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Abstract
Alzheimer’s disease (AD) is the main cause of dementia, with its diagnosis and management remaining challenging. Amy‑
loid positron emission tomography (PET) has become increasingly important in medical practice for patients with AD. To 
integrate and update previous guidelines in the field, a task group of experts of several disciplines from multiple countries 
was assembled, and they revised and approved the content related to the application of amyloid PET in the medical settings 
of cognitively impaired individuals, focusing on clinical scenarios, patient preparation, administered activities, as well as 
image acquisition, processing, interpretation and reporting. In addition, expert opinions, practices, and protocols of prominent 
research institutions performing research on amyloid PET of dementia are integrated. With the increasing availability of 
amyloid PET imaging, a complete and standard pipeline for the entire examination process is essential for clinical practice. 
This international consensus and practice guideline will help to promote proper clinical use of amyloid PET imaging in 
patients with AD.
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Introduction

As the leading cause of dementia in people older than 
65, diagnosing and managing Alzheimer’s disease (AD) 
is tricky (Scheltens et al. 2021). However, according to the 
classic amyloid (Aβ) cascade hypothesis, Aβ‑related toxic‑
ity is the primary cause of synaptic dysfunction and sub‑
sequent neurodegeneration that underlies the progression 
characteristic of AD (Hardy and Selkoe 2002; Hardy and 
Higgins 1992). In 2018, the National Institute on Aging 
and Alzheimer’s Association (NIA‑AA) summarized the 
three significant dimensions of pathologic mechanisms as 
A (amyloid) / T (phosphorylated tau) / N (neurodegen‑
eration). Furthermore, they ruled out those with negative 
amyloid from the Alzheimer’s continuum, highlighting 
various pathological biomarkers’ roles for accurate dis‑
ease characterization and understanding (Jack et al. 2018).

Molecular imaging is a field of medical imaging which 
enables visualization, characterization, and measure‑
ment of biological processes at the molecular and cellu‑
lar level in vivo (Weissleder. 1999). The development of 
molecular imaging has shown great potential to reform 
traditional pathology, and may lead to a new pattern of 
pathological practice termed transpathology (Tian et al. 
2022, 2021). Positron emission tomography (PET), the 
most frequently used molecular imaging tool, has brought 
a new era in AD management. With the development of 
ligands which could harbor high affinity to Aβ in vivo and 
capture insoluble Aβ fibrils in plaques accurately, amyloid 
status could be visualized. In AD patients, the accumula‑
tion of Aβ might start about 20 years before the onset of 
dementia (Gordon et al. 2018; Villemagne et al. 2013). 
A negative amyloid PET diminishes the likelihood that a 
patient’s cognitive impairment is due to AD. However, in 
patients with cognitive impairment and positive amyloid 
PET findings, in addition to AD, the differential diagnosis 
includes dementia with Lewy bodies (Arnaoutoglou et al. 
2019; Ferreira et al. 2020), cerebral amyloid angiopathy 
(Brenowitz et al. 2015; Greenberg et al. 2020) and amy‑
loid positivity concomitant to any other brain disorders. 
Besides, an association was reported between elevated 
brain amyloid and subsequent cognitive decline (SCD) 
among cognitively ‘normal’ persons (Donohue et  al. 
2017). Therefore, the findings of amyloid PET are not suf‑
ficient for a definitive diagnosis of AD.

In 2013, the Alzheimer’s Association (AA) and the 
Society of Nuclear Medicine and Molecular Imaging 
(SNMMI) released the Appropriate Use Criteria (AUC) 
for amyloid PET imaging suggestions and recommenda‑
tions (Johnson et al. 2013a, b). This international consen‑
sus report aims to analyze and update the fundamental 
aspects of amyloid PET in a clinical setting, including the 

clinical indications and contraindications, radiosynthesis 
of the radiopharmaceuticals, patient preparation, acquisi‑
tion and interpretation of PET images.

In January 2021, The Molecular Imaging‑based Precision 
Medicine Task Group of A3 (China‑Japan‑Korea) Foresight 
Program convened an international panel of researchers and 
clinicians with expertise in amyloid PET molecular imaging 
and Alzheimer’s Disease, comprising members from across 
China, US, Spain, Japan, Korea, Switzerland, Germany, to 
discuss the issues relating to the application of amyloid PET 
in the medical settings of cognitively impaired individuals. 
The panel was then divided into subgroups to review litera‑
ture and generate content of various sections in the manu‑
script, focusing relevant published guidelines and clinical 
experience on amyloid PET from 1 January 2013 to 1 Febru‑
ary 2022. Articles not identified in screening but deemed rel‑
evant by authors were also included. A draft manuscript was 
written and circulated among authors to collect additional 
information, comments and recommendations, by which the 
manuscript was iteratively revised. The final manuscript rep‑
resents broad agreement on principles to which all authors 
could subscribe.

Clinical Indications

The 2013 AUC proposed three clinically appropriate indi‑
cations and seven inappropriate indications for the clinical 
application of amyloid PET (Johnson et al. 2013a) (Table 1). 
These criteria are justified by a large prospective multicenter 
trial (Imaging Dementia–Evidence for Amyloid Scanning, 
IDEAS) (Rabinovici et al. 2019). By selecting individuals 
based on the 2013 AUC, the amyloid PET findings brought 
a change in disease management in a majority of engaged 
individuals. In addition to the 2013 AUC, we suggested con‑
sidering the following clinical scenarios.

