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Abstract
The control of the camel tick, Hyalomma dromedarii is very crucial. This study evaluated the novel toxicity of photosensi-
tizers and Phoxim insecticide against H. dromedarii males using the adult immersion tests. Ticks were subjected to sunlight 
for 10 min post-treatment (PT). The optical characters of the applied materials were determined by UV–Vis spectroscopy 
(250–900 nm wavelengths). The intensity of spectra decreased as dye concentration decreased. The optical bandgap energies 
of the dyes at different concentrations were not changed as the concentration changed and decreased as the absorption peak 
of individual dyes red-shifted. The mortalities 72 h PT reached 42.2%, 44.4%, 51.1%, 71.1%, 46.7%, 48.9%, 44.4%, and 
55.6% for chlorophyllin, echinochrome, field stain, methylene blue, phthalocyanine, rhodamine 6G, riboflavin, and safranin, 
respectively. Methylene blue recorded the highest median lethal concentration  (LC50 = 127 ppm) followed by safranin, field 
stain, rhodamine 6G, phthalocyanine, echinochrome riboflavin, and chlorophyllin  (LC50 = 209, 251, 271, 303, 324, 332, and 
362 ppm, respectively, 72 h PT). Their median lethal time,  LT50, values PT with 240 ppm were 45, 87, 96, 72, 129, 115, 
131, and 137 h, respectively. The relative toxicities of the  LC50 values 72 h PT showed that chlorophyllin, echinochrome, 
field stain, methylene blue, phthalocyanine, rhodamine 6G, riboflavin, and safranin were 3.2, 3.6, 4.6, 9.1, 3.8, 4.3, 3.5, and 
5.6 times, respectively, more effective than Phoxim. Methylene blue, safranin, and field stain showed a broad absorbance 
area indicating a large photoactivity and better phototoxicity and could be used as alternative agents to synthetic acaricides.
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1 Introduction

Camel, Camelus dromedaries, is raised for milk and meat 
production, tourism, and transportation and has a signifi-
cant role in the economy, especially in the Arabian cul-
tures. Ticks are major vectors of diseases of economic 
importance as they transmit a variety of pathogens affect-
ing humans, livestock, and domestic animals [1, 2]. Ticks 
also cause discomfort through annoying bites, anorexia, 
skin spoilage, blood loss, and growth reduction [3]. The 
camel tick, Hyalomma (H.) dromedarii (Ixodidae), is 
spread throughout the northern regions of West, Central 
and East Africa, the Middle East, Asia Minor, and Central 
and South Asia [4]. It is the dominant species infesting 
camel in Egypt [5, 6]. H. dromedarii is the vector of Babe-
sia spp. (B. caballi, B. ovis, and B. bigemina), Theileria 
spp. (Theileria ovis and Th. annulata), and Anaplasma 
spp. [7–10].

The arbitrary expenditure of organic chemical pes-
ticides led to the development of tick resistance and 

environmental pollution; there are great challenges to 
using affordable alternatives to reduce the risks to humans, 
non-target organisms and the environment [11–15]. Plant-
based pesticides [16] and photosensitizer are efficient sub-
stitutes to the ordinary conventional pesticides and might 
be environmentally sound [17, 18]. Photoactive materials 
are not toxic in absence of light, but they are activated 
in light and transform into a reactive semi-stable triplet-
excited state [19]. This semi-stable triplet-excited state can 
accommodate and support photochemical reactions; as the 
oxygen (3O2) reactive singlet oxygen is gene substantial 
challenges rated (1O2) and induced a high toxic effect [20].

The optical parameters implement the effect of light 
energy at a broad range of wavelengths and find out the 
peak absorption and optical bandgap energy. The absorp-
tion UV–Vis spectroscopy is an appropriate method for 
investigating the efficacy of light on the dyes [21–23]. 
Therefore, using photosensitizers for tick management 

3P + 3O2 → P + 1O2.
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protocols against H. dromedarii could start a new genera-
tion of acaricides.

Phoxim is a potential organophosphorus acaricide [24] 
licensed for use in the presence of animals in most European 
countries [25, 26]. This study aimed to evaluate the optical 
properties and the novel acaricidal efficacy of eight photo-
active compounds and Phoxim and to evaluate their lethal 
concentration and time values against male H. dromedarii, 
as well as their toxicity indices and relative toxicities.

