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Abstract
Understanding the way genes work amongst individuals and across generations to shape form and function is a common 
theme for many genetic studies. The recent advances in genetics, genome engineering and DNA sequencing reinforced the 
notion that genes are not the only players that determine a phenotype. Due to physiological or pathological fluctuations in 
gene expression, even genetically identical cells can behave and manifest different phenotypes under the same conditions. 
Here, we discuss mechanisms that can influence or even disrupt the axis between genotype and phenotype; the role of modifier 
genes, the general concept of genetic redundancy, genetic compensation, the recently described transcriptional adaptation, 
environmental stressors, and phenotypic plasticity. We furthermore highlight the usage of induced pluripotent stem cells 
(iPSCs), the generation of isogenic lines through genome engineering, and sequencing technologies can help extract new 
genetic and epigenetic mechanisms from what is hitherto considered ‘noise’.
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Introduction

The simplistic one-to-one relationship between genes and 
traits provides an excellent framework for understanding 
the core concepts of genetics, but it is not always a simple 
one-to-one relationship. For instance, even ‘identical twins’ 
who are raised together are never truly identical (Jonsson 
et al. 2021).

On one hand, the dominant or recessive genetic pattern of 
inheritance described by Mendel represents the extremes of 
a spectrum of states. On the other hand, this spectrum is (1) 
a function of allele strength, all mutant alleles are not equal; 

(2) genetic background, other genes influence sensitivity or 
resistance to a certain mutation; and (3) their interaction 
with the environment, a phenomenon known as phenotypic 
plasticity (West-Eberhard 1989).

Thus, the relationship between the genotypes of an 
organism and its phenotypes is complex. This complexity 
was illustrated by genetic studies of monogenic disorders 
in humans where the same mutation can produce different 
phenotypes (Quarton et al. 2020). Examples include cystic 
fibrosis (CF), Duchenne muscular dystrophy (DMD), Mar-
fan syndrome and beta thalassemia, which are all monogenic 
disorders, but display wide phenotypic variability (Amaral 
2015; Cao and Galanello 2010; Carter 1977; Lovering 
et al. 2005).

Nevertheless, a question that many scientists have been 
trying to answer is ‘What causes this phenotypic variability 
at the molecular level?’.

One part of the answer has started to unravel more than a 
century ago by the famous work of Calvin Bridges on modi-
fier genes in Drosophila melanogaster (Bridges 1919). Mod-
ifier genes have the ability to influence the penetrance, domi-
nance, expressivity, and pleiotropy of a phenotype (Nadeau 
2001). Nowadays, the evidence for the action of modifier 
genes is extensive, both in humans and model organisms, 
and corresponding studies have shown that their effects on 
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the phenotypic presentation of disease-causing variants can 
be subtle or profound (Cutting 2010; Nadeau 2001).

A typical example of a modifier gene is represented by 
the APC−/+ (adenomatous polyposis coli) mouse model, a 
murine counterpart of human FAP (familial adenomatous 
polyposis) (Moser et al. 1990). These mice display a wide 
phenotypic variation, for instance, the number of polyps, 
depending on the genetic background (Moser et al. 1990). 
By linkage analysis, a modifier gene, originally named 
Mom1 (Modifier of Min-1) in the APC−/+ mouse model was 
mapped to the distal part of chromosome 4 (Dietrich et al. 
1999). Mom1 was able to explain 50% of the genetic vari-
ance in polyp number (Nadeau 2001). As at to date, many 
modifier genes have been described for different diseases 
including retinitis pigmentosa, CF, DMD, Bardet-Biedl syn-
drome, Marfan syndrome, Rett syndrome, Neurofibroma-
tosis, Thalassemia, etc. (Collacoa and Cutting 2008; Dietz 
et al. 1994; Lobo 2008; Nadeau 2001).

Some modifier genes are inherited as genetic background, 
while others can be activated through different compensatory 
mechanisms (Hartman et al. 2001; Hilgert et al. 2009; Rossi 
et al. 2015; Rutherford 2000; Whitacre and Bender 2010).