Patients with a Clinical Diagnosis of Probable AD

In two phase III trials of bapineuzumab, some patients who 
met the criteria (McKhann et al. 1984) of probable AD did 
not reach the positive threshold for amyloid‑positive cat‑
egory (6.5% of carriers of the apolipoprotein E (APOE) ε4 
allele, 36.1% of noncarriers) (Salloway et al. 2014), sug‑
gesting that the clinical diagnosis is unreliable to identify 
underlying pathology, especially when the care‑providing 
physicians are general practitioners rather than dementia 
specialists.

There are wide variations in the accuracy of the clinical 
diagnosis of AD, nationally and internationally (Johnson 
et al. 2013a), and the previous Candian Consenesus guide‑
lines suggest that the ordering of an amyloid PET should be 
limited to dementia specialists (Laforce et al. 2016). Given 
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the ongoing development of amyloid‑targeting therapy 
recently, it is necessary to identify the amyloid status in 
patients with clinical diagnosed probable AD before giv‑
ing such prescription if available. Therefore, we recommend 
modifying the original inappropriate indications # 4 of the 
2013 AUC: “Patients with core clinical criteria for probable 
AD with a typical age of onset” to be an additional appropri‑
ate indication (4) patients meeting clinical core criteria for a 
probable diagnosis of AD when the information on amyloid 
status is required for patient’s management.

Patients with a Diagnosis of Subjective Cognitive 
Decline (SCD) Meeting the Core Clinical Criteria 
for SCD‑Plus

SCD has been proposed to be the first possible symptomatic 
expression of preclinical AD (Jessen et al. 2014; Sperling 
et al. 2011). Although patients with SCD may experience a 
subjective cognitive decline, there is usually no documenta‑
ble objective cognitive impairment on clinical assessment. 
A community‑based and memory‑clinic settings multicenter 
study found that although most subjects with SCD did not 
develop any dementia and remained cognitively normal, 
some patients progressed to have dementia during the 
following‑up period. Among those with SCD who went to 
dementia, two‑thirds were attributable to AD dementia, and 
the remaining developed other subtypes of dementia (Slot 
et al. 2019). Consequently, an “SCD‑plus criteria” has been 
proposed as an improvement strategy for the likelihood of 
preclinical AD in individuals with SCD (Jessen et al. 2014).

According to the proposed framework by SCD‑I Work‑
ing Group (Jessen et al. 2014), the SCD‑plus criteria are (1) 

subjective decline in memory, rather than other domains of 
cognition; (2) onset of SCD within the last five years; (3) age 
at onset of SCD ≥ 60 years; (4) clinically suspected SCD; (5) 
feeling of worse performance than peers (here operational‑
ized with the specific questions in the Cognitive Change 
Index (CCI) questionnaire); (6) confirmation of perceived 
cognitive decline by a close relative or friend; and (7) APOE 
ε4 alleles carriership. In addition to these preliminarily 
defined features, these criteria also mention the importance 
of obtaining biomarker evidence for AD (defined as preclini‑
cal AD) if possible. Though still limited, a Subjective Cogni‑
tive Impairment Cohort (SCIENCe) study has found that the 
SCD‑plus criteria age ≥ 60 and APOE ε4 carriership were 
associated with an increased risk of preclinical AD, which is 
defined by amyloid positivity on either PET or cerebrospinal 
fluid (CSF) (Slot et al. 2018). Another study observed that 
the following SCD‑plus features were associated with lower 
Aß‑42 levels in CSF: Onset of subjective decline within five 
years; Confirmation of cognitive decline by a close relative 
or friend, and decline‑related worries (Miebach et al. 2019). 
These two independent studies validated the current SCD‑
plus features as predictors of AD pathology. Further, they 
laid the foundation for advancing the disease intervention 
of the preclinical AD stage to those who meet SCD‑plus 
criteria with the positive amyloid result. While the date for 
amyloid positivity percentage in individuals with SCD‑plus 
is unavailable, a recent study based on the data from the 
multicenter memory clinic‑based DZNE (German Center 
for Neurodegenerative Diseases) Longitudinal Cognitive 
Impairment and Dementia project reported a close to 40% 
amyloid positivity in general SCD persons from the clini‑
cal settings (Jessen et al. 2022). Another multicenter study 
of 1640 persons with SCD found that beyond the large 

Table 1  Recommend indications of amyloid PET

PET Positron emission tomography, AD Alzheimer’s disease, SCD Subjective cognitive decline, APOE Apolipoprotein E
a Updated indications on appropriate use criteria (AUC) for Amyloid PET imaging posited by the Alzheimer's Association and the Society of 
Nuclear Medicine and Molecular Imaging launched in 2013 (Donohue et al. 2017; Johnson et al. 2013a)

Amyloid PET imaging is appropriate for
 (1) Patients with mild cognitive impairment, in whom clinical uncertainty exists
 (2) Patients with a dementia syndrome suggestive of AD, but with an atypical presentation or suspected mixed cause
 (3) Patients with early‑onset progressive cognitive decline (usually defined as 65 years or less in age)
 (4) Patients meeting clinical core criteria for a probable diagnosis of AD when the information on amyloid status is required for  managementa