2  Materials and methods

2.1  Ticks collection

Hyalomma dromedarii (males) were collected from places 
around camels (5–15 years) at Toukh city, Qalyubiya Gov-
ernorate, Egypt (30° 21′ 11.6″ N and 31° 11′ 31.5″ E). Ticks 
were morphologically identified.

2.2  Photoactive compounds

Seven photosensitizers were purchased from Alfa 
Aesar, (Kandel, Germany): chlorophyllin, Natural green 
(3, E141-C34H31CuN4Na3O6); field Stain (Methylene 
blue–potassium phosphate–disodium hydrogen phos-
phate–fresh distilled water); methylene blue  (C16H18ClN3S); 
phthalocyanine  (C8H4N2)4H2); rhodamine 6G, Basic Red 
 (C28H31N2O3Cl); riboflavin (Vit  B2,  C17H20N4O6), and safra-
nin [a fluorescent dye  (C20H19ClN4)].

Phoxim (50%, an analogous dimethyl ester, 
 C12H15N2O3PS), is a commercial acaricide purchased from 
CURE VET (Pharmaceutical Company, Alexandria Gover-
norate, Egypt).

2.3  Chemical extraction of sea urchin pigments

The Red Sea urchin, Strongylocentrotus franciscanus pig-
ments (echinochrome extract) was freshly prepared accord-
ing to a previously described protocol [27] with little 
modification. Urchins were collected by divers from the 
Mediterranean shoreline of Alexandria (Egypt) and shipped 
in iceboxes and kept at − 20 °C until used. After thawing the 
ice, testes were cut, and the internal organs were evacuated. 
The spines and shells were washed with water and left to dry 
in the dark at a temperature > 10 °C for 24 h, then spines and 
shells are ground to powder, vacuum-packed in plastic bags, 
and kept at − 20 °C. The final extract included polyhydroxy-
lated naphthoquinone pigments and stored in the darkness 
at − 30 °C as a stock solution until used and we would refer 
to it as echinochrome.

2.4  Optical properties

The absorption spectra as a function of wavelengths 
(250–900 nm) using a double beam Jasco spectrophotom-
eter (Model V-670, Japan) were measured for the applied 
materials. The absorption spectra were useful in estimating 
transmittance, reflectance, absorption coefficient, and optical 
bandgap energy. The optical absorption coefficient (α) as a 
function of wavelength was determined from the absorption 
spectra according to the following formula [28]:

where A is a function of I and I0 (the intensity of the trans-
mitted and incident beam, respectively) A = log (I/I0), d is 
the film thickness.

To measure the energy absorbed or accomplished, during 
dye exposure time (to sunlight), the optical indirect bandgap 
energy was determined according to Makuła work [29]. The 
indirect optical bandgap (�h�)1∕2 can be acquired from the 
relation between the incident photon energy and the absorp-
tion coefficient in different electronic transitions [29]:

where Eg is the optical bandgap energy, β is a constant and 
γ determines the type of electronic transition which is equal 
to 1/2 or 2 for the direct and indirect transition bandgaps, 
respectively. h is the Planck constant, ν is the photon’s 
frequency.

2.5  Adult immersion test

The efficacy of the applied materials against H. dromedarii 
was evaluated through an adult immersion test, according 
to a previously described protocol, with the exception that 
ticks were subjected to direct sunlight for 10 min instead 
of a light source. Five concentrations of photosensitizers 
(240, 180, 120, 60, and 30 ppm) were freshly prepared in 
distilled water.

Each treatment group containing three replicates, 15 
males/each (45 ticks/concentration) was placed in a piece 
of mesh and immersed for 60 s in 100 mL solution of each 
concentration, and then the solution was constantly whisk-
ered during the procedure. The immersed ticks were added 
to a Petri dish containing filter paper. The negative control 
group was immersed in distilled water and the positive con-
trol group was treated with Phoxim (700, 500, 300, 50, and 
25 ppm).

Petri dishes containing ticks were exposed to direct sun-
light, between 12.00 and 2.00 PM for 10 min Petri dishes 
were left at 27 ± 2 °C and 80 ± 5% relative humidity. Tick 

� =
(

2.303 × A

d

)

�h� = �
(

h� − Eg

)�



90 Photochemical & Photobiological Sciences (2023) 22:87–101

1 3

mortalities (MOs) were recorded 0.5, 1, 24, 48, and 72 h 
post-treatment (PT).

