Skip to main content

Advertisement

Log in

Phonozen-mediated photodynamic therapy comparing two wavelengths in a mouse model of peritoneal carcinomatosis

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Background

This study assessed the therapeutic efficacy of intraperitoneal photodynamic therapy (PDT) using photosensitizer activation at two different wavelengths, 405 and 664 nm, in a mouse model of peritoneal carcinomatosis.

Methods

The dark and light cytotoxicity of chlorin e6-polyvinylpyrrolidone (Phonozen) were measured in vitro under 402 ± 14 and 670 ± 18 nm LED activation in bioluminescent human gastric cancer cells, MKN45-luc. Cell viability was measured at 6 h after irradiation using the PrestoBlue assay. Corresponding in vivo studies were performed in athymic nude mice by intraperitoneal injection of 1 × 106 MKN45-luc cells. PDT was performed 10 d after tumor induction and comprised intraperitoneal injection of Phonozen followed by light irradiation at 3 h, delivered by a diffusing-tip optical fiber placed in the peritoneal cavity and coupled to a 405 or 664 nm diode laser to deliver a total energy of 50 J (20 mice per cohort). Whole-body bioluminescence imaging was used to track the tumor burden after PDT out to 130 days, and 5 mice in each cohort were sacrificed at 4 h post treatment to measure the acute tumor necrosis.

Results

Photosensitizer dose-dependent photocytotoxicity was higher in vitro at 405 than 664 nm. In vivo, PDT reduced the tumor growth rate at both wavelengths, with no statistically significant difference. There was substantial necrosis, and median survival was significantly prolonged at both wavelengths compared with controls (46 and 46 vs. 34 days).

Conclusions

Phonozen-mediated PDT results in significant cytotoxicity in vitro as well as tumor necrosis and prolonged survival in vivo following intraperitoneal light irradiation. Blue light was more photocytotoxic than red in vitro and had marginally higher efficacy in vivo.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

PC:

Peritoneal carcinomatosis

PDT:

Photodynamic therapy

PBS:

Phosphate-buffered saline

References

  1. Azaïs, H., Rebahi, C., Baydoun, M., Serouart, B., Ziane, L., Moralès, O., Frochot, C., Colombeau, L., Thécua, E., Collinet, P., Delhem, N., & Mordon, S. (2020). A global approach for the development of photodynamic therapy of peritoneal metastases regardless of their origin. Photodiagnosis and Photodynamic Therapy, 30, 101683.

    PubMed  Google Scholar 

  2. Kusamura, S., Baratti, D., Zaffaroni, N., Villa, R., Laterza, B., Balestra, M. R., & Deraco, M. (2010). Pathophysiology and biology of peritoneal carcinomatosis. World Journal of Gastrointestinal Oncology, 2(1), 12–18.

    PubMed  PubMed Central  Google Scholar 

  3. Furuse, K., Fukuoka, M., Kato, H., Horai, T., Kubota, K., Kodama, N., Kusunoki, Y., Takifuji, N., Okunaka, T., Konaka, C., et al. (1993). A prospective phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan lung cancer photodynamic therapy study group. Journal of Clinical Oncology, 11(10), 1852–1857.

    CAS  PubMed  Google Scholar 

  4. Shim, C. S., Cheon, Y. K., Cha, S. W., Bhandari, S., Moon, J. H., Cho, Y. D., Kim, Y. S., Lee, L. S., Lee, M. S., & Kim, B. S. (2005). Prospective study of the effectiveness of percutaneous transhepatic photodynamic therapy for advanced bile duct cancer and the role of intraductal ultrasonography in response assessment. Endoscopy, 37(5), 425–433.

    CAS  PubMed  Google Scholar 

  5. Lou, P. J., Jäger, H. R., Jones, L., Theodossy, T., Bown, S. G., & Hopper, C. (2004). Interstitial photodynamic therapy as salvage treatment for recurrent head and neck cancer. British Journal of Cancer, 91(3), 441–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sidoroff, A., & Thaler, P. (2010). Taking treatment decisions in non-melanoma skin cancer–the place for topical photodynamic therapy (PDT). Photodiagnosis and Photodynamic Therapy, 7(1), 24–32.