 (5) Patients with a diagnosis of SCD meeting the core clinical criteria for SCD‑plusa

Amyloid PET imaging is inappropriate for
 (6) Determining dementia severity
 (7) The study solely based on a positive family history of dementia or presence of APOE ε4
 (8) Patients with a cognitive complaint that is unconfirmed by clinical examination
 (9) Instead of genotyping for suspected autosomal mutation carriers
 (10) Asymptomatic individuals
 (11) Nonmedical usage (e.g., legal, insurance coverage, or employment screening)
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variability in the frequency of amyloid positivity between 
cohorts (10–76%), age, settings, APOE‑ε4 carriership and 
SCD‑specific characteristics may facilitate the identification 
of amyloid‑positive individuals, which is consistent with the 
definition of SCD‑plus (Janssen et al. 2021). Therefore, it’s 
reasonable to suspect the number in individuals with SCD‑
plus would be higher than these reported ones. To this end, 
we recommend listing one more indication of amyloid PET: 
patients with core clinical measures for SCD‑plus. The sum‑
mary of updated clinical presentations is listed in Table 1.

Radiopharmaceuticals

Carbon 11 (11C)–labeled Pittsburgh compound B (PiB) is 
the initially developed PET radiotracer for amyloid imag‑
ing, which crosses the blood–brain barrier, binds to amyloid 
with high affinity, and rapidly clear from normal‑gray mat‑
ter (Klunk et al. 2004). However, the clinical and research 
utilization of 11C‑PiB PET is limited mainly by the 20 min 
short half‑life of 11C. Subsequently, several amyloid ligands, 
labeled by fluorine 18 (18F) with a longer half‑life (110 min), 
have been developed, allowing the more extensive practice. 
To date, three 18F‑labeled amyloid PET ligands are avail‑
able: florbetapir (18F‑AV‑45, Amyvid), flutemetamol (18F‑
GE067, Vizamyl), and florbetaben (18F‑BAY94‑9172, Neu‑
raCeq), and all of them are approved by the U.S. and the 
European authorities. Besides, another 18F‑labeled amyloid 
PET ligand—NAV4694 (18F‑AZD4694)—is also used in 
the clinical trial and research.

Although these amyloid radiotracers share a common 
imaging target with similar imaging characteristics, each 
has different tracer kinetics, specific binding ratios to amy‑
loid, with its unique ideal imaging parameters. Thus, the 
recommended standards for applying these amyloid com‑
pounds are different (Cselényi et al. 2012; Healthcare et al. 
2017; McNamee et al. 2009; Rowe et al. 2013; Rowe and 
Villemagne 2013; Vandenberghe et al. 2010; Villemagne 
et al. 2011; Wong et al. 2010). The detailed protocols are 
presented in the next section and Table 2.

Patient Preparation and Image Acquisition

SNMMI Procedure Standard and European Association of 
Nuclear Medicine (EANM) Practice Guideline for amyloid 
PET Imaging of the Brain 1.0 have offered the reference 
for amyloid PET scans (Minoshima et al. 2016). In the fol‑
lowing paragraphs, we summarized the guidelines for the 
three FDA approved radiotracers. The Workflow diagram 
is shown in Fig. 1.

Patient Preparation

The examination should only be conducted in those who 
meet one indication of amyloid PET and do not have any 
contraindications after obtaining the detailed medical his‑
tory, providing the detailed explanation of the procedure, 
and obtaining informed consent from the study subjects 
or their legal guardians. The study subject should empty 
their bladder for maximum comfort before scanning, though 
the water and food do not influence amyloid PET. The use 
of amyloid‑targeting drugs before the amyloid PET scan 
should, of course, be taken into account for the interpreta‑
tion of the results.

Tracer Administration

To ensure patient safety and image quality, a visual inspec‑
tion of the radiopharmaceutical dose is necessary before 
its administration. The recommended doses are listed 
in Table 2. The radiotracer should be injected as a single 
intravenous slow bolus, after which the catheter needs to 
be flushed.

Patient Positioning

A supine position with proper head support to reduce the 
potential head movement is preferred. The patient's extreme 
neck extension or flexion should be avoided. The entire 

Table 2  Recommendations for performing amyloid PET with available radiopharmaceuticals

N.A. no officially recommendation was available
a These three radiopharmaceuticals have been approved by U.S. and the European authorities

Compound Recommended 
dosage (MBq)

Waiting period 
(min)

Scan period (min) Recommended Display Color 
Scale

11C‑PIB 500 50 20 N.A
Florbetapir (18F‑AV‑45, Amyvid)a 370 30–50 10 Grayscale (or inverse grayscale)
Flutemetamol (18F‑GE067, Vizamyl)a 185 60–120 10–20 Rainbow color scale
Florbetaben (18F‑BAY94‑9172, NeuraCeq)a 300 45–130 20 Grayscale (or inverse grayscale)
NAV4694 (18F‑AZD‑4694) 200 40 30 N.A
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brain, including the cerebellum as a whole, should be in the 
field of view.

Image Acquisition

Following the required uptake phase, amyloid PET images 
were obtained in 3‑D mode, applying appropriate attenua‑
tion corrections. Recommended uptake times are presented 
in Table 2. Image reconstruction is necessary and ordered‑
subset expectation maximization is the most common recon‑
struction method in the literature.

