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Abstract
Headache is one of the commonest complaints that doctors need to address in clinical settings. The genetic mechanisms of 
different types of headache are not well understood while it has been suggested that self-reported headache and self-reported 
migraine were genetically correlated. In this study, we performed a meta-analysis of genome-wide association studies 
(GWAS) on the self-reported headache phenotype from the UK Biobank and the self-reported migraine phenotype from 
the 23andMe using the Unified Score-based Association Test (metaUSAT) software for genetically correlated phenotypes 
(N = 397,385). We identified 38 loci for headaches, of which 34 loci have been reported before and four loci were newly 
suggested. The LDL receptor related protein 1 (LRP1)—Signal Transducer and Activator of Transcription 6 (STAT6)—
Short chain Dehydrogenase/Reductase family 9C member 7 (SDR9C7) region in chromosome 12 was the most significantly 
associated locus with a leading p value of 1.24 ×  10–62 of rs11172113. The One Cut homeobox 2 (ONECUT2) gene locus 
in chromosome 18 was the strongest signal among the four new loci with a p value of 1.29 ×  10–9 of rs673939. Our study 
demonstrated that the genetically correlated phenotypes of self-reported headache and self-reported migraine can be meta-
analysed together in theory and in practice to boost study power to identify more variants for headaches. This study has 
paved way for a large GWAS meta-analysis involving cohorts of different while genetically correlated headache phenotypes.

Keywords Headache · Migraine · Unified Score-based Association Test · Correlated phenotypes · Meta-analysis · Genome-
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Introduction

Headache is one of the commonest symptoms that present 
to clinicians in general practice or in specialist neurol-
ogy clinics (Fuller and Kaye 2007). Its lifetime prevalence 
in individuals is as high as 93% (Boardman et al. 2003). 
Globally, around 46% of the adult population suffers with 
an active headache disorder (Stovner et al. 2007). Accord-
ing to the current definitions of the International Headache 
Society, headaches can be classified into three categories: 
(1) primary headaches (including migraine, tension-type 
headache, and trigeminal autonomic cephalalgias); (2) 
secondary headaches (including headaches attributed to 
other disorders such as trauma, infection); (3) painful cra-
nial neuropathies, other facial pain and other headaches 
(Headache Classification Committee of the International 
Headache Society 2018).

Among all types of headache, tension-type headache is 
the commonest form, causing over 40% of all headaches 
in the general population, while migraine is the most disa-
bling type at population level, with a prevalence of around 
10% of all headaches (Riesco et al. 2017). It is important 
to note that an individual can experience more than one 
type of headache at the same time (Fuller and Kaye 2007).

According to the Global Burden of Diseases 2019 study, 
headache disorders represent the 14th leading cause of 
disability-adjusted life years (DALYs) when considering 
all ages and both genders in 174 causes (GBD 2019 Dis-
eases and Injuries Collaborators 2020). It was estimated 
in 2003 that migraine alone costs the UK over two billion 
pounds a year (Steiner et al. 2003). Migraine is still one of 
the leading causes of disability among over 300 diseases 
(Steiner et al. 2020).

It has been confirmed that headaches such as migraine 
are heritable. The single nucleotide polymorphism (SNP) 
based-heritabilities of migraine and self-reported head-
ache were 0.15 and 0.21 in Caucasians, respectively 
(Gormley et al. 2016; Meng et al. 2018). Genome-wide 
association studies (GWAS) have revealed that there are 
significant genetic components contributing to migraine 
(Anttila et al. 2010, 2013; Chasman et al. 2011; Freilinger 
et al. 2012; Ligthart et al. 2011). A GWAS meta-analysis 
paper consisting of 22 cohorts by Gormley et al. identified 
38 genetic loci for migraine (Gormley et al. 2016). Our 
study based on the UK Biobank resource also revealed 28 
risk loci for self-reported headache, of which 14 loci had 
been previously identified by Gormley et al. (2016) and 
14 loci were newly reported (Meng et al. 2018). A recent 
large GWAS meta-analysis on migraine has suggested 123 
migraine-related loci (Hautakangas et al. 2022).