    CAS  PubMed  Google Scholar 

  7. DeLaney, T. F., Sindelar, W. F., Tochner, Z., Smith, P. D., Friauf, W. S., Thomas, G., Dachowski, L., Cole, J. W., Steinberg, S. M., & Glatstein, E. (1993). Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. International Journal of Radiation Oncology, Biology, Physics, 25(3), 445–457.

    CAS  PubMed  Google Scholar 

  8. Hahn, S. M., Fraker, D. L., Mick, R., Metz, J., Busch, T. M., Smith, D., Zhu, T., Rodriguez, C., Dimofte, A., Spitz, F., Putt, M., Rubin, S. C., Menon, C., Wang, H. W., Shin, D., Yodh, A., & Glatstein, E. (2006). A phase II trial of intraperitoneal photodynamic therapy for patients with peritoneal carcinomatosis and sarcomatosis. Clinical Cancer Research, 12(8), 2517–2525.

    CAS  PubMed  Google Scholar 

  9. Wierrani, F., Fiedler, D., Grin, W., Henry, M., Krammer, B., & Grunberger, W. (1997). Intraoperative Meso-Tetrahydroxyphenylchlorin-based photodynamic therapy in metastatic gynecologic cancer tissue: initial results. Journal of Gynecologic Surgery, 13(23), 23–30.

    Google Scholar 

  10. Harlow, S. P., Rodriguez-Bigas, M., Mang, T., & Petrelli, N. J. (1995). Intraoperative photodynamic therapy as an adjunct to surgery for recurrent rectal cancer. Annals of Surgical Oncology, 2(3), 228–232.

    CAS  PubMed  Google Scholar 

  11. Allardice, J. T., Abulafi, A. M., Grahn, M. F., & Williams, N. S. (1994). Adjuvant intraoperative photodynamic therapy for colorectal carcinoma: a clinical study. Surgical Oncology, 3(1), 1–10.

    CAS  PubMed  Google Scholar 

  12. Herrera-Ornelas L Fau-Petrelli, N. J., Petrelli Nj Fau-Mittelman, A., Mittelman A Fau-Dougherty, T. J., Dougherty Tj Fau-Boyle, D. G., & Boyle, D. G. (1986). Photodynamic therapy in patients with colorectal cancer. Cancer, 1(0008-543X (Print)), 677–684.

    Google Scholar 

  13. Canter, R. J., Mick, R., Kesmodel, S. B., Raz, D. J., Spitz, F. R., Metz, J. M., Glatstein, E. J., Hahn, S. M., & Fraker, D. L. (2003). Intraperitoneal photodynamic therapy causes a capillary-leak syndrome. Annals of Surgical Oncology, 10(5), 514–524.

    PubMed  PubMed Central  Google Scholar 

  14. Betrouni, N., Munck, C., Bensoltana, W., Baert, G., Dewalle-Vignion, A. S., Scherpereel, A., & Mordon, S. (2017). Real-time light dosimetry for intra-cavity photodynamic therapy: application for pleural mesothelioma treatment. Photodiagnosis and Photodynamic Therapy, 18, 155–161.

    PubMed  Google Scholar 

  15. Lilge, L., Molpus, K., Hasan, T., & Wilson, B. C. (1998). Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma. Photochemistry and Photobiology, 68(3), 281–288.

    CAS  PubMed  Google Scholar 

  16. Zhong, W., Celli, J. P., Rizvi, I., Mai, Z., Spring, B. Q., Yun, S. H., & Hasan, T. (2009). In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. British Journal of Cancer, 101(12), 2015–2022.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato, A., Kataoka, H., Yano, S., Hayashi, K., Hayashi, N., Tanaka, M., Naitoh, I., Ban, T., Miyabe, K., Kondo, H., Yoshida, M., Fujita, Y., Hori, Y., Natsume, M., Murakami, T., Narumi, A., Nomoto, A., Naiki-Ito, A., Takahashi, S., & Joh, T. (2017). Maltotriose conjugation to a chlorin derivative enhances the antitumor effects of photodynamic therapy in peritoneal dissemination of pancreatic cancer. Molecular Cancer Therapeutics, 16(6), 1124–1132.