2.6  Statistical analysis

The mortality data were evaluated using Probit analysis 
through SPSS V23 (IBM, USA) to calculate lethal con-
centration (LC) and lethal time (LT) values. The relative 
toxicity and toxicity indices were determined [30] for a 
comparison of the tested photosensitizers, where the most 
toxic photosensitizer has given 100 units on the toxicity 
index scale.

Toxicity index =  LC50 of the most toxic photosensi-
tizer × 100/LC50 of each tested photosensitizer.

Relative toxicity =  LC50 (or  LC90) of the least toxic pho-
tosensitizer/LC50 (or  LC90) of each tested photosensitizer.

Times potency =  LT50 of the least toxic photosensitizer/
LT50 of each tested photosensitizer.

3  Results

3.1  Optical properties

The absorption peaks of dyes were determined as follows; 
chlorophyllin (408 and 638 nm), echinochrome (634 nm), 
field stain (302 and 666 nm), methylene blue (292, and 
666 nm), phthalocyanine (652 and 322 nm), rhodamine 6G 
(530 nm), riboflavin (450, 378 and 288 nm), and safranin 
(522 nm).

The tested photosensitizers exhibited various absorp-
tion spectra in near ultraviolet, visible, and near infrared 
regions (250–700 nm). The absorption spectrum of meth-
ylene blue, phthalocyanine, and echinochrome appeared in 
the visible to near infra-red regions (550–680 nm). Safra-
nin and rhodamine 6G showed absorption in the middle 
visible light region, whereas field stain, chlorophyllin, and 
riboflavin showed absorption in the near ultraviolet region 
(250–440 nm) (Fig. 1).

The UV–Vis absorption spectra of the dyes as a func-
tion of various photosensitizer concentrations (30, 60, 120, 
180, and 240 ppm) were measured. The optical absorb-
ance of tested dyes follows Beer’s Law, where the absorb-
ance intensity decreased with decreasing dye concentra-
tion (Fig. 2). The experimental data show smooth linear 
fitting, which means that as the concentration decreases, 
the value of photon energy was decreased linearly. The 
solution of each dye was diluted to be readable within 
the spectrophotometer manufacture limit and the factor of 
dilution for each dye as relative absorption intensity was 
presented (Fig. 3).

3.2  Optical bandgap energy

The optical bandgap energy of Phthalocyanine at the two 
peak values was very small compared to the rest of the dyes. 
Most dyes showed more than one bandgap energy except 
safranin and filed stain. Methylene blue, field stain, and 
phthalocyanine showed low optical bandgap energies (1.75, 
1.70, and 0.95 eV, respectively). Echinochrome showed two 
optical bandgap energies (1.72 and 3.40 eV). Chlorophyllin, 
rhodamine 6G, and riboflavin optical bandgap energies were 
2.60, 2.20, and 2.40 eV, respectively (Table 1). Safranin 
showed moderate optical bandgap energy (2.09 eV) (Fig. 4).

3.3  Adult immersion test

All dyes in this study showed moderate toxic effects against 
camel tick H. dromedarii after 72 h PT, where the mortal-
ity percent (MO%) reached 42.2%, 44.4%, 51.1%, 71.1%, 
46.7%, 48.9%, 44.4%, and 55.6% for chlorophyllin, echino-
chrome, field stain, methylene blue, phthalocyanine, rho-
damine 6G, riboflavin, and safranin, respectively (Fig. 5). 
The acaricidal efficacy represented by the  LC50 values of 
chlorophyllin, echinochrome, field stain, methylene blue, 
phthalocyanine, rhodamine 6G, riboflavin, and safranin 24 h 
PT were 648, 704, 521, 340, 589, 614, 631, and 520 ppm, 
respectively. On the other hand, the corresponding val-
ues 72 h PT were 362, 324, 251, 127, 303, 271, 332, and 
209 ppm, respectively (Table 2). The data of the positive 
control group showed that all tested materials were more 
effective than Phoxim and its  LC50 values 24, 48, and 72 h 
PT were 924, 1690, and 1161 ppm, respectively (Table 2).