Recently, researchers have been encouraged to per-
form GWAS meta-analysis on genetically correlated 

phenotypes, due to the increasing recognition of pleiotropy 
in GWAS, to boost study power to detect more genetic 
components (Masotti et al. 2019). Pleiotropy refers to the 
phenomenon where a genetic variant or a gene has non-
zero effect on multiple phenotypic traits and can contribute 
to genetic correlations among these traits (Stearns 2010). 
Successful examples of recent GWAS meta-analysis stud-
ies on genetically correlated phenotypes have included 
education and intelligence as well as different hyperten-
sion phenotypes (Hill et al. 2019; Zhu et al. 2015).

In a previous study, we reported that the self-reported 
headache phenotype from the UK Biobank and the self-
reported migraine phenotype from the 23andMe were 
genetically correlated, with a high correlation value of 0.72 
(p = 1.66 ×  10–68, standard error = 0.04) (Meng et al. 2020). 
Therefore, we aimed to perform a joint GWAS meta-analysis 
study of these two different but highly genetically correlated 
phenotypes with a view to replicating previously identified 
genetic associations and identifying new associations arising 
from the increased power of this approach.

Materials and Methods

Cohorts’ Information

The two sets of GWAS summary statistics used in this study 
were from the GWAS on self-reported headache based on 
the UK Biobank cohort and the GWAS on self-reported 
migraine provided by the 23andMe (Gormley et al. 2016; 
Meng et al. 2018).

The definitions of self-reported headache (UK Biobank) 
were as follows: cases (N = 74,461), defined as those who 
self-reported headache symptoms affecting daily lives within 
last month using the UK Biobank online questionnaire; con-
trols (N = 149,312), defined as those who did not have any 
pain affecting daily lives within last month (UK Biobank 
code 6159). The corresponding GWAS analysis was per-
formed using a linear mixed model adjusting for age, sex, 
nine population principal components, genotyping arrays, 
and assessment centers (Meng et al. 2018). The dataset 
contains 9,304,965 SNPs (minor allele frequency > 0.005, 
imputation score > 0.1).

The definitions of self-reported migraine (23andMe) 
were: cases (N = 30,465), defined as those who self-reported 
a migraine history (diagnosed by doctors or self-diagnos-
ing) using the 23andMe online questionnaire; controls 
(N = 143,147), those who self-reported having no migraine. 
The corresponding GWAS was performed using a linear 
mixed model adjusting for age, sex, and five population prin-
cipal components (Gormley et al. 2016). The dataset con-
tains 19,023,436 SNPs (containing minor allele frequency 
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and imputation score information for all SNPs). This dataset 
was also used by Gormley et al. (2016).

All of the participants in both GWAS were of Euro-
pean descent. In addition, as the UK Biobank cohort 
only recruited within the UK, while the 23andMe mainly 
recruited from the USA, there was little sample overlap 
between the two cohorts (linkage disequilibrium score 
regression intercept = 0.009) (Meng et  al. 2020). The 
detailed cohorts’ information and the statistical methods of 
the two GWAS can be found in the original papers (Gormley 
et al. 2016; Meng et al. 2018).

The Preprocessing of the GWAS Summary Statistics

SNPs in both datasets were coded in a forward direction and 
according to the GRCh37 genome build. In total, 8,500,802 
SNPs with minor allele frequency > 0.005 in both datasets 
were extracted. To ensure the datasets could be jointly meta-
analysed, these SNPs were checked for same effect alleles 
and flipped accordingly in R (https:// www.r- proje ct. org/).

The Meta‑Analysis Method

The Unified Score-based Association Test (metaUSAT) is a 
software package for performing GWAS meta-analysis stud-
ies on genetically correlated phenotypes (Ray and Boehnke 
2018) (https:// github. com/ RayDe bashr ee/ metaU SAT). The 
metaUSAT software applies a multivariate meta-analysis 
approach instead of a univariate approach of analysing each 
related trait separately. Unlike traditional GWAS meta-
analysis on a single trait, where several sets of summary 
statistics on a single trait are combined into a single sum-
mary measure for that trait, the multivariate meta-analysis 
implemented by metaUSAT does not combine the summary 
statistics; instead, a joint analysis is performed using sum-
mary statistics from related traits. It is a statistical inference 
approach that leverages related traits to provide a p value for 
the test of no association of any trait with a SNP against the 
alternative that at least one trait is associated with the SNP. 
Being a complex data-adaptive approach, the metaUSAT 
software does not output an overall effect size (Beta) and 
standard error (SE) values for each SNP. The metaUSAT 
software is robust to the association structure of correlated 
traits and potential sample overlap (Ray and Boehnke 2018).