Genetic buffering mechanisms such as genetic compensa-
tion and transcriptional adaptation can trigger the expression 
of modifier genes and have been proposed as mechanisms to 
explain apparent genotype to phenotype discrepancies (El-
Brolosy et al. 2019; Lewontin 1974; Rossi et al. 2015; Wag-
ner and Zhang 2011). By buffering the effects of deleterious 
genetic variations, cells can modify the outcome phenotype 
in different ways and at different levels (Rossi et al. 2015; 
El-Brolosy and Stainier 2017).

Genetic Redundancy and Genetic 
Compensation

Eukaryotic cells show surprising robustness against internal 
and external perturbations, which can be partially attributed 
to functional redundancy established after small-scale and 
whole genome duplication events throughout evolution 
(Kuzmin et al. 2021; Lynch and Conery 2000).

After their duplication, genes initially gain redundant 
copies that can further evolve via processes such as non-
functionalization, neofunctionalization or subfunction-
alization into pseudogenes, genes with new biochemical 
functions or genes retaining part of the ancestral functions, 
respectively (Lundin 1999; Kuzmin et al. 2021). The pres-
ence of gene copies that retain some of the ancestral activ-
ity can provide a certain level of genetic redundancy that 
support genetic robustness (Ihmels et al. 2007; Kafri et al. 
2006; Kuzmin et al. 2021; Li et al. 2010). The evolution of 
genetic robustness by duplication is followed by a neutral 
mode characterized by the loss of backup capacity, that is 

proportional to the divergence time. In the meantime, natural 
selection might act on a few pairs to maintain their long-term 
backup capacity, which are slowly evolving and now co-clus-
tered in the same protein complexes and tend to interact with 
similar partners (Kuzmin et al. 2021). This can be defined 
as cellular robustness or genetic compensation arising from 
genetic redundancy (Stelling et al. 2004; Wagner 2005). The 
budding yeast S. cerevisiae has been a prime example of 
studying duplicated genes and redundancy (Goffeau et al. 
1996). From a set of 201 duplicate gene pairs, 69 (34%) 
were found to be at least partially redundant (Dean et al. 
2008). Furthermore, 49 of those redundant genes (71%) were 
synthetically lethal, indicating that their duplication part-
ners could be compensating gene loss in the single mutants 
through functional redundancy (Dean et al. 2008).

In contrast to genetic redundancy, genetic compensation 
refers to an active mechanism where a deleterious muta-
tion triggers the expression of modifier genes and does not 
develop the expected harmful phenotypes (Hartman et al. 
2001; Rutherford 2000; Whitacre and Bender 2010). How 
genetic compensation be triggered is not fully understood, 
and different mechanisms seem to be involved. In general, 
genetic compensation seems to be achieved through pro-
tein feedback loops and to be independent of the types of 
mutation (Deconinck et al. 1997). A well-known example 
of genetic compensation is related to Dystrophin (DMD), a 
scaffold protein that links the actin cytoskeleton to the extra-
cellular matrix (Blake et al. 2002; Nowak and Davies 2004). 
The absence of Dystrophin causes an X-linked genetic dis-
order, a devastating hereditary childhood disease character-
ized by progressive muscle degeneration, loss of ambulation 
in adolescence, and cardiopulmonary failure leading to the 
death of DMD patients during the third decades of their 
lives (Blake et al. 2002). mdx mice have been widely used to 
model DMD despite showing a milder phenotype compared 
to their human counterparts (Deconinck et al. 1997; Spitali 
et al. 2013). In these mice, an overall upregulation and sar-
colemma recruitment of a modifier gene named Utrophin 
(UTRN) in the skeletal muscles and other tissues has been 
well described (Deconinck et al. 1997). A similar compen-
satory mechanism effect via UTRN upregulation has been 
suggested in some DMD patients, who also show higher lev-
els of UTRN in their muscles and exhibit milder symptoms 
(Janghra et al. 2016; Nowak and Davies 2004; Kleopa et al. 
2006). The mechanism that underlies UTRN upregulation 
is mediated, at least in part, by a protein feedback loop. The 
Dystrophin-associated protein complex (DAPC) has been 
shown to play both mechanical and nonmechanical roles in 
stabilizing the sarcolemma and protecting the muscle cells 
from contraction-induced damage. Thus, DMD mutations 
destabilize the DAPC and produce muscle weakness and 
muscular dystrophy (Ehmsen et al. 2002). The myogenic Akt 
(protein kinase B) signaling (Peter et al. 2009) family can 
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be activated by numerous extracellular stimuli, an example 
being changes in the composition of extracellular matrix. 
In mouse models of dystrophy, due to the instability of the 
DAPC, signals are transduced by tyrosine kinase receptors 
and integrins followed by a subsequent cascade of Akt sign-
aling that leads to the upregulation of UTRN (Peter et al. 
2009). It is interesting to note that Integrin α7β1 is strongly 
upregulated in the mdx mice, and that this expression change 
has been linked to the reduction of the dystrophic phenotype 
and the partial restoration of viability in dystrophic mice 
(Lowell and Mayadas 2012). Other examples of genetic 
buffering via protein feedback loops include Anthrax toxin 
receptor 1 (ANTXR1), Lamins, Filamins, Emerin and other 
mechanosensing molecules (Cheng et al. 2019; Razinia et al. 
2011; Shemesh et al. 2005).