The Safety of Subject

To minimize the risks and protect the human subjects, 
besides what have been described above, additional meas‑
ures should be done including: (i) While waiting for the 
examination after injection, the medical personnel should 
pay attention to observe whether the examinee is uncom‑
fortable and provide timely help if necessary. (ii) For those 

with mobility or cognitive impairment who are difficult to 
cooperate with the examination, dedicated medical person‑
nel should be arranged to provide assistance throughout the 
examination, and for those unable to cooperate, it should be 
suggested to suspend the examination. (iii) After the image 
acquisition, the examinee should be asked to rest quietly in 
the rest room for a period of time (such as half an hour) to 
ensure that there is no discomfort before leaving and should 
be asked to contact the hospital if any discomfort occurs 
after leaving.

Qualifications and Responsibilities 
of Personnel

Both involved physicians and technologists should receive 
basic training before participating in the amyloid PET imag‑
ing process. The SNMMI Procedure Standard & EANM 
Practice Guideline list the detailed requirements (Minoshima 
et al. 2016).

Fig. 1  The flowchart of the 
recommended examination pro‑
cedures in performing amyloid 
PET scanning and reporting
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Image Interpretation

The image quality should be assessed as early as possible. 
If it is significantly degraded by head motion, rescanning or 
rescheduling the patient should be considered. The image 
interpretation could be divided into visual assessment and 
quantitative analysis.

Visual Assessment of the Amyloid PET Images 
by Properly Trained Nuclear Physicians 
and Dementia Experts

General instructions for the image interpretation of the three 
approved amyloid PET compounds are proposed based on 
the basic guidelines outlined by SNMMI (Minoshima et al. 
2016).

Image Display

Typically, a grayscale or inverse grayscale display with 256 
or greater shades is preferred. However, for 18F‑flutemeta‑
mol, the manufacturer recommends using a specific color 
scale, ‘Rainbow color scale’. The transaxial plane is the 
recommended orientation to display the PET images. The 
coronal and sagittal planes may contribute to better define 
the uptake area and ensure the review of the entire brain. The 
optimum intensity to display images differs among the three 
compounds. The maximum intensity of the display scale of 
18F‑florbetapir PET images should be the brightest region 
of the entire brain. However, for 18F‑florbetaben, images 
should be adjusted to the white matter maximum, while for 
18F‑flutemetamol, the optimum display intensity should be 
set to 90% of the pons. The transaxial plane brain images 
should be displayed from caudal to cephalad, which would 
help the reviewer identify the normal cerebellar gray‑white 
matter (GM‑WM) differentiation; the cerebellum usually is 
free of amyloid deposits.

Although rare, cerebellar amyloid deposits in AD may 
occur as in autosomal dominant cases (Cole et al. 1993; Giau 
et al. 2018; Lu et al. 2021; Shimada et al. 2020) or advanced 
stage AD (Thal et al. 2002), a careful assessment of the 
entire cerebral cortex GM for the presence of radiotracer 
uptake is performed. The reviewer should also evaluate the 
striatum activity since increased binding is frequently seen 
on positive 18F‑flutemetamol scans (Beach et al. 2016), as 
well as 18F‑florbetapir and 11C‑PiB scans in advanced AD 
patients (Hanseeuw et al. 2018). The interpreting physician 
should also be aware that owing to its anatomy, cerebellar 
GM radiotracer intensity is lower than that in the cerebral 
cortex.

Definition of a Negative and Positive Amyloid PET Scan

A study with minimal or no radiotracer binding of the GM 
and only with nonspecific WM tracer uptake constitutes a 
negative amyloid PET study. On the other hand, a positive 
amyloid PET scan shows the loss of clear cerebral GM‑WM 
contrast due to increased tracer uptake in the cerebral GM. 
The edges of cerebral GM are smooth and regular. Of the 
three amyloid radiotracers, for 18F‑florbetapir, a positive 
scan requires the presence of at least two abnormal (posi‑
tive) cerebral regions with increased GM uptake blending 
into WM. For the other two radiotracers, only one positive 
cerebral cortical region would be sufficient.

The most common disease‑involved regions are (i) the 
lateral temporal and frontal lobes, (ii) the posterior cingulate 
cortex/precuneus, and (iii) the parietal lobes. In the mean‑
time, the sensorimotor and visual cortex are usually spared 
from the disease. In subcortical structures, increased tracer 
uptake is often found in the striatum.

Signs of Specific Regions

According to the description of Lundeen et al. (2018), sev‑
eral signs in specific regions can help to distinguish the 
negativity and positivity of amyloid PET.

 (i) Temporal‑occipital “ridge” and “plain” signs: The 
negative study presents a “ridge” in the temporal‑
occipital region, and the positive one creates a 
smooth “plain” on the axial images.

 (ii) Occipital “kissing hemispheres” sign: Since the 
medial aspects of the occipital GM harbor no radi‑
otracer binding in the negative study, while such 
binding exists in the positive ones, a “kissing hemi‑
spheres” sign is taken shape on the axial images.

 (iii) Frontal “diamond” and “kissing hemispheres” signs: 
similar to occipital “kissing hemispheres” sign, lack‑
ing radiotracer binding to the GM lining the inter‑
hemispheric fissure in the negative examination 
creates a “diamond” sign on the axial images, and 
the filling of binding in this region creates a “kiss‑
ing hemispheres” sign in the positive examination. 
Besides, a “cartoon hand” sign on the axial images is 
also observed in the negative images formed by white 
matter tracts. In contrast, such ‘sign’ disappears due 
to the binding to the GM in the positive images.

