 
too similar isoforms in the cluster response profile (CRP; 
the X matrix) of XAEM would worsen the estimation. This 
is true for any isoform quantification algorithm that relies 
on an isoform annotation reference, as it is difficult to have 
sequencing reads that well distinguish very similar isoforms. 
For normal analysis such as this study, it is better to use 
curated isoforms in RefSeq (O'Leary et al. 2015) (default 
CRPs inbuilt in XAEM), so that the results are more reliable.

The mapped irQTL could not be identified as a typical 
eQTL since the genetic effects on different isoforms per 
gene had different signs. Thus, although the genetic effects 
on different isoform expressions for the same gene were all 
strong, the gene’s overall expression could still be consistent 
across individuals with different genotypes (lacking genetic 
variance). This phenomenon can be generalized to other 
composite phenotypes too. In general, we would need to go 
deeper into the specific genetically regulated phenotype (in 
this case, isoform expressions) instead of only studying the 
composite phenotype (in this case, overall gene expressions).

We decided only to use age, sex, and three PCs as covari-
ates mainly due to two perspectives: (1) we aimed to control 
the number of covariates in such small-sample association 
analysis to save degrees of freedom, as long as the inflation 
factor can be well controlled, and we found that the cur-
rent setting was sufficient (inflation factor � = 1.030 at the 
median and � = 1.018 at the 25% quantile, Supplementary 
Fig. 1); (2) although the RNA sequencing data here are from 
multiple tissues, they are all from the brain, and the technical 
and biological conditions are less heterogeneous comparing 
to experiments in other tissues used in GTEx. Considering 
these, we did not consider more PCs or other covariates. 
In general, in small-sample genetic association analysis, 
the trade-off between degrees of freedom and power is a 
concern.

It is essential to clarify the difference in mapping ordi-
nary sQTL and irQTL. First, sQTL mapping tools such as 
sQTLseekeR (Monlong et al. 2014) (used by the GTEx 
sQTL analysis), LeaftCutter (Li et al. 2018) (annotation-
free), and the recently developed THISTLE method (Qi 
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et al. 2022) (annotation-based isoform-level genetic effects 
heterogeneity test) aim to detect genetic regulation of 
“alternative splicing events”, namely, whether alternative 
splicing happens more for a certain genotype. Studying 
the isoform expressions as phenotypes themselves was not 
straightforward, and the main reason behind this is the 
great challenge in estimating isoform expressions using 
short-read RNA-sequencing data. Our initial idea of this 
work is to emphasize that isoform expression itself can be 
treated as an analyzable phenotype, as long as the estima-
tion accuracy is sufficient. XAEM is a tool that substan-
tially improves isoform expression estimation and thus fits 
the purpose. Although the estimation is not perfect, we 
showed that a number of novel isoform-level expression 
QTL could be mapped, which were missed in eQTL map-
ping (which neglects alternative splicing) and standard 
GTEx sQTL analysis (which does not have comparable 
isoform expression estimation). We would like to note that 
the comparison between irQTL and sQTL is subject to 
current statistical power. A slight difference in the genetic 
effects of irQTL for the isoforms of the same gene would 
be detected as sQTL when the power grows; nevertheless, 
as long as the isoform expressions can be well quanti-
fied (e.g., more commonly in the future with long-read 
sequencing techniques), studying isoform expressions 
as phenotypes would directly give us information about 
sQTL.

Different types of molecular QTL were studied in 
the human brain. Besides sQTL (Qi et al. 2022; Takata 
et al. 2017; Zhang et al. 2020) and eQTL (O’Brien et al. 
2018), methylation QTL (mQTL) (Gibbs et al. 2010; Ng 
et al. 2017) were also investigated to integrate epigenetic 
biology with gene expressions. Some of these molecular 
QTL were found to target biomarkers for neuropsychiatric 
disorders, and these efforts essentially have constructed 
a roadmap for genetically regulated molecular mecha-
nisms in the human brain. We also focused on the brain 
tissues as the brain has the richest alternative splicing 
events and particular functions, allowing us to subse-
quently link to particular phenotypes strongly related to 
the brain functions. More could be done by assessing all 
available tissue samples from GTEx Consortium; never-
theless, it would require substantially more computational 
resources. We also expect the heterogeneity test method 
THISTLE to gain further power when incorporating the 
XAEM algorithm in future studies. As the most collected 
tissue, whole-blood RNA sequencing data are available in 
multiple human cohorts. We foresee a consortium-based 
investigation of irQTL in larger consortia and potentially 
provide a comprehensive assessment of irQTL associated 
with various human complex traits and diseases.
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