The Annotation Method

The output generated from metaUSAT was uploaded to 
Functional Mapping and Annotation (FUMA v1.3.6b) 
for SNP annotation (Watanabe et al. 2017). We used the 
1000 Genome Phase 3 reference panel by default and other 
default values adapted by FUMA in terms of defining lead 
SNPs and risk loci. FUMA also generates a Manhattan plot 

and a corresponding Q-Q plot for the meta-analysis result 
(https:// fuma. ctglab. nl/). FUMA uses “maximum distance 
of linkage disequilibrium (LD) blocks to merge’’ (default 
value = 250 kb) to determine the number of associated loci 
and the r2 value (default value r2 ≥ 0.6 to be considered as 
non-independent) to determine the number of independ-
ent significant SNPs. In addition, the gene-based associa-
tion analysis and the gene-set analysis were performed with 
Multi-marker Analysis of Genomic Annotation (MAGMA 
v1.08), which was integrated in FUMA (de Leeuw et al. 
2015). In gene-based association analysis, summary statis-
tics of SNPs were aggregated to the level of whole genes, 
testing the joint association of all SNPs in the gene with 
the phenotype. In other words, all the SNPs were mapped 
to 19,436 protein coding genes if the SNPs are located 
within genes. In gene-set analysis, individual genes were 
aggregated to groups of genes sharing certain biological, 
functional or other characteristics. This was done to provide 
insight into the involvement of specific biological pathways 
or cellular functions in the genetic aetiology of a pheno-
type. A total of 10,894 gene sets were tested and a com-
petitive test model was applied. Tissue expression analysis 
was obtained from the Genotype-Tissue Expression (GTEx) 
project (https:// www. gtexp ortal. org/ home/) which was also 
integrated in FUMA. In the tissue expression analysis, aver-
age gene-expression per tissue type was used as gene covari-
ate to test positive relationships between gene expression in 
a specific tissue type and genetic associations. In addition, 
regional plots of the suggested new loci were generated by 
LozusZoom (http:// locus zoom. org/).

Results

There were 8,500,802 common SNPs from both cohorts 
analysed by the metaUSAT software. FUMA reported 38 
independent genetic loci across autosomal chromosomes 
with the LDL Receptor related Protein 1 (LRP1)—Signal 
Transducer and Activator of Transcription 6 (STAT6)—
Short chain Dehydrogenase/Reductase family 9C mem-
ber 7 (SDR9C7) region in chromosome 12q13.3 being the 
most significantly associated locus with a leading p value 
of 1.24 ×  10–62 for rs11172113. The Four And A Half LIM 
Domains 5 (FHL5)—UFM1 Specific Ligase 1 (UFL1) locus 
in chromosome 6q16.1 was the second most significantly 
associated, with a p value of 6.57 ×  10–39 for rs9486715. A 
Manhattan plot showing these loci is shown in Fig. 1. A 
corresponding Q-Q plot is included as shown in Supplemen-
tary Fig. 1. Among the 38 identified loci, there were 2228 
SNPs that demonstrated an association with genome-wide 
significance, with p value < 5 ×  10–8. Among these SNPs, 
113 SNPs were considered as independent associations 

https://www.r-project.org/
https://github.com/RayDebashree/metaUSAT
https://fuma.ctglab.nl/
https://www.gtexportal.org/home/
http://locuszoom.org/
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(r2 < 0.6 with any SNP within the 2228 SNPs) (Supplemen-
tary Tables 1 and 2).

Table 1 summarises the information relating to the 38 
associated loci. Among these loci, 25 loci had previously 
been reported by Gormley et al. (2016), and nine further loci 
had been separately identified by Meng et al. (2018). Four 
of the 38 loci were newly suggested. The One Cut home-
obox 2 (ONECUT2) gene locus (18q21.31) was the strongest 
signal among these four new loci, associated with a p value 
of 1.29 ×  10–9 for rs673939. Table 2 summarises the details 
of the four newly suggested loci. Regional plots of these four 
new loci are included in Fig. 2.  