The relative toxicities 24 h PT indicated that chlorophyl-
lin, field stain, methylene blue, phthalocyanine, rhodamine 
6G, riboflavin, and safranin were 1.1, 1.4, 2.1, 1.2, 1.2, 1.1, 
and 1.4 folds, respectively, as toxic as echinochrome. The 
relative toxicities 48 h PT for chlorophyllin, echinochrome, 
field stain, methylene blue, rhodamine 6G, riboflavin, and 
safranin were 1.1, 1.1, 1.3, 2.4, 1.2, 1.1, and 1.5-folds, 
respectively, as potent as phthalocyanine. While the relative 
toxicity 72 h PT with echinochrome, field stain, methylene 
blue, phthalocyanine, rhodamine 6G, riboflavin, and safranin 
were 1.1, 1.4, 2.9, 1.2, 1.3, 1.1, and 1.7 folds, respectively, 
more toxic than chlorophyllin (Table 3).

The relative toxicities 24  h PT with methylene blue 
showed a high toxic effect, followed by safranin, field stain, 
and phthalocyanine (toxicity indices = 100, 65.4%, 65.3%, 
and 57.7%, respectively). Meanwhile, the toxicity indices 
of chlorophyllin, echinochrome, rhodamine 6G, and ribo-
flavin were 52.5%, 48.3%, 55.4%, and 53.9%, respectively 
(Table 3).

The toxicity indices 48 h and 72 h PT pointed out that 
methylene blue was the most effective photosensitizer with 
100% toxicity index followed by safranin (62% and 60%, 
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Fig. 1  UV–Vis optical absorption coefficient spectra of chlorophyllin (a), echinochrome (b), field stain (c), methylene blue (d), phthalocyanine 
(e), rhodamine6g (f), riboflavin (g), and safranine (h)
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respectively), then field stain (52.6% and 50.6%, respec-
tively). Such values were also recorded for chlorophyllin 
(44.3% and 35.1%) echinochrome (47.5% and 39.2%), phth-
alocyanine (41.8% and 74.3%), rhodamine 6G (48.5% and 
46.8%), and riboflavin (42.9% and 38.3%) (Table 3).

Regarding the relative toxicities of the  LC50 values 72 h 
PT, chlorophyllin, echinochrome, field stain, methylene blue, 
phthalocyanine, rhodamine 6G, riboflavin, and safranin were 
3.2, 3.6, 4.6, 9.1, 3.8, 4.3, 3.5, and 5.6, respectively, times 
more toxic than Phoxim. On the other hand, 24 h PT, relative 
toxicities were 1.4, 1.3, 1.8, 2.7, 1.6, 1.5, 1.5, and 1.8-folds, 
respectively (Table 4).

According to their speed of killing ticks, the  LT50 val-
ues PT with 240 ppm of chlorophyllin, echinochrome, 
field stain, methylene blue, phthalocyanine, rhodamine 
6G, riboflavin, and safranin were 137, 131, 87, 45, 115, 

96, 129, and 72 h, respectively (Table 5). The matching 
values PT with 180 ppm, chlorophyllin, echinochrome, 
stain, methylene blue, phthalocyanine, rhodamine 6G, 
riboflavin, and safranin were 150, 188, 117, 52, 166, 129, 
194, and 100 h, respectively. While  LT50 values PT with 
120 ppm were 264, 434, 227, 103, 212, 182, 205, and 
203 h, respectively (Table 5). It worth to mention that  LT50 
values PT with 300, 500, and 700 ppm were 246, 190, and 
81 h, respectively (Table 6).

According to time potency, PT with 240 ppm, echi-
nochrome, field stain, methylene blue, phthalocyanine, 
rhodamine 6G, riboflavin, and safranin were 1.04, 1.6, 3, 
1.2, 1.4, 1.1, and 1.9 times, respectively, faster than chlo-
rophyllin. On other hand and PT with 180 ppm, the time 
potency of chlorophyllin, echinochrome, field stain, meth-
ylene blue, phthalocyanine, rhodamine 6G, riboflavin, and 

Fig. 2  Absorption intensity 
as a function concentration of 
individual photosensitizer
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Fig. 4  Optical bandgap energy plots of chlorophyllin (a), echinochrome (b), field stain (c), methylene blue (d), phthalocyanine (e), rhodamine6g 
(f), riboflavin (g), and safranine (h)
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Table 1  Optical bandgap energy (Eg) [measured in electron-volt (eV)] of tested photosensitizer against male Hyalomma dromedarii 

