Skip to main content
Log in

Application of molecular dynamic simulations in modeling the excited state behavior of confined molecules

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Relative to isotropic organic solvent medium, the structure and conformation of a reactant molecule in an organized and confining medium are often different. In addition, because of the rigidity of the immediate environment, the reacting molecule have a little freedom to undergo large changes even upon gaining energy or modifications in the electronic structure. These alterations give rise to differences in the photochemistry of a molecular and supramolecular species. In this study, one such example is presented. α-Alkyl dibenzylketones upon excitation in isotropic solvents give products via Norrish type I and type II reactions that are independent of the chain length of the alkyl substituent. On the other hand, when these molecules are enclosed within an organic capsule of volume ~ 550 Å3, they give products that are strikingly dependent on the length of the α-alkyl substitution. These previously reported experimental observations are rationalized based on the structures generated by molecular modeling (docking and molecular dynamics (MD) simulations). It is shown that MD simulations that are utilized extensively in biologically important macromolecules can also be useful to understand the excited state behavior of reactive molecules that are part of supramolecular assemblies. These simulations can provide structural information of the reactant molecule and the surroundings complementing that with the one obtained from 1 and 2D NMR experiments. MD simulated structures of seven α-alkyl dibenzylketones encapsulated within the octa acid capsule provide a clear understanding of their unique behavior in this restricted medium. Because of the rigidity of the medium, these structures although generated in the ground state can rationalize the photochemical behavior of the molecules in the excited state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Turro, N. J., Ramamurthy, V., & Scaiano, J. C. (2010). Modern molecular photochemistry of organic molecules. University Science Books.

    Google Scholar 

  2. Klan, P., & Wirz, J. (2009). Photochemistry of organic compounds. John Wiley & Sons Ltd.

    Google Scholar 

  3. Photochemistry in Organized and Constrained Media, V. Ramamurthy (Ed.), VCH Publishers, New York, 1991.

  4. Supramolecular Photochemistry, V. Ramamurthy & Y. Inoue (Eds.), John Wiley, Hoboken, 2011.

  5. Supramolecular Photochemistry, V. Balzani & F. Scandola (Eds.), Ellis Horwood, Chichester, UK, 1991.

  6. Frontiers in Supramolecular Organic Chemistry and Photochemistry, H.-J. Schneider & H. Durr (Eds.),VCH, New York, 1991.

  7. V. Ramamurthy, R.G. Weiss & G.S. Hammond, A Model for the Influence of Organized Media on Photochemical Reactions, Advances in Photochemistry, Vol. 18, John Wiley & Sons, Inc., 1993. pp. 67–234.

  8. Weiss, R. G., Ramamurthy, V., & Hammond, G. S. (1993). Photochemistry in organized and confining media: a model. Accounts of Chemical Research, 26, 530–536.

    CAS  Google Scholar 

  9. G.M.J. Schmidt,The photochemistry of the solid state, Reactivity of the photoexcited organic molecule, Proceedings of the Thirteenth Conference on Chemistry at the University of Brussels, October 1965, John Wiley, New York, 1967, 227–288.

  10. Ramamurthy, V., & Sivaguru, J. (2016). Supramolecular photochemistry as a synthetic tool: photocycloaddition. Chemical Reviews, 116, 9914–9993.

    CAS  PubMed  Google Scholar 

  11. Ramamurthy, V., & Venkatesan, K. (1987). Photochemical reactions of organic crystals. Chemical Reviews, 87, 433–481.

    CAS  Google Scholar 

  12. G. M. J. Schmidt et al. Solid State Photochemistry, D. Ginsburg ((Ed.), Verlag Chemie, Weinheim, 1976.

  13. Cohen, M. D. (1975). The photochemistry of organic solids. Angewandte Chemie (International ed. in English), 14, 386–393.

    Google Scholar 

  14. G.M.J. Schmidt, (1964), Topochemistry. III. The crystal chemistry of some trans-cinnamic acids, J. Chem. Soc., 2014–2021.

  15. Gibb, C. L. D., & Gibb, B. C. (2004). Well-defined, organic nanoenvironments in water: the hydrophobic effect drives capsular assembly. Journal of the American Chemical Society, 126, 11408–11409.