Transcriptional Adaptation

Transcriptional adaptation (TA) is a more recent example of 
‘active’ genetic buffering where the presence of premature 
termination codons (PTCs) in engineered mutant alleles has 
been reported to correlate with cases of genotype–phenotype 
discrepancies (El-Brolosy et al. 2019; Ma et al. 2019; Rossi 
et al. 2015; Serobyan et al. 2020).

TA was initially described in zebrafish while analyzing 
discrepancies between antisense technology (morpholino 
oligos) and genetic engineering-based models for vascular 
development (Rossi et al. 2015). Following extensive dis-
cussion in the zebrafish field about the shift from antisense 
reagents to the newer genome engineering tools, a meta-
analysis on the accumulating engineered zebrafish mutants 
lacking a phenotype had revealed a poor correlation between 
morpholino induced and genetic mutants, raising concerns 
about off-target effects (Kok et al. 2015; Schulte-Merker and 
Stainier 2014; Stainier et al. 2015). Knockdown of a protein 
product by inhibiting mRNA translation produced strong 
vascular phenotypes, in contrast to engineered mutants of 
the underlying gene, which developed a functional vascu-
lar system and were viable and fertile (Rossi et al. 2015). 
Unlike in cases of weak mutant alleles or unspecific effects 
of the antisense reagents used, mutant embryos were also 
resistant to knockdown, indicating that genetic rewiring had 
allowed them to develop through alternative avenues (Rossi 
et al. 2015). This result also argues against genetic redun-
dancy, whereby the presence of redundant genes or pathways 
requires their combined inactivation to uncover a phenotype 
(Rossi et al. 2015).

In the same study, transcriptional and proteomic compari-
sons of the knockdown and knockout states lead to the iden-
tification of a group of modifier genes that were upregulated 
in the latter. Introducing some of those candidates could 
partially protect from the knockdown effects, indicating that 

these genes could replace the function of the mutated gene 
(Rossi et al. 2015). These results also reinforced the hypoth-
esis that silent potential within the genome can be mobilized 
to overcome genetic insults (Kontarakis and Stainier 2020). 
Failure to do so can lead to disease, while successfully acti-
vating compensatory mechanisms, such as transcriptional 
adaptation could ameliorate disease symptoms (Kontarakis 
and Stainier 2020). Many reports involving zebrafish have 
since associated mild phenotypes to transcriptional adapta-
tion, but only some have provided experimental evidence of 
such relationship (Kontarakis and Stainier 2020). A good 
example is the analysis of actc1b (Actin alpha cardiac mus-
cle 1b) mutants, showing mild muscle defects and resist-
ance to actc1b MO injection (Sztal et al. 2018). The authors 
showed the upregulation of actc1a (Actin Alpha Cardiac 
Muscle 1) and suggested that this paralogue served as a 
functionally redundant gene in actc1b mutants. Similarly, 
nid1a (Nidogen 1a) mutant zebrafish were reported to lack 
the short body phenotype exhibited by nid1a morphants 
(Zhu et al. 2017). The increased expression of nid1b (Nido-
gen 1b) and nid2a (Nidogen 2a) in nid1a mutants but not 
morphant zebrafish indicated that a transcriptional adapta-
tion response was at play (Zhu et al. 2017). The authors were 
able to uncover the short body phenotype in nid1a mutants 
through nid1b and nid2a morpholino knockdown experi-
ments. This result provided further support of the functional 
compensation provided by nid1b and nid2a activation in 
nid1a mutants.