    CAS  PubMed  Google Scholar 

  18. Mroz, P., Xia, Y., Asanuma, D., Konopko, A., Zhiyentayev, T., Huang, Y. Y., Sharma, S. K., Dai, T., Khan, U. J., Wharton, T., & Hamblin, M. R. (2011). Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomedicine : Nanotechnology, Biology and Medicine, 7(6), 965–974.

    CAS  PubMed  Google Scholar 

  19. Kishi, K., Yano, M., Inoue, M., Miyashiro, I., Motoori, M., Tanaka, K., Goto, K., Eguchi, H., Noura, S., Yamada, T., Ohue, M., Ohigashi, H., & Ishikawa, O. (2010). Talaporfin-mediated photodynamic therapy for peritoneal metastasis of gastric cancer in an in vivo mouse model: drug distribution and efficacy studies. International Journal of Oncology, 36(2), 313–320.

    CAS  PubMed  Google Scholar 

  20. Thapa Magar TB, Shrestha R, Gurung P, Lim J, Kim Y-W. (2022). Improved pilot-plant-scale synthesis of chlorin e6 and its efficacy as a photosensitizer for photodynamic therapy and photoacoustic contrast agent. Processes, 10, 1–14.

    Google Scholar 

  21. Efendiev, K. T., Alekseeva, P. M., Shiryaev, A. A., Skobeltsin, A. S., Solonina, I. L., Fatyanova, A. S., Reshetov, I. V., & Loschenov, V. B. (2022). Preliminary low-dose photodynamic exposure to skin cancer with chlorin e6 photosensitizer. Photodiagnosis and Photodynamic Therapy, 38, 102894.

    CAS  PubMed  Google Scholar 

  22. Yu, Z., Xiao, Z., Shuai, X., & Tian, J. (2020). Local delivery of sunitinib and Ce6 via redox-responsive zwitterionic hydrogels effectively prevents osteosarcoma recurrence. Journal of Materials Chemistry B, 8(30), 6418–6428.

    CAS  PubMed  Google Scholar 

  23. Shen, Y., Li, M., Sun, F., Zhang, Y., Qu, C., Zhou, M., Shen, F., & Xu, L. (2020). Low-dose photodynamic therapy-induced increase in the metastatic potential of pancreatic tumor cells and its blockade by simvastatin. Journal of Photochemistry and Photobiology B, Biology, 207, 111889.

    CAS  PubMed  Google Scholar 

  24. He, Z., Jiang, H., Zhang, X., Zhang, H., Cui, Z., Sun, L., Li, H., Qian, J., Ma, J., & Huang, J. (2020). Nano-delivery vehicle based on chlorin E6, photodynamic therapy, doxorubicin chemotherapy provides targeted treatment of HER-2 negative, ανβ3-positive breast cancer. Pharmacological Research, 160, 105184.

    PubMed  Google Scholar 

  25. Lee, L. S., Thong, P. S., Olivo, M., Chin, W. W., Ramaswamy, B., Kho, K. W., Lim, P. L., & Lau, W. K. (2010). Chlorin e6-polyvinylpyrrolidone mediated photodynamic therapy–A potential bladder sparing option for high risk non-muscle invasive bladder cancer. Photodiagnosis and Photodynamic Therapy, 7(4), 213–220.

    CAS  PubMed  Google Scholar 

  26. Piatrouskaya, N. A., Kharuzhyk, S. A., Vozmitel, M. A., Mazurenko, A. N., & Istomin, Y. P. (2010). Experimental study of antiangiogenic and photodynamic therapies combination for treatment of peritoneal carcinomatosis: preliminary results. Experimental Oncology, 32(2), 100–103.