    CAS  PubMed  Google Scholar 

  16. Choudhury, R., Barman, A., Prabhakar, R., & Ramamurthy, V. (2013). Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies. The Journal of Physical Chemistry B, 117, 398–407.

    CAS  PubMed  Google Scholar 

  17. Kulasekharan, R., Choudhury, R., Prabhakara, R., & Ramamurthy, V. (2011). Restricted rotation due to the lack of free space within a capsule translates into product selectivity: Photochemistry of cyclohexyl phenyl ketones within a water-soluble organic capsule. Chemical Communications, 47, 2841–2843.

    CAS  PubMed  Google Scholar 

  18. Ramkumar Varadharajan, Sarah Ariel Kelley, Vindi M. Jayasinghe-Arachchige, Rajeev Prabhakar, V. Ramamurthy & S.C. Blackstock, (2022), Organic Host Encapsulation Effects on Nitrosobenzene Monomer−Dimer Distribution and C−NO Bond Rotation in an Aqueous Solution, ACS Org. Inorg. Au, 2, 175-185

  19. A.H. Elcock, D. Sept & J.A. McCammon, (2001), Computer Simulation of Protein−Protein Interactions, J. Phys. Chem., B, 105, 1504–1518.

  20. Baaden, M., & Marrink, S. J. (2013). Coarse-grain modelling of protein–protein interactions. Current Opinion in Structural Biology, 23, 878–886.

    CAS  PubMed  Google Scholar 

  21. Basdevant, N., Weinstein, H., & Ceruso, M. (2006). Thermodynamic basis for promiscuity and selectivity in protein−protein interactions: PDZ domains, a case study. Journal of the American Chemical Society, 128, 12766–12777.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Salsbury, F. R. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 10, 738–744.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Friedman, R. (2022). Computational studies of protein–drug binding affinity changes upon mutations in the drug target. WIREs Computational Molecular Science, 12, e1563.

    CAS  Google Scholar 

  24. Ozbil, M., Barman, A., Bora, R. P., & Prabhakar, R. (2012). Computational insights into dynamics of protein aggregation and enzyme-substrate interactions. J. Pjys. Chem. Lett., 3, 3460–3469.

    CAS  Google Scholar 

  25. Díaz, N., Sordo, T. L., Merz, K. M., & Suárez, D. (2003). Insights into the acylation mechanism of class A β-lactamases from molecular dynamics simulations of the TEM-1 enzyme complexed with benzylpenicillin. Journal of the American Chemical Society, 125, 672–684.

    PubMed  Google Scholar 

  26. Sharma, G., Hu, Q., Jayasinghe-Arachchige, V. M., Paul, T. J., Schenk, G., & Prabhakar, R. (2019). Investigating coordination flexibility of glycerophosphodiesterase (GpdQ) through interactions with mono-, di-, and triphosphoester (NPP, BNPP, GPE, and paraoxon) substrates. Physical Chemistry Chemical Physics: PCCP, 21, 5499–5509.

    CAS  PubMed  Google Scholar 

  27. Cisneros, G. A., Karttunen, M., Ren, P., & Sagui, C. (2014). Classical electrostatics for biomolecular simulations. Chemical Reviews, 114, 779–814.

    CAS  PubMed  Google Scholar 

  28. R. Kapral & G. Ciccotti,Chapter 16 - Molecular dynamics: An account of its evolution, C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (Eds.) Theory and Applications of Computational Chemistry, Elsevier, Amsterdam, 2005, 425–441.

  29. Rahman, A., & Stillinger, F. H. (2003). Molecular dynamics study of liquid water. The Journal of Chemical Physics, 55, 3336–3359.

    Google Scholar 

  30. H.J.C. Berendsen, Molecular dynamics simulations: The limits and beyond, Springer, 1999.

  31. Pokorna, P., Kruse, H., Krepl, M., & Sponer, J. (2018). QM/MM calculations on protein–RNA complexes: Understanding limitations of classical MD simulations and search for reliable cost-effective QM methods. Journal of Chemical Theory and Computation, 14, 5419–5433.

    CAS  PubMed  Google Scholar 

  32. Gibb, C. L. D., Sundaresan, A. K., Ramamurthy, V., & Gibb, B. C. (2008). Templation of the excited-state chemistry of α-(n-Alkyl) Dibenzyl ketones: How guest packing within a nanoscale supramolecular capsule influences photochemistry. Journal of the American Chemical Society, 130, 4069–4080.