How the transcriptome is modulated falls into the gen-
eral field of gene expression regulation, but experimental 
support of a mechanism that initiates TA has been lacking 
(El-Brolosy and Stainier 2017). Two independent studies 
recently showed that in zebrafish and mouse models of tran-
scriptional adaptation, the mutant mRNA serves as a signal 
to induce transcription of the adapting genes (El-Brolosy 
et al. 2019; Ma et al. 2019). This finding points to a number 
of possible mechanisms, including degradation via RNA 
quality control mechanisms, such as the nonsense mediated 
decay (NMD) (Brogna and Wen 2009). Nonsense-mediated 
decay represents only one form of such cellular pathways. 
The recent zebrafish data support a parallel pathway where 
the premature termination codon (PTC) containing mRNA 
is “saved” from degradation and repurposed as a regulator 
of transcription (Ma et al. 2019).

Processing of the repurposed mRNA or mRNA fragment, 
their transportation into the nucleus and the forming of tran-
scriptional regulation units involve many currently unknown 
players. Both the complexity and conservation of this phe-
nomenon have been highlighted in a report of transcriptional 
adaptation in C. elegans (Serobyan et al. 2020). A small 
candidate RNAi screen revealed players in RNA metabolism 
and transport that can influence the upregulation of adapting 
genes, and the resulting phenotypes. Taken together, small 
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differences in seemingly housekeeping pathways could 
potentially affect the perceived strength of mutant alleles, 
adding an interesting and underexplored parameter to con-
sider in phenotypic analyses (Kontarakis and Stainier 2020).

Phenotypic Plasticity

It has been repeatedly proposed that another potential 
source of phenotypic variation in many monogenic dis-
eases is the exposure to environmental factors or stressors 
(Gallati 2014). In this context, phenotypic variability, in 
which one genotype can produce more than one pheno-
type, when exposed to different forms of environmental 
stress, has been defined as phenotypic plasticity (Klingen-
berg 2019; Price et al. 2003; Via and Lande 1985).

Exposure of patients to different environmental condi-
tions has been repeatedly proposed as an important factor 
which contributes to phenotypic plasticity in monogenic 
diseases (Gallati 2014). Clinical and basic science data 
suggest that non-genetic, i.e., exposomal factors (includ-
ing environmental, life-style and dietary factors) might 
affect modifier gene expression and thereby contribute 
to the development of phenotypic plasticity (Cutting 
2010; Cuvertino et al. 2017; Genin et al. 2008; Groman 
et al. 2002; Kleopa et al. 2006; Medici and Weiss 2017; 
Spiegler et  al. 2018; Tummler 2019). The description 
and characterization of at least two genetic compensation 
pathways by which modifier gene expression can be regu-
lated has provided one mechanistic explanation for phe-
notypic variability (El-Brolosy et al. 2019; Ma et al. 2019; 
Deconinck et al. 1997). One common denominator through 
which such factors could work is the generation of oxida-
tive stress (Allen and Tresini 2000). An example that illus-
trates the impact of oxidative stress on clinical severity 
is the identification of single nucleotide polymorphisms 
in the glutathione pathway, which affect bacterial coloni-
zation and lung inflammation in patients suffering from 
cystic fibrosis (CF) (Marson et al. 2014). CF is a common, 
life limiting monogenic disease, which typically manifests 
as progressive bronchiectasis and recurrent sinopulmo-
nary infections. After CFTR (cystic fibrosis transmem-
brane conductance regulator) was described in 1989, it 
has become increasingly evident that modifier genes and 
environmental factors play substantial roles in determin-
ing the severity of diseases (Collacoa and Cutting 2008; 
Maiuri et al. 2017). Analysis of siblings and twins with 
identical CFTR genotypes show different disease severity, 
strongly indicating that environmental factors play sig-
nificant roles in determining the severity of CF (Mekus 
et al. 2000). Apart from phenotypic variation associated 
with oxidative stress, histone deacetylase (HDAC) inhibi-
tors were proposed to be beneficial for CF patients (Angles 

et al. 2019). Interestingly, human bronchial epithelial cells 
exposed to environmental stress, including diesel exhaust 
particles, display increased HDAC6 mRNA expression 
levels (Lin et al. 2020). HDAC’s mechanism of action in 
CF patients is not known, but HDAC molecules control 
transcriptional regulation and can interact with the ribo-
some, thus potentially controlling the expression of modi-
fier genes.