 (iv) Frontal “tree” sign: When viewing coronally, the fill‑
ing signals between WM creates a “summer branches 
of tree sign” in the positive study, while the negative 
one appears like a “tree in the winter”.

 (v) Parietal “double convex lens” and “kissing hemi‑
spheres” signs: The negative examination shows a 
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“double convex lens” sign on the axial projection. In 
contrast, such a ‘sign’ disappeared and was replaced 
by a “kissing hemispheres” sign, similar to the pre‑
viously described “kissing hemispheres” sign in 
occipital and frontal lobes. Such a sign also exists in 
the precuneus, which involves and continually accu‑
mulates amyloid regions in AD. It is vital to observe 
the precuneus in all three planes due to its thin height 
and not easily observed location.

 (vi) “Striatal gap” and “striatal bridge” signs: As previ‑
ously mentioned, striatal binding is frequently seen 
in 18F‑flutemetamol positive scans, which build a 
“striatal bridge” in all three planes. On the contrary, 
the lack of signal in the negative study presents a 
“striatal gap” sign.

 (vii) “Asymmetric pattern”: While traditional theory 
believes the amyloid deposition usually distributes 
symmetrically, recently finding posits the asymmet‑
ric amyloid pattern is not uncommon in AD spec‑
trum, especially in mild cognitive impairment (MCI) 
subjects. Furthermore, though the evidence is limited 
at present, the disappearance of such an asymmet‑
ric pattern suggests disease progression (Yoon et al. 
2021). Conversely, the negative image should be 
almost symmetrical, indicating the occurrence of an 
asymmetric pattern is a vital clue for amyloid positiv‑
ity.

Quality Control

The patient’s unexpected head motion during image acqui‑
sition will cause image artifacts. Therefore, if the attempt 
to reorient into standard alignment using postprocessing 
software does not work, one would consider rescanning the 
patient or rescheduling.

Atrophy is another factor that influences the visual assess‑
ment of amyloid PET. As an inevitable change during aging, 
atrophy might generate false‑positive and false‑negative 
reports. The former is because of the over‑estimation of 
binding signals in the surviving cortex caused by the spillo‑
ver effect of neighboring WM, and the latter often happens 
in those with severe atrophy, where the positive signal in 
GM is unable to be distinguished from the signal in the 
adjoining WM due to the smaller volume. In such uncertain 
cases, coregistered anatomical images (such as computed 
tomography (CT) and magnetic resonance imaging (MRI)) 
might assist in the definition of the relative accurate locali‑
zation of GM‑WM uptake. Besides, when an 18F‑FDG PET 
or perfusion single photon emission computed tomography 
(SPECT) scan is available, observed decreased functional 
regions may help.

Data Integration

The final report should integrate all the detected information 
of the patient, not only by the amyloid PET but also by the 
other imaging modalities and clinical data. In addition, the 
interpreting physician should keep the other possible amy‑
loid‑positive diseases and typical aging‑related positivity in 
the differential diagnosis. The visual assessment algorithm 
is summarized in Fig. 2.

Quantification of the Amyloid PET Images

While visual assessment represents the primary method 
for image interpretation in clinical setting, various quan‑
tification methods have increasingly been used as impor‑
tant adjuncts to visual reading, especially when the degree 
of amyloid deposition is close to the positive threshold, or 
images are interpreted by readers lack experience (Bucci 
et al. 2021). Quantification methods also provide important 
information to support decision making when the amyloid 
burden become clinically relavent for disease management. 
To date, several types of analysis have been used in quantify‑
ing amyloid PET, including volume of interest (VOI)‑based, 
voxel‑based, and artificial intelligence (AI)‑based methods. 
Among them, the VOI‑based quantification, which calcu‑
lates the mean amyloid retention values in the target VOIs 
and normalizes the values to a reference region free of amy‑
loid, is the most widely used approach, yielding a variety of 
semiquantative measures, such as standardized uptake value 
ratio (SUVR), non‑displaceable binding potential (BPND), 
and distribution volume ratio (DVR). While the calculations 
of BPND and DVR require dynamic PET scans, SUVR is 
suitable for static images, making the use of SUVR more 
prevalent in practice, especially in clinical settings. The 
voxel‑based analysis is similar to the VOI‑based method, 
though the quantification is performed on voxel‑wise level 
instead of VOI level. The AI‑based method is applied for 
the definition of VOIs, cut‑off value of positivity and clas‑
sification, etc.