    CAS  PubMed  Google Scholar 

  33. Das, A., Danao, A., Banerjee, S., Raj, A. M., Sharma, G., Prabhakar, R., Srinivasan, V., Ramamurthy, V., & Sen, P. (2021). Dynamics of anthracene excimer formation within a water-soluble nanocavity at room temperature. Journal of the American Chemical Society, 143, 2025–2036.

    CAS  PubMed  Google Scholar 

  34. Boeije, Y., & Olivucci, M. (2023). From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chemical Society Reviews, 52, 2643–2687.

    CAS  PubMed  Google Scholar 

  35. Zhu, T., & Van Voorhis, T. (2016). Charge recombination in phosphorescent organic light-emitting diode host–guest systems through qm/mm simulations. Journal of Physical Chemistry C, 120, 19987–19994.

    CAS  Google Scholar 

  36. M. Olsson, A. & U. Ryde, (2017), Comparison of QM/MM Methods to Obtain Ligand-Binding Free Energies, J. Chem. Theory Comput., 13, 2245-2253

  37. Wang, M., Mei, Y., & Ryde, U. (2019). Host–guest relative binding affinities at density-functional theory level from semiempirical molecular dynamics simulations. Journal of Chemical Theory and Computation, 15, 2659–2671.

    CAS  PubMed  Google Scholar 

  38. Wang, M., Mei, Y., & Ryde, U. (2018). Predicting relative binding affinity using nonequilibrium QM/MM simulations. Journal of Chemical Theory and Computation, 14, 6613–6622.

    CAS  PubMed  Google Scholar 

  39. Steinmann, C., Olsson, M. A., & Ryde, U. (2018). Relative ligand-binding free energies calculated from multiple short QM/MM MD simulations. Journal of Chemical Theory and Computation, 14, 3228–3237.

    CAS  PubMed  Google Scholar 

  40. Caldararu, O., Olsson, M. A., Misini Ignjatović, M., Wang, M., & Ryde, U. (2018). Binding free energies in the SAMPL6 octa-acid host–guest challenge calculated with MM and QM methods. Journal of Computer-Aided Molecular Design, 32, 1027–1046.

    CAS  PubMed  Google Scholar 

  41. Caldararu, O., Olsson, M. A., Riplinger, C., Neese, F., & Ryde, U. (2017). Binding free energies in the SAMPL5 octa-acid host–guest challenge calculated with DFT-D3 and CCSD (T). Journal of Computer-Aided Molecular Design, 31, 87–106.

    CAS  PubMed  Google Scholar 

  42. Olsson, M. A., Söderhjelm, P., & Ryde, U. (2016). Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level. Journal of Computational Chemistry, 37, 1589–1600.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikulskis, P., Cioloboc, D., Andrejić, M., Khare, S., Brorsson, J., Genheden, S., Mata, R. A., Söderhjelm, P., & Ryde, U. (2014). Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies. Journal of Computer-Aided Molecular Design, 28, 375–400.

    CAS  PubMed  Google Scholar 

  44. Andrejić, M., Ryde, U., Mata, R. A., & Söderhjelm, P. (2014). Coupled-cluster interaction energies for 200-atom host-guest systems. ChemPhysChem, 15, 3270–3281.

    PubMed  Google Scholar 

  45. Jing, Z., Liu, C., Cheng, S. Y., Qi, R., Walker, B. D., Piquemal, J.-P., & Ren, P. (2019). Polarizable force fields for biomolecular simulations: recent advances and applications. Ann. Rev. Biophys., 48, 371–394.

    CAS  Google Scholar 

  46. Nakata, H., & Bai, S. (2019). Development of a new parameter optimization scheme for a reactive force field based on a machine learning approach. J. Comp. Chem., 40, 2000–2012.

    CAS  Google Scholar 

  47. He, X., Man, V. H., Yang, W., Lee, T.-S., & Wang, J. (2020). A fast and high-quality charge model for the next generation general AMBER force field. The Journal of Chemical Physics, 153, 114502.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grimme, S. (2019). Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. Journal of Chemical Theory and Computation, 15, 2847–2862.