Nevertheless, scientific evidence supporting the role of 
environmental stressors on phenotype variability are mainly 
circumstantial in nature, and the molecular mechanism(s) 
underlying phenotypic plasticity are currently not fully 
understood (Murren et al. 2015).

An intriguing possibility is that environmental stressors 
indirectly affect genetic buffering and modifier gene expres-
sion by interfering with RNA quality control pathways (e.g., 
NMD) (Nickless et al. 2017). In support of this hypothesis, it 
has been shown that environmental stress, including oxida-
tive stress, suppresses NMD and affects cells by stabilizing 
NMD targeted gene expression (Usuki et al. 2019). In such a 
scenario, it can be postulated that the cells of a patient carry-
ing a certain disease (premature stop codon mutation) would 
be unable to activate a compensatory machinery or enhance 
the expression of modifier genes and, therefore, should dis-
play a more severe phenotype. It is worth noting that CF 
patients that carry G542X, R553X, S1255X, W1316X CFTR 
PTC mutations show a severe mutant mRNA decrease, but 
display a mild but variable lung phenotype. In contrast, CF 
patients that carry R1162X, W1282X CFTR PTC mutations, 
in which mRNA stability is not affected, display a severe 
lung phenotype (Ferec et al 2012).

Cerebral cavernous malformations (CCM) are enlarged 
vascular lesions that consist of closely clustered, abnormally 
dilated and leaky capillary caverns that affect up to 0.2% of 
the general population (Choquet et al. 2015; Mouchtouris 
et al. 2015; Salman et al. 2008). A subset of mutation types 
have been identified within the three known CCM genes, 
which should allow for a better phenotype to genotype cor-
relation and characterization (Choquet et al. 2015; Mor-
rison and Akers 2003). Interestingly, the wide variability 
in phenotypes seen amongst different patients carrying the 
same mutation strongly suggests the influence of additional 
genetic and/or environmental components (Morrison and 
Akers 2003; Shenkar et al. 2015; Spiegler et al. 2018). In 
support of this, around 25% of people with cavernous mal-
formations in the brain never have symptoms (Taslimi et al. 
2016). Mouse models for cerebral cavernous malformations 
include Ccm1 and Ccm2 endothelial cell specific knockout 
mice (Boulday et al. 2011; McDonald et al. 2011). In these 
models, vascular malformations are seen at around postnatal 
day 6 (Tang et al. 2017).

Interestingly, it was noted that following a change in 
vivarium, Ccm1 and Ccm2 endothelial cell specific KO 
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mice did not develop a severe phenotype (minimal to no 
hindbrain lesions). Further analysis revealed that a key role 
for the formation of CCM lesions was mediated by the gut 
microbiome through the activation of the Toll-like receptor 
4 (TLR4) (Tang et al. 2017). Germ-free mice were protected 
from CCM formation and even a single course of antibiot-
ics permanently alters CCM susceptibility in mice (Tang 
et al. 2017). Gene–environment interactions and phenotype 
variability have been described for other diseases but the 
molecular mechanisms underlying it are still not fully under-
stood. Environmental factors, like exposure to toxic chemi-
cals and brain injury, but also nutrition, traffic air pollution 
and virus or bacterial infections, have long been linked to 
the phenotype variability in many diseases including Alz-
heimer's, dementia, autism and Parkinson (Ball et al. 2019; 
Dunn et al. 2019).

Genome Editing, Induced Pluripotent Stem 
Cells (iPSCs), Isogenic Lines and Organoid 
Models

iPSCs and genome editing combined represent a cutting-
edge toolset to model diseases and better understand the bio-
logical processes that are still unsolved or poorly understood 
(Ramachandran et al. 2021). In particular, the creation of 
isogenic cell lines represents a precise control for the genetic 
disease model of interest, especially in those genes where 
discrepancies between genotype and phenotypes have been 
described.