The gene-based association study identified 51 genes 
(cut-off p value = 0.05/19,436 = 2.57 ×  10–6) that were 
associated with headaches, with the PR/SET domain 16 
(PRDM16) gene showing the strongest association (p value 
of 7.10 ×  10–15). All significantly associated genes are sum-
marised in Supplementary Table 3.

The gene-set analysis found that no specific pathway was 
significantly associated with headaches after Bonferroni cor-
rection (cut-off p value = 0.05/10,894 = 4.6 ×  10–6). The top 
10 pathways are included in the Supplementary Table 4.

Two types of tissue analysis were performed. The tissue 
expression analysis on 30 general tissues revealed that both 
brain tissues and vascular tissues are potentially involved in 
the disease mechanisms (Fig. 3). The tissue expression anal-
ysis on 54 specific tissues also found 11 brain tissues with 
significant association (p < 0.05/54 = 9.26 ×  10–4) (Fig. 4).

We also compared the 28 loci suggested by Meng et al. 
(2018) with the 38 loci suggested by this study. We noticed 
that 24 loci reported by Meng et al. (2018) still exist in the 
current study while four loci dropped out. Fourteen loci 
showed up in the current study which were not identified by 
Meng et al. (2018) (Table 3, Supplementary Tables 5 and 6).

With the specific permission obtained from the 23andMe, 
we have included the summary results of the GWAS on self-
reported migraine using the 23andMe data in a supplemen-
tary file. We also provided a loci comparison table among 

the four studies (the current study, Gormley et al. 2016; 
Meng et al. 2018 and 23andMe) (Supplementary Table 7).

Discussion

We performed a GWAS meta-analysis study on two highly 
genetically correlated phenotypes based on summary sta-
tistics from two large GWAS: self-reported headache and 
self-reported migraine (genetic correlation value = 0.72, 
p = 1.66 ×  10–68, standard error = 0.04). This analysis iden-
tified 38 loci associated with headaches, of which 34 had 
been previously identified (Gormley et al. 2016; Meng et al. 
2018) and four were newly suggested loci.

GWAS on complex traits have achieved great success 
in the past decade (Mills and Rahal 2019). Furthermore, 
GWAS meta-analysis on same phenotypes from multi-
centers and multi-cohorts also improve statistical power to 
identify genetic variants which otherwise cannot be detected 
by a single cohort study (Evangelou and Ioannidis 2013). 
However, the number of cohorts in a genetic consortium 
will reach a bottleneck when most of the existing cohorts 
are already included. It becomes more difficult to include 
extra cohorts into the consortium to achieve a higher study 
power. Meanwhile, it might also be challenging to fund and 
allocate resources to increase sample size of cohorts in a 
genetic consortium. This has led to the development and 
use of statistical methods that leverage other aspects of a 
study to increase detection power. Software developed for 
joint meta-analysis of GWAS on existing correlated pheno-
types can improve power with minimum additional resource 
requirement, particularly as it is now a routine requirement 
for GWAS summary statistics to be shared publicly after 
publication (Guo and Wu 2019). Specific software created 
for this purpose includes Software for Correlated Phenotype 
Analysis (META-SCOPA), Canonical Correlation Analysis 
(metaCCA), and Multi-Trait Analysis of GWAS (MTAG) 
(Cichonska et al. 2016; Mägi et al. 2017; Turley et al. 2018).

Fig. 1  The Manhattan plot of 
the GWAS meta-analysis on 
headaches (N = 397,385). The 
dashed red line indicates the 
cut-off p value of 5 ×  10−8
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In this study, we used a recently developed software called 
metaUSAT, whose properties have been illustrated using 
simulated data, and the Type 2 Diabetes Genetic Explora-
tion by Next-generation sequencing in multi-Ethnic Sam-
ples (T2D-GENES) and the METabolic Syndrome In Men 
(METSIM) datasets (Fuchsberger et al. 2016; Stancáková 
et al. 2009). The software does not generate an overall Beta 
or standard error for each SNP but it calculates a Z value 
representing the contribution of each SNP from each cohort 
or each phenotype. As with Beta values, if Z values are both 
positive or both negative, then the direction of the SNP effect 
on the traits is the same. In Table 2, we see that the most 
strongly associated SNPs in the top nine loci all have the 
same direction of effect. However, the lead SNP in the Long 
Intergenic Non-Protein Coding RNA 2210 (LINC02210)—
Corticotropin Releasing Hormone Receptor 1 (CRHR1)—
Microtubule Associated Protein Tau (MAPT) locus (ranked 
 10th), although significantly associated, showed a different 
direction of effect in the two datasets. This might indicate 
that the role of this locus might be different in these two 
phenotypes. It is possible that a locus could contribute to 
non-migraine type headaches while contributing minimally 
to migraine. However, this assumption definitely needs fur-
ther lab evidence. Comparing the Z-values could be a novel 
way to differentiate the genetic impact of certain SNPs in 
genetically correlated yet different phenotypes (Ray and 
Chatterjee 2020).