Before any semi‑quantification, it is strongly recom‑
mended to spatially normalize the raw brain PET images 
into the standardized anatomic space like Montreal Neu‑
rological Institute (MNI) standard space. And the spatial 
normalization is recommended to perform based on indi‑
vidual T1‑weighted MRI which is acquired during the same 
period. Take the Statistical Parametric Mapping (SPM, ver‑
sion12, http:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/) 
for example, the individual MRI scan should be reoriented 
to anterior commissure and coregistered to the MNI‑152 
template. The individual PET scan should be reoriented to 
anterior commissure and then coregistered to its MRI (and, 
thus, coregistered to MNI‑152) also. Notably, only reorienta‑
tion requires manual manipulation. Then, the coregistered 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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individual MRI was warped into MNI space using unified 
segmentation in SPM12. The transformation matrix in this 
warping were applied to the coregistered individual PET 
for anatomical standardization into MNI space (Klunk et al. 
2015; Matsuda et al. 2021). Other software like FreeSurfer 
(https:// surfer. nmr. mgh. harva rd. edu/) and PMOD PNEURO 
(https:// www. pmod. com/) are also practicable for the above 
spatial normalization. Meanwhile, individual MRI images 
are sometimes difficult to obtain due to contraindications, 

therefore, software like CapAIBL (https:// milxc loud. csiro. 
au/) is invented for PET quantitation without MRI.

A number of factors would influence the measured 
SUVR, including but not limited to the used radiopharma‑
ceuticals, acquisition time, target and reference regions, 
partial‑volume correction, and reconstruction algorithms 
(Klunk et al. 2015). These factors impede the pooling of data 
across sites and comparison of studies. To address this issue, 
an international party has proposed the “Centiloid” scal‑
ing method to generate a standardized quantitative amyloid 

Fig. 2  The visual assessment algorithm of amyloid PET images includes color scale of displayed images (a), observation sequence (b), assess‑
ment of image quality (c), negative‑image signs (d) and positive‑image signs (e)

https://surfer.nmr.mgh.harvard.edu/
https://www.pmod.com/
https://milxcloud.csiro.au/
https://milxcloud.csiro.au/
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imaging measurement value (see later). It is worth noting 
that although there are many methods available, not all of 
them can be easily implemented in practice in most clinical 
settings due to limited technical resources, inability to obtain 
normal controls, etc. It is necessary to develop user‑friendly 
automatic semi‑quantitative tools with normal references to 
be applicable to more clinical scenarios.

In this section, we summarize important factors and 
directions in the quantification of amyloid PET imaging.

Reference Regions

In addition to the cerebellar GM, the classic reference region 
selected for amyloid PET semi‑quantification include whole 
cerebellum, pons, subcortical white matter (SWM). Besides, 
a ‘composite reference region’ of the cerebellum with WM 

has also been prescribed in longitudinal analysis of flore‑
betapir PET, which allows for more accurate detection of 
changes over time (Landau et al. 2015). Instead of the tra‑
ditional fixed atlas‑based reference regions as above, other 
methods based on data‑driven approaches were also tested 
(Chen et al. 2015; Wang et al. 2021). The advantages and 
disadvantages of each reference are summarized in Table 3 
(Bullich et al. 2017; Chen et al. 2015; Cho et al. 2020; 
Devous et al. 2018; Klunk et al. 2015; Wang et al. 2021). 
It is noted that amyloid PET images should be interpreted 
with care when the reference regions have the potential to be 
affected by specific factors. For example, cerebellum is usu‑
ally involved in amyloid deposition in late‑stage AD patients 
as well as those with specific genetic mutations (e.g., pre‑
senilin‑1), in which cases it is recommended to confirm the 
presence of amyloid accumulation in cerebellum by visual 
inspection, or evaluate the Centiloid scale using different 
reference regions (see later).

Table 3  Characteristics of different reference regions in amyloid PET quantification

CGM cerebellar gray matter, WC whole cerebellum, WC + B whole cerebellum plus brainstem, SWM subcortical white matter, PERSI-WM para‑
metric estimation of reference signal intensity‑white matter

Optional 
reference 
region

Advantages Disadvantages

CGM Free of Aβ
Same non‑displaceable activity as the target area

The susceptibility to noise such as the nonspecific signal from 
the cerebellar peduncles and specific binding from adjacent 
cortical tissues

Low sensitivity for signal due to its location at the edge of the 
scanner’s field of view

 Artifacts via truncation or attenuation correction of images due 
to the low position

 Amyloid deposition in cerebellum in patients with gene muta‑
tions and at advance stages

WC  Same as CGM
 Higher signal intensity and less susceptibility to noise com‑

pared to CGM
 Include tissue less vulnerable to edge and truncation effects 

compared to CGM

 Almost the same as CGM

Pons  Same as CGM  Small size
 Sensitivity to head motion
 The poor performance of many normalization routines
 The susceptibility to scatter and truncation effects due to its 

location at the outer extremes of the field of view of an axial 
PET scanner

WC + B  Same as WC  Same as WC and Pons
SWM  Large region

 Locate approximately the same as target VOI in the axial field 
of view to reduce variability

 Represent the average uptake value of signal intensity, poten‑
tially leading to less noise

 More resistant to small degrees of misregistration during 
image quantification

 Atrophy and vascular lesions
 White matter could play a specific role in amyloid compound 

uptake
 Affect by the combined effects of fibrillar Aβ and partial‑

volume averaging

PERSI‑WM  The same as SWM
 PVE correction
 Individual based non‑specific binding voxels with a lower 

intensity than other contaminated voxels

 Same as SWM
 Individual MRI is required
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Target VOI

While amyloid deposition usually spreads all over the brain, 
lateral temporal and frontal lobes, the posterior cingulate 
cortex/precuneus, and the parietal lobes form the vulnerable 
regions of amyloid deposition in typical AD. Therefore, a 
‘composite‑VOI’ including all vulnerable and particularly 
vulnerable areas is usually suggested as the target VOI. In 
addition, for 18F‑flutemetamol PET scans, the VOI should 
also include the striatum. Templates of VOIs in standard 
space like Automated anatomical labeling atlas 3 (Rolls et al. 
2020) and Maximum probability atlas (Hammers N30R83) 
(Hammers et al. 2003) could be used for VOI definition.