One noteworthy development is the production of orga-
noids from engineered cells to model and recapitulate dis-
ease phenotypes in three-dimensional tissues (Kim et al. 
2020; Lancaster et al. 2013). This strategy provides a frame-
work for both disease modeling and regenerative medicine 
based on the synthetic reconstitution of tissues. An inter-
esting perspective would be to study genetic buffering in 
different cell types that carry the same type of mutation. 
Interesting questions to answer are: is the genetic buffering 
triggered at the same level in different cell types? Or is it cell 
specific? How are modifier genes affected by environmental 
stressors? Do environmental stressors affect mRNA quality 
control pathways that have been linked to TA?

These are all questions that, if scientifically addressed, 
might lead to better treatments and the development of new 
therapies that focus on enhancing the expression of modifier 
genes rather than fixing the ‘broken’ mutated gene. 

In the last few years, iPSCs and genome editing have been 
exploited to model human diseases using proper controls 
(isogenic lines) (Jones et al 2017). For instance, correct-
ing the cystic fibrosis transmembrane regulator sequence in 
patient-derived iPSCs produced corrected cells that differ-
entiated into healthy mature airway epithelial cells in vitro 

(Crane 2015). A mutation in the Presenilin 1 (PSEN-1) gene, 
which is responsible for the majority of familial cases of 
Alzheimer's disease (AD), was corrected in iPSCs generated 
from a 58-year-old patient (Pires et al. 2016). CRISPR–Cas9 
gene editing was also used to correct a mutation in the DMD 
gene in patient-derived iPSCs (Min et al. 2019).

Closing Remarks

Sequencing studies on the Icelandic population using Illu-
mina short reads (Gudbjartsson et al. 2015) and Oxford 
Nanopore long reads (Beyter et al. 2021) pointed out sev-
eral loss of function mutations without apparent phenotypes, 
and one possible explanation is the presence of compensa-
tory mechanisms, such as modifier genes, in these individu-
als (Sulem et al. 2015).

Furthermore, the advent of Nanopore sequencing tech-
nology has brought significant advantages to the field. For 
instance, alternative splicing (AS), alternative transcription 
initiation (ATI), and alternative cleavage and alternative 
polyadenylation (APA) have been identified as major con-
tributors of transcriptome diversity (Lee et al. 2021). While 
AS events can be quantified and annotated using NGS with 
good accuracy, it has been hard to deduce full-length splic-
ing isoforms that contain a combination of these individual 
splicing events (Lee et al. 2021).

Thus, long-read sequencing offers now the ability to map 
full-length sequences and potentially identify complex splice 
isoforms with diverse unknown roles, potentially also in 
genetic compensation.

Epigenetic modifications are heritable phenotypic 
changes that do not involve alteration of the nucleotide 
sequence but play a key role in gene expression and are 
associated with many diseases. Despite their presence in 
the human genome and the role in gene expression, base 
modifications are often overlooked due to difficulties with 
their detection (Liu and Seki 2020).

Using Nanopore sequencing, researchers have identified 
5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 
N6-methyladenine (6 mA), and Bromodeoxyuridine (BrdU) 
modifications in DNA, and through direct RNA sequencing 
N6-methyladenosine (m6A) modification in RNA (Liu et al. 
2019). Furthermore, detection of other natural or synthetic 
epigenetic modifications is also possible through base call-
ing algorithms training, and it could shed light on pheno-
typic variability. It has been proposed that these DNA and 
RNA modifications play a role in different biological pro-
cesses including the control of gene expression and possibly 
genetic compensation (Barbieri and Kouzarides 2020; Liu 
et al. 2019).
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Finally, the accumulation and storage of genetic vari-
ation in phenotypically normal populations is possible 
through genetic buffering. Silent variations can produce 
phenotypic differences when the buffering threshold is 
crossed, at which point these differences become sensi-
tive to selection. Evolution and regulation of the balance 
between evolutionary stasis and change are regulated by 
buffering mechanisms. Yet, little is known about how 
buffering mechanisms work and respond to environment 
stimuli, thereby influencing phenotypic variability within 
a population.
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