    CAS  PubMed  Google Scholar 

  49. Kulasekharan, R., Choudhury, R., Prabhakar, R., & Ramamurthy, V. (2011). Restricted rotation due to the lack of free space within a capsule translates into product selectivity: Photochemistry of cyclohexyl phenyl ketones within a water-soluble organic capsule. Chemical Communications, 47, 2841–2843.

    CAS  PubMed  Google Scholar 

  50. Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. J. Phys. Rev. A, 38, 3098–3100.

    CAS  Google Scholar 

  51. A.D. Becke, Density-functional thermochemistry. III The role of exact exchange, J. Chem. Phys., 1993.

  52. Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem., 32, 1456–1465.

    CAS  Google Scholar 

  53. M. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci & G. Petersson, Gaussian 09, revision D. 01, Gaussian, Inc., Wallingford CT, 2009.

  54. Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J., & Pople, J. A. (1982). Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. The Journal of Chemical Physics, 77, 3654–3665.

    CAS  Google Scholar 

  55. Rassolov, V. A., Ratner, M. A., Pople, J. A., & P.l.C. Redfern & L.A. Curtiss,. (2001). 6–31G* basis set for third-row atoms. J. Comp. Chem., 22, 976–984.

    CAS  Google Scholar 

  56. Mennucci, B. (2012). Polarizable continuum model. WIREs Computational Molecular Science, 2, 386–404.

    CAS  Google Scholar 

  57. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. J. Comp. Chem., 25, 1157–1174.

    CAS  Google Scholar 

  58. Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics, 25, 247–260.

    Google Scholar 

  59. Case, D. A., Cheatham Iii, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. J. Comp. Chem., 26, 1668–1688.

    CAS  Google Scholar 

  60. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem., 31, 455–461.

    CAS  Google Scholar 

  61. Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory., 4, 435–447.

    CAS  Google Scholar 

  62. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., & Van Der Spoel, D. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinfo., 29, 845–854.

    CAS  Google Scholar 

  63. Case, D. A., Cheatham, T. E., III., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Price, D. J., & Brooks, C. L., III. (2004). A modified TIP3P water potential for simulation with Ewald summation. The Journal of Chemical Physics, 121, 10096–10103.

    CAS  PubMed  Google Scholar 

  65. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem., 18, 1463–1472.

    CAS  Google Scholar 

  66. Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comp. Chem., 13, 952–962.

    CAS  Google Scholar 

  67. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.

    CAS  Google Scholar 

  68. Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E., III. (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897.

    CAS  PubMed  Google Scholar 

  69. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    CAS  PubMed  Google Scholar 

  70. Krieger, E., & Vriend, G. (2002). Models@ Home: Distributed computing in bioinformatics using a screensaver based approach. Bioinfo., 18, 315–318.

    CAS  Google Scholar 

  71. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J. Comp. Chem., 25, 1605–1612.

    CAS  Google Scholar 

  72. Ramamurthy, V. (2015). Photochemistry within a water-soluble organic capsule. Accounts of Chemical Research, 48, 2904–2917.

    CAS  PubMed  Google Scholar 

  73. Ramamurthy, V., Jockusch, S., & Porel, M. (2015). Supramolecular photochemistry in solution and on surfaces: encapsulation and dynamics of guest molecules and communication between encapsulated and free molecules. Langmuir, 31, 5554–5570.

    CAS  PubMed  Google Scholar 

  74. Das, A., Ghosh, S. K., Ramamurthy, V., & Sen, P. (2022). Vibration-assisted intersystem crossing in the ultrafast excited state relaxation dynamics of halocoumarins. Journal of Physical Chemistry A, 126, 1475–1485.

    CAS  PubMed  Google Scholar 

  75. V. Ramamurthy,Controlling Excited State Chemistry of Organic Molecules in Water Through Incarceration, P.K. Chattaraj, D. Chakraborty (Eds.) Chemical Reactivity in Confined Systems: Theory, Modelling and Applications, John Wiley, Hoboken, NJ, 2021, 335–338.

  76. Ramamurthy, V., Sen, P., & Elles, C. G. (2022). Ultrafast excited state dynamics of spatially confined organic molecules. Journal of Physical Chemistry A, 126, 4681–4699.