The Cut‑off Value for Positivity

A cut‑off value to determine amyloid positivity or negativ‑
ity in clinical settings is desired to evaluate amyloid status 
more objectively. Though some studies reported the optimal 
cut‑off values (Bullich et al. 2017; Landau et al. 2014; Lan‑
dau and Jagust, 2015), applying such a threshold should be 
careful since the differences among compounds used and 
the calculation methods of SUVR invariably complicate the 
situation. Therefore, if one wants to refer to such a cut‑off 
value, one should adhere strictly to the quantification method 
used to obtain the cut‑off value. For instance, Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) recommends the 
florbetapir cut‑off as 1.11 when the SUVR is normalized by 
the whole cerebellum reference region, and the summary 
SUVR is a conventional (nonweighted) average across the 
four main cortical regions (frontal, anterior/posterior cingu‑
late, lateral parietal, lateral temporal defined by Freesurfer) 
(Landau and Jagust 2015). For flutemetamol, when using 
the whole cerebellum as the reference region and using the 
global cortical target (CTX)‑VOI consisting of frontal, tem‑
poral, parietal cortices, precuneus, anterior striatum and 
insular cortex for SUVR quantification, the recommended 
positive cut‑off value is 1.13 (Matsuda et al. 2021). The cut‑
off for the florbetaben scan is 1.43 when the reference region 
is cerebellar GM and the SUVR is the mean of the six corti‑
cal regions (frontal, occipital, parietal, lateral temporal, ante‑
rior and posterior cingulate cortex regions) (Bullich et al. 
2017). And the NAV4694 cut‑off of amyloid positivity is 
1.55 SUVR when the PET image is intensity normalized 
by cerebellar GM and corrected for partial‑volume effect. 
The global NAV4694 SUVR is averaged with SUVRs in the 
precuneus, prefrontal, orbitofrontal, parietal, temporal, ante‑
rior, and posterior cingulate cortices (Therriault et al. 2021).

Centiloids Scale

Developed from SUVR, the “Centiloid” aims to offer 
comparable results across analysis techniques and tracers 

by linearly scaling the outcome data of any amyloid PET 
method to an average value of zero in “high‑certainty” 
amyloid‑negative subjects and to an average value of 100 
in “typical” AD patients (Klunk et al. 2015). Standard pro‑
cessing and quantification workflows reconcile amyloid 
deposition regardless of the amyloid PET tracer used and 
the reference region chosen, thus making it more practical 
in clinical routine and multicenter studies. The “standard” 
method is suitable for 11C‑PiB PET data acquired between 
50 and 70 min after injection, and the “nonstandard” method 
could be used for 11C‑PiB PET data with different scanning 
protocols as well as other amyloid tracers. A standard corti‑
cal VOI (CTX) that covers the areas of significant 11C‑PiB 
tracer binding in AD and a whole cerebellum VOI to use as 
the reference region is available from the Global Alzhei‑
mer’s Association Interactive Network (GAAIN) website 
(http:// www. gaain. org). So far, Centiloid scale is available 
for all amyloid tracers (11C‑PiB (Klunk et al. 2015), flor‑
betapir (Navitsky et al. 2018), flutemetamol (Battle et al. 
2018), florbetaben (Rowe et al. 2017), and NAV4694 (Rowe 
et al. 2016)).

Establishment of Databases

Although cut‑off SUVR value for amyloid positivity are 
available for different ligands from publications (as men‑
tioned above), the differences in imaging acquisitions and 
reconstructions among centers would to some extent make 
the common cut‑off value not exactly suitable for each 
center (Bourgeat et al. 2021), let alone the inconsistency of 
the SUVR analysis methods. Meanwhile, though without 
clear evidence, the racial differences should not be ignored. 
Therefore, for clinical rounite and multicenter study, Centi‑
loid scale is recommended for appropriate transformations 
(Klunk et al. 2015). At the same time, while Centiloid scale 
is based on fixed VOIs and reference region to offer a global 
assessment of amyloid deposition, the analyses with spe‑
cific VOIs and different reference regions are important, 
especially in longitudinal follow‑up. If feasible, it is recom‑
mended that each center, or each region/country to establish 
its own dataset for healthy control subjects and AD patients 
within different stages, which would help to validate of the 
Centiloid approach and other standard pipeline established 
in the literature. Moreover, if possible, it is recommended 
to make the final interpretation based on comparison with 
multiple preselected sets of healthy control subjects who 
are matched in genetic status with the patient and scanned 
exactly in the same way, since cerebellum is usually involved 
in amyloid deposition in autosomal dominant AD (i.e., pre‑
senilin‑1 mutations) (Giau et al. 2018; Lu et al. 2021).

http://www.gaain.org
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Voxel‑Wise Analysis

Besides the VOI‑based method, voxel‑wise analysis is also 
widely used in PET brain images. It could compare the dif‑
ference between two groups, or one subject and one control 
group directly in the whole brain after normalization. As 
voxel‑based, it could detect the slight abnormality without 
the restriction of pre‑defined VOI (Akamatsu et al. 2019; 
Planton et al. 2020).