Consistent with previous studies, the most significantly 
associated locus in the LRP1-STAT6-SDR9C7 region 
was the strongest locus identified in the meta-analysis 
(p = 1.24 ×  10–62 for rs11172113) (Gormley et al. 2016; 
Meng et al. 2018). This locus, ranging from 57,244,168 to 
57,629,608 in chromosome 12, contained 122 SNPs associ-
ated with genome-wide significance, among the 166 SNPs 
in the output dataset. The LRP1 gene has been well estab-
lished as a migraine gene (Anttila et al. 2010, 2013). One 
theory about its possible link with migraine is that the LRP1 
protein interacts with the glutamate receptors on neurons 
while the pathophysiology of migraine has been suggested 
to be related with the glutamate homeostasis (Andreou and 
Goadsby 2009). The gene-based association study revealed 
that the PRDM16 gene was the most significantly associ-
ated gene, followed by CRHR1, MAPT, and KAT8 regula-
tory NSL complex subunit 1 (KANSL1) (Supplementary 
Table 3). Through the tissue expression analysis, both brain 
and vascular tissues were indicated as being involved in the 
mechanisms of headaches. Gormley et al. (2016) found that 
vascular factors played a main role in migraine, while in our 
UK Biobank study, we found that neural tissues were major 
factors in self-reported headache. We, therefore, deduce that 
for other types of headaches, such as tension-type headache 
which produces most headaches in the general population, 
the role of neural tissue is likely to be greater than that of R
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vascular factors. The cortex has demonstrated the strongest 
link with headache in the tissue expression analysis. It has 
been reported that migraine is associated with the changes 
in cortex functions (Barbanti et al. 2020; Charles and Bren-
nan 2010).

In this study, we suggested four new loci which have 
not previously been reported to be associated with head-
aches. The ONECUT2 gene region was the most strongly 

associated among these four loci. The Z values from 
the headache study (Z = –5.24) and the migraine study 
(Z = –4.05) were in the same direction. The original p val-
ues of the top SNP (rs673939) in this region were found 
to be 9.00 ×  10–8 by Meng et al. (2018) and 4.88 ×  10–5 in 
the 23andMe migraine dataset (Gormley et al. 2016). The 
ONECUT2 gene, also termed OC-2, is a newly discov-
ered member of the ONECUT transcription factor family 

Table 2  The summary statistics of the four newly suggested loci of headaches

New Locus (Chr) Lead SNP Effec-
tive 
allele

23andMe (migraine) UK Biobank (headache) Joint meta-analysis

Beta (SE) p value Beta (SE) p value p value

ONECUT2 (18q21.31) rs673939 C  − 0.04 (0.01) 4.88 ×  10−5  − 0.0078 (0.001) 1.63 ×  10–7 1.29 ×  10–9

MAU2 (19p13.11) rs34858588 G 0.067 (0.019) 3.53 ×  10−4 0.013 (0.003) 3.40 ×  10–7 1.33 ×  10–8

Intergenic (Near KCNK17,6p21.2) rs72854120 C  − 0.23 (0.08) 6.22 ×  10−3  − 0.047 (0.009) 3.99 ×  10–8 2.81 ×  10–8

ZNF462 (9q31.2) rs2134063 G 0.04 (0.01) 1.60 ×  10−3 0.0099 (0.002) 1.85 ×  10–7 2.98 ×  10–8