    CAS  PubMed  Google Scholar 

  77. Sundaresan, A. K., & Ramamurthy, V. (2007). Making a difference on excited-state chemistry by controlling free space within a nanocapsule: photochemistry of 1-(4-Alkylphenyl)-3-phenylpropan-2-ones. Organic Letters, 9, 3575–3578.

    CAS  PubMed  Google Scholar 

  78. Sundaresan, A. K., & Ramamurthy, V. (2008). Consequences of controlling free space within a reaction cavity with a remote alkyl group: Photochemistry of para-alkyl dibenzyl ketones within an organic capsule. Photochemical & Photobiological Sciences, 7, 1555–1564.

    CAS  Google Scholar 

  79. Turro, N. J., & Cherry, W. R. (1978). Photoreactions in detergent solutions. enhancement of regioselectivity resulting from the reduced dimensionality of substrates sequestered in a micelle. Journal of the American Chemical Society, 100, 7431–7432.

    CAS  Google Scholar 

  80. Turro, N. J., & Kraeutler, B. (1978). Magnetic Isotope and Magnetic Field Effects on Chemical Reactions. Sunlight and Soap for the Efficient Separation of 13Cand 12C Isotopes. Journal of the American Chemical Society, 100, 7432–7434.

    CAS  Google Scholar 

  81. Gould, I. R., Zimmt, M. B., Turro, N. J., Baretz, B. H., & Lehr, G. F. (1985). Dynamics of radical pair reactions in micelles. Journal of the American Chemical Society, 107, 4607–4612.

    CAS  Google Scholar 

  82. Turro, N. J. (2000). From boiling stones to smart crystals: supramolecular and magnetic isotope control of radical-radical reactions inside zeolites. Accounts of Chemical Research, 33, 637–646.

    CAS  PubMed  Google Scholar 

  83. Yang, N. C., & Yang, D.-D.H. (1958). Photochemical reactions of ketones in solution. Journal of the American Chemical Society, 80, 2913–2914.

    CAS  Google Scholar 

  84. Scheffer, J. R. (2001). In the footsteps of Pasteur: Asymmetric induction in the photochemistry of crystalline ammonium carboxylate salts. Canadian Journal of Chemistry, 79, 349–357.

    CAS  Google Scholar 

  85. A.E. Keating & A. Garcia-Garibay Miguel,Photochemical Solid-to-Solid Reactions, V. Ramamurthy, K.S. Schanze (Eds.) Molecular and Supramolecular Photochemistry, Marcel Dekker, Inc., New York, 2002, 195.

  86. K. Tanaka & F. Toda,Organic Photoreaction in the Solid State, F. Toda (Ed.) Organic Solid State Reactions, Kluwer Academic Publishers, Dordrecht, 2002, 109–158.

  87. Ihmels, H., & Scheffer, J. R. (1999). The Norrish type II reaction in the crystalline state: Toward a better understanding of the geometric requirements for γ-hydrogen atom abstraction. Tetrahedron, 55, 885–907.

    CAS  Google Scholar 

  88. Mecozzi, S., & Julius Rebek, J. (1998). The 55% solution: a formula for molecular recognition in the liquid state. Chemistry--A European Journal, 4, 1016–1022.

    CAS  Google Scholar 

  89. Noyes, R. M. (1961). Effects of diffusion rates on chemical kinetics. Prog. React. Kinetics, 1, 131–160.

    Google Scholar 

  90. Turro, N. J., & Kraeutler, B. (1980). Magnetic field and magnetic isotope effects in organic photochemical reactions. a novel probe of reaction mechanisms and a method for enrichment of magnetic isotopes. Accounts of Chemical Research, 13, 369–377.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation (VR: CHE-2204046 and RP: CHE-2102563) for financial support. Computational resources from the University of Miami Institute for Data Science and Computing (IDSC) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajeev Prabhakar or Vaidhyanathan Ramamurthy.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2783 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadka, D., Jayasinghe-Arachchige, V.M., Prabhakar, R. et al. Application of molecular dynamic simulations in modeling the excited state behavior of confined molecules. Photochem Photobiol Sci 22, 2781–2798 (2023). https://doi.org/10.1007/s43630-023-00486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00486-2

Keywords

Navigation