Partial Volume Effect (PVE) Correction

PVE is one of the biological factors may contribute to 
within‑subject amyloid PET signal variability. This phenom‑
enon refers to that because of the unavoidable progressive 
cortical atrophy in AD, the loss of tissue volume can result 
in a drop in the amyloid signal in the absence of change in 
amyloid burden. Therefore, when quantifying, especially in 
longitudinal studies and clinical treatment trials with amy‑
loid PET changes as endpoints, partial‑volume correction 
methods which attempt to recover the true value of the PET 
signal by estimating and adjusting for spillover contributions 
from neighboring white, CSF, or other gray matter tissue 
needs to be considered (Quarantelli et al. 2004; Schmidt 
et al. 2015). Several studies have reported that applying PVE 
correction could improve the quantitative analysis of amy‑
loid PET (Brendel et al. 2015; Rullmann et al. 2016, 2020; 
Teipel et al. 2021). It is worth noting that the PVE correc‑
tion is highly method‑dependent, and its use must always be 
applied with caution, including recognizing that the thresh‑
old for positivity will vary with method to be applied, and 
that when using MRI‑based PVE correction, the reference 
MRI must be acquired on the same scanner to be reliable. 
So far, no consensus on when and which correction to use 
is available.

AI‑Based Analyses

Artificial intelligence (AI) has been a hot topic of the recent 
emerging trends in imaging research. Though far away from 
a routine clinical application, the preliminary findings show 
great potential for a better understanding PET images. For 
instance, with AI methods, the definition of amyloid posi‑
tivity established an excellent agreement with the visual 
assessment (Kim et al. 2021; Thurfjell et al. 2014; Vanden‑
berghe et al. 2013); the quantification of amyloid burden 
was improved by removing non‑specific bindings (Liu et al. 
2021); PET data could be harmonized by generating imputed 
amyloid PET images of one radiopharmaceutical from the 
images of another (Shah et al. 2022). AI also achieved the 
amyloid PET staging (Kim et al. 2020). The machine learn‑
ing methods are potentially helpful in developing algorithms 
to get sufficient information from those ultra‑low‑count (to 

reduce the scan time) and ultra‑low‑dose (to reduce the 
injected radiotracer dose) amyloid PET, which could help 
to decrease image quality degradation caused by patient’s 
head motion without sacrificing image quality and diag‑
nostic power, enhancing the patient‑throughput of imaging 
room (Chen et al. 2019, 2020, 2021).

Data Security

To guarantee the integrity and security of imaging/clini‑
cal databases and maintain the confidentiality of protected 
health information of subjects, all related material should 
be kept in a dedicated place by a dedicated group. All data 
used for teaching and research purposes must first obtain 
the informed consent of the examinee and anonymization 
is compulsive. Data transmission and sharing need to be 
subject to relevant regulations.

Conclusion

With the increasing availability of amyloid PET and the con‑
tinuous development of clinical trials for drug development 
targeting amyloid, together with the complexity of amyloid 
PET itself, detailed and standardized imaging procedures for 
the patient assessment process are critical in clinical prac‑
tice. Only qualified physicians and technologists should be 
allowed to carry out corresponding work. Clinical assess‑
ment for patient screening should adhere to the indications 
and non‑indications of amyloid PET. An establishment of 
a standardized radiopharmaceutical synthesis and quality 
control process and a standardized image acquisition and 
processing methods provide excellent quality amyloid PET 
study. The final report should integrate all the information 
of patient, not only by the amyloid PET but also by the 
other imaging modalities and clinical data. Besides, CSF 
and plasma biomarkers are available for amyloid detec‑
tion now (Janelidze et al. 2021; Nakamura et al. 2018); the 
former is invasive with low accessibility, and the latter is 
cheap and noninvasive. While plasma amyloid‑β biomark‑
ers could facilitate broader clinical access and efficient 
population screening, amyloid PET with detailed distribu‑
tion information showing the disease heterogeneity (Toledo 
et al. 2019; Wolk et al. 2012) could further aid in differen‑
tiation (i.e., amyloid‑positive subcortical vascular cognitive 
impairment) (Jang et al. 2018) and progression prediction 
(Yoon et al. 2021), as well as provide additional informa‑
tion such as estimation of the likelihood of tau positivity in 
amyloid‑positive individuals (Raman et al. 2022). Given the 
usefulness of high‑availability 18F‑FDG PET in differential 
diagnosis of dementia, we agree with the diagnostic algo‑
rithm by an interdisciplinary group of experts comprised 
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of nuclear medicine physicians, radiologists, neurologists, 
geriatricians, psychiatrists, clinical and basic neuroscien‑
tists, and patient advocates in 2020 (Chételat et al. 2020) 
that amyloid PET is recommended to be in the second place 
in the following clinical settings: (1) elderly patients (older 
than 80 years) due to the not low amyloid positivity rate 
in the elderly with normal cognition (Jansen et al. 2015); 
(2) patients for whom AD is not the single most probable 
suspected diagnosis because amyloid is less informative for 
differential diagnosis of dementia. Therefore, physicians 
should select the appropriate testing protocol according to 
the actual situation.
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