Fig. 2  The regional plots of the four new loci. Up left: the ONECUT2 region; Up right: the MAU2 region; Bottom left: the Intergenic region 
(Near KCNK17, 6p21.2); Bottom right: the ZNF462 region
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(Jacquemin et al. 1999). ONECUT2 can widely regulate the 
protein expression associated with cell proliferation, migra-
tion, adhesion, and differentiation, thus being involved in 
the regulation of the development of an organism (Yu et al. 
2020). It has been well reported for its associations with 
multiple cancers. Although we do not know why it is sta-
tistically associated with headaches, the gene is expressed 
in the brain (https:// www. ncbi. nlm. nih. gov/ gene/ 9480). It is 
not uncommon that SNPs can be associated with multiple 
phenotypes which seem completely unrelated (Solovieff 
et al. 2013). The MAU2 sister chromatid cohesion factor 
(MAU2) is a protein-coding gene, which plays an important 
role when cohesions (chromosome-associated multi-subunit 
protein complex) try to bind to DNA to carry out a large 

spectrum of chromatin-related functions, including sister 
chromatid cohesion, DNA repair, transcriptional regulation, 
and three-dimensional organization of chromatin (Zhu and 
Wang 2019). Mutations of MAU2 have been linked with a 
rare disorder of Cornelia de Lange Syndrome (Parenti et al. 
2020). The Potassium two pore domain channel subfamily K 
member 17 (KCNK17) is the nearest gene to the leading 
SNP of rs72854120 in the third new locus. Variants of this 
gene have been reported to be associated with ischaemic 
stroke, cerebral hemorrhage, and arrhythmia (Friedrich et al. 
2014; He et al. 2014). The protein products of Zinc Finger 
protein 462 (ZNF462) have shown important roles in embry-
onic development in animal models (Cosemans et al. 2018). 
Variants of this gene have been reported to contribute to 

Fig. 3  Tissue expression results 
on 30 specific tissue types 
by GTEx in the FUMA. The 
dashed line shows the cut-off p 
value for significance with Bon-
ferroni adjustment for multiple 
hypothesis testing

Fig. 4  Tissue expression results 
on 53 specific tissue types 
by GTEx in the FUMA. The 
dashed line shows the cut-off p 
value for significance with Bon-
ferroni adjustment for multiple 
hypothesis testing

https://www.ncbi.nlm.nih.gov/gene/9480
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craniofacial and neurodevelopmental abnormalities (Weiss 
et al. 2017). It is worth noting that the Z values of each lead-
ing SNP in the four new loci were all in the same direction 
in each of the two cohorts. We also noted that Meng et al. 
(2018) suggested 28 loci associated with self-reported head-
ache; with 24 of these loci still found in the current study 
while four dropped out (Table 3), which means we found 
14 newly suggested loci when performing the meta-analysis 
with the 23andMe data in the current study. One reason for 
dropping the four previously suggested loci might be that 
the studies are based on the genetically correlated samples 
but are examining different phenotypes. Of note is that the 
p values of the dropped loci in Meng et al. (2018) could be 
considered as of marginal GWAS significance, and further 
work needs to be done to explore their relevance.

Notably, we had particular advantages in this study that 
would be important to consider if applying these methods to 
other phenotypes and or samples. One was that the two phe-
notypes we chose (self-reported headache and migraine) are 

highly genetically correlated. However, the ability of a study 
to detect more new variants would be reduced if the two 
phenotypes are not so highly correlated. Second, our two 
cohorts were both of mainly European descent and with 
minimum sample overlap; therefore, we avoided some nega-
tive impact (such as increasing type I and type II errors) 
which could be caused by these factors in the study. There 
are limitations associated with this approach, being novel 
in its application. For example, although we successfully 
addressed phenotypes and datasets which are highly geneti-
cally correlated, there are insufficient published studies to 
allow us to determine the strength of correlation which is 
required to allow this approach for future studies. This will 
require our approach to be replicated with other phenotypes 
and datasets, followed by formal statistical appraisal of the 
results. Similarly, although it was not directly relevant in 
our study, consideration will need to be given to applying 
this approach when there is sample overlapping. It is worth 
mentioning that the genetic correlation between diagnosed 

Table 3  Four loci reported 
by Meng et al. (2018) while 
dropped out in the current study

Loci reported 
by Meng et al

Gene Chromosome Lead SNP 
In Meng 
et al

SNP position Still a locus 
in the current 
study?