    CAS  PubMed  Google Scholar 

  27. Shrestha R, Mallik SK, Lim J, Gurung P, Magar TBT, Kim YW (2023) Efficient synthesis of chlorin e6 and its potential photodynamic immunotherapy in mouse melanoma by the abscopal effect. International Journal of Molecular Sciences. 24, 3901.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bauer, T. W., Hahn, S. M., Spitz, F. R., Kachur, A., Glatstein, E., & Fraker, D. L. (2001). Preliminary report of photodynamic therapy for intraperitoneal sarcomatosis. Annals of Surgical Oncology, 8(3), 254–259.

    CAS  PubMed  Google Scholar 

  29. Sindelar, W. F., DeLaney, T. F., Tochner, Z., Thomas, G. F., Dachoswki, L. J., Smith, P. D., Friauf, W. S., Cole, J. W., & Glatstein, E. (1991). Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study. Archives of Surgery, 126(3), 318–324.

    CAS  PubMed  Google Scholar 

  30. Bisland, S. K., Lilge, L., Lin, A., Rusnov, R., & Wilson, B. C. (2004). Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochemistry and Photobiology, 80, 22–30.

    CAS  PubMed  Google Scholar 

  31. Shrestha, R., Lee, H. J., Lim, J., Gurung, P., Thapa Magar, T. B., Kim, Y.-T., Lee, K., Bae, S., & Kim, Y.-W. (2022). Effect of photodynamic therapy with chlorin e6 on canine tumors. Life, 12, 2102.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. De Clercq, K., Xie, F., De Wever, O., Descamps, B., Hoorens, A., Vermeulen, A., Ceelen, W., & Vervaet, C. (2019). Preclinical evaluation of local prolonged release of paclitaxel from gelatin microspheres for the prevention of recurrence of peritoneal carcinomatosis in advanced ovarian cancer. Scientific Reports, 9(1), 14881.

    PubMed  PubMed Central  Google Scholar 

  33. Derrien, A., Gouard, S., Maurel, C., Gaugler, M. H., Bruchertseifer, F., Morgenstern, A., Faivre-Chauvet, A., Classe, J. M., & Chérel, M. (2015). Therapeutic efficacy of alpha-RIT using a (213)Bi-Anti-hCD138 antibody in a mouse model of ovarian peritoneal carcinomatosis. Frontiers in Medicine, 2, 88.

    PubMed  PubMed Central  Google Scholar 

  34. Yakovlev, D. V., Farrakhova, D. S., Shiryaev, A. A., Efendiev, K. T., Loschenov, M. V., Amirkhanova, L. M., Kornev, D. O., Levkin, V. V., Reshetov, I. V., & Loschenov, V. B. (2020). New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods. Front Optoelectron, 13(4), 352–359.

    PubMed  Google Scholar 

  35. Shiryaev, A. A., Musaev, G. K., Levkin, V. V., Reshetov, I. V., Loshchenov, M. V., Alekseeva, P. M., Volkov, V. V., Linkov, K. G., Makarov, V. I., Shchekoturov, I. O., Borodkin, A. V., & Loschenov, V. B. (2019). Combined treatment of nonresectable cholangiocarcinoma complicated by obstructive jaundice. Photodiagnosis and Photodynamic Therapy, 26, 218–223.

    CAS  PubMed  Google Scholar 

  36. Tatarchuk, T., Dunaevskaya, V., Tzerkovsky, D., & Zakharenko, N. (2020). Photodynamic therapy in treatment of patients with premalignant vulvar diseases. First experience of the method application in UKRAINE. Georgian Medical News, 309, 12–17.

    Google Scholar 

  37. Istomin, Y. P., Lapzevich, T. P., Chalau, V. N., Shliakhtsin, S. V., & Trukhachova, T. V. (2010). Photodynamic therapy of cervical intraepithelial neoplasia grades II and III with Photolon. Photodiagnosis and Photodynamic Therapy, 7(3), 144–151.

    CAS  PubMed  Google Scholar 

  38. Sheleg, S. V., Zhavrid, E. A., Khodina, T. V., Kochubeev, G. A., Istomin, Y. P., Chalov, V. N., & Zhuravkin, I. N. (2004). Photodynamic therapy with chlorin e(6) for skin metastases of melanoma. Photodermatology, Photoimmunology & Photomedicine, 20(1), 21–26.