1 LRP1-STAT6-SDR9C7 12 rs11172113 57,527,283 Yes
2 FHL5-UFL1 6 rs9486715 97,059,769 Yes
3 TRPM8-HJURP 2 rs2362290 234,825,369 Yes
4 PHACTR1 6 rs9349379 12,903,957 Yes
5 LINC02210-CRHR1-MAPT 17 rs77804065 43,810,896 Yes
6 Intergenic 1 rs12740679 150,262,270 Yes
7 Intergenic 10 rs78438709 124,201,071 Yes
8 MEF2D 1 rs1050316 156,434,703 Yes
9 ASTN2 9 rs17220352 119,248,059 Yes
10 Intergenic 3 rs34097149 154,263,175 Yes
11 Intergenic 6 rs9490318 121,860,207 Yes
12 Intergenic 1 rs12134493 115,677,946 Yes
13 Intergenic 18 rs4941139 60,162,791 Yes
14 CAMK1D 10 rs2895526 12,726,061 Yes
15 PRDM16 1 rs56304645 3,085,186 Yes
16 NUFIP2 17 rs8614 27,588,806 Yes
17 Intergenic 12 rs10774231 4,515,374 Yes
18 MRVI1 11 rs4909945 10,673,739 Yes
19 BTN2A2 6 rs2072806 26,385,093 No
20 Intergenic 1 rs7555006 51,480,258 Yes
21 MYO1H 12 rs6606710 109,848,903 Yes
22 IFT81 12 rs7300001 110,581,731 No
23 NOL4L 20 rs1555132 31,046,567 Yes
24 CFDP1 16 rs1011121 75,325,933 Yes
25 PTBP2 1 rs3748784 97,187,174 No
26 FXN 9 rs4596713 71,699,216 Yes
27 ATG13 11 rs56349329 46,695,483 Yes
28 MACF1 1 rs2036465 39,575,982 No
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cluster headache phenotype from a mixed UK and Swedish 
cohort and self-reported headache from the UK Biobank was 
0.50 (O’Connor et al. 2021). At the time we conducted this 
analysis, the four novel loci we suggested were previously 
unknown. During the preparation stage of this paper, a large 
GWAS meta-analysis on migraine has been published sug-
gesting 123 migraine-related loci (Hautakangas et al. 2022). 
Among our four newly suggested loci, three loci have been 
reported (ONECUT2, MAU2 and ZNF462). Although that 
study was specifically addressing migraine, rather than the 
more general headache phenotype that we addressed, this 
overlap between the new loci suggested in the two studies 
both helps to confirm the findings of Hautakangas et al. 
(2022), and the success of our methodological approach. The 
loci near KCNK17 on chromosome 6p21.2 was not clearly 
reported and its nearest loci in the paper was potassium two 
pore domain channel subfamily K member 5 (KCNK5) which 
is 60 kb away from KCNK17. A recent study on rare variants 
of migraine showed that significant cis-expression quantita-
tive trait loci (eQTL) in the polycomb response elements 
(regulatory sites that mediate the silencing of homeotic and 
other genes) mapped to the KCNK17 (Techlo et al. 2020).

It is also important to note that the control definitions in 
the two GWAS datasets were different. The controls used in 
the UK Biobank self-reported headache phenotype reported 
no pain within previous month, while the controls used in 
the 23andMe self-reported migraine phenotype could have 
had pain in body sites other than the head. This mean that 
genes identified in the UK Biobank cohort may not be spe-
cific to headache, but could be more generally associated 
with pain. Please also note that self-reported headache or 
migraine phenotypes are different from clinical ascertained 
phenotypes. Although our results on self-reported pheno-
types will provide reference values to other researchers, 
there could be potential biases because of this and the results 
should be interpreted with caution in a clinical setting.

Conclusion

In summary, our study suggested four new genetic loci 
which are associated with self-reported headaches and/or 
migraine, and shed further light on their potential mecha-
nisms. Further research could attempt a meta-analysis study 
on GWAS of different types of primary headaches (on the 
condition that they are reasonably genetically correlated) to 
identify further genetic components.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s43657- 022- 00078-7.
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