    CAS  Google Scholar 

  39. Choi, J. H., Oh, D., Lee, J. H., Park, J. H., Kim, K. P., Lee, S. S., Lee, Y. J., Lim, Y. S., Song, T. J., Lee, S. S., Seo, D. W., Lee, S. K., Kim, M. H., & Park, D. H. (2015). Initial human experience of endoscopic ultrasound-guided photodynamic therapy with a novel photosensitizer and a flexible laser-light catheter. Endoscopy, 47(11), 1035–1038.

    PubMed  Google Scholar 

  40. Kalia, A., & Jain, V. (1989). Effects of some divalent metal ions on the aging phenomenon of hematoporphyrin and photofrin II. Indian Journal of Biochemistry & Biophysics, 26(4), 213–218.

    CAS  Google Scholar 

  41. Hendren, S. K., Hahn, S. M., Spitz, F. R., Bauer, T. W., Rubin, S. C., Zhu, T., Glatstein, E., & Fraker, D. L. (2001). Phase II trial of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Annals of Surgical Oncology, 8(1), 65–71.

    CAS  PubMed  Google Scholar 

  42. Davies, N., & Wilson, B. C. (2007). Interstitial in vivo ALA-PpIX mediated metronomic photodynamic therapy (mPDT) using the CNS-1 astrocytoma with bioluminescence monitoring. Photodiagnosis and Photodynamic Therapy, 4(3), 202–212.

    CAS  PubMed  Google Scholar 

  43. Cavin, S., Gkasti, A., Faget, J., Hao, Y., Letovanec, I., Reichenbach, M., Gonzalez, M., Krueger, T., Dyson, P. J., Meylan, E., & Perentes, J. Y. (2020). Low-dose photodynamic therapy promotes a cytotoxic immunological response in a murine model of pleural mesothelioma. European Journal of Cardio-Thoracic Surgery, 58(4), 783–791.

    PubMed  Google Scholar 

  44. Shi, X. F., Jin, W. D., Gao, H., Yin, H. J., Li, Y. X., Huang, H., Ma, H., & Dong, H. J. (2018). A suppository kit for metronomic photodynamic therapy: the elimination of rectal cancer in situ. Journal of Photochemistry and Photobiology B, Biology, 181, 143–149.

    CAS  PubMed  Google Scholar 

  45. Morrison, S. A., Hill, S. L., Rogers, G. S., & Graham, R. A. (2014). Efficacy and safety of continuous low-irradiance photodynamic therapy in the treatment of chest wall progression of breast cancer. Journal of Surgical Research, 192(2), 235–241.

    CAS  PubMed  Google Scholar 

  46. Kniebühler, G., Pongratz, T., Betz, C. S., Göke, B., Sroka, R., Stepp, H., & Schirra, J. (2013). Photodynamic therapy for cholangiocarcinoma using low dose mTHPC (Foscan(®)). Photodiagnosis and Photodynamic Therapy, 10(3), 220–228.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank DongSung Biopharmaceuticals for generously providing Phonozen. This work was financially supported by a faculty research grant from Yonsei University College of Medicine, Seoul, S. Korea (6-2020-0088). Preliminary studies leading to this work were supported by the Terry Fox Research Institute.

Funding

The authors have no financial or non-financial interests directly or indirectly related to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Wilson.

Ethics declarations

Conflict of interest

This study was supported by a faculty research grant from Yonsei University College of Medicine, Seoul, S. Korea (6-2020-0088). Preliminary studies leading to this work were supported by the Terry Fox Research Institute. The funding sources were not involved in the study design, data collection or analysis, or manuscript preparation or submission.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HI., Lee, SH., Shin, SJ. et al. Phonozen-mediated photodynamic therapy comparing two wavelengths in a mouse model of peritoneal carcinomatosis. Photochem Photobiol Sci 22, 2563–2572 (2023). https://doi.org/10.1007/s43630-023-00470-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00470-w

Keywords

Navigation