Photosensitizer Chlorophyllin Echinochrome Field stain Methylene blue

The optical bandgap energy Eg (eV) 2.60 1.72, 3.40 1.70 1.75

Photosensitizer Phthalocyanine Rhodamine 6G Riboflavin Safranine

The optical bandgap energy Eg (eV) 0.95, 1.35 2.20 2.40 2.09

Fig. 5  Mortality of the tested 
dyes compared to phoxim at a 
concentration of 240 ppm
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Table 2  Acaricidal efficacy of photosensitizer against Hyalomma dromedarii 

a Dose = ppm

Treatment Time post-treatment hour

24 h 48 h 72 h X2 Equation R2

LC50 (lower–
upper)a

LC90 (lower–
upper)

LC50 (lower–
upper)

LC90 (lower–
upper)

LC50 (lower–
upper)

LC90 (lower–
upper)

72 h 72 h 72 h

Chlorophyllin 648 (354–
4276)

4326 (1254–
2.5 ×  105)

508 (295–
2286)

4332 (1280–
1.6 ×  105)

362 (236–
972)

2849 (1035–
3.9 ×  105)

0.13 y = − 3.60 + 1.40 * x 0.99

Echinochrome 704 (362–
6322)

5719 (1437–
7.1 ×  105)

474 (281–
1911)

4058 (1239–
1.3 ×  105

324 (218–
767)

2477 (955–
2.6 ×  105)

0.23 y = − 3.63 + 1.44 * x 1.00

Field stain 521 (300–
2420)

4407 (1293–
1.7 ×  106)

428 (253–
1864)

3628 (1358–
2.7 ×  105)

251 (177–
498)

2064 (846–
1.7 ×  105)

0.02 y = − 3.31 + 1.38 * x 0.99

Methylene 
blue

340 (222–
907)

2950 (1041–
4.6 ×  105)

225 (156–
468)

2439 (893–
3338)

127 (100–
167)

699 (422–
1806)

0.07 y = − 3.61 + 1.72 * x 0.99

Phthalocya-
nine

589 (332–
3180)

4133 (1238–
1.8 ×  106)

538 (295–
3239)

4729 (1102–
2.0 ×  105)

303 (205–
694)

1655 (713–
1.3 ×  105)

0.74 y = − 3.42 + 1.38 * x 0.99

Rhodamine 
6G

614 (332–
4717)

5902 (1515–
6.8 ×  105)

464 (269–
2116)

4966 (1359–
2.6 ×  105)

271 (190–
558)

2128 (868–
1.8 ×  105)

0.11 y = − 3.46 + 1.42 * x 1.00

Riboflavin 631 (326–
4384)

6053 (1499–
6.3 ×  105)

525 (287–
3331)

6446 (1533–
7.6 ×  105)

332 (215–
926)

3264 (1089–
6409)

0.15 y = − 3.24 + 1.29 * x 1.00

Safranin 520 (290–
2868)

4500 (1072–
1.6 ×  105)

363 (223–
1280)

2365 (1255–
1.7 ×  105)

209 (153–
365)

1031 (742–
1.1 ×  105)

0.03 y = − 3.23 + 1.39 * x 0.99

Phoxim 50% 924 (691–
3666)

2303 (1226–
7.6 ×  105)

1690 (810–
1.2 ×  105)

25,614 
(5290–
3.4 ×  106)

1161 (648–
4360)

13,379 
(3788–
3.9 ×  105)

0.76 y = − 3.23 + 1.39 * x 0.89
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safranin were 1.3, 1.03, 1.7, 3.7, 1.2, 1.5, and 1.9 times, 
respectively, faster than riboflavin (Table 5).

4  Discussion

The camel tick, H. dromedarii, is infesting camels world-
wide [5, 6, 31] and considerable efforts are needed to eval-
uate new ecofriendly acaricides [32, 33]. Photosensitizer 

accumulates in the pest body and stimulates lethal pho-
tochemical reactions [17, 18]. Photosensitizers use light 
(natural or artificial) at specific absorption wavelengths 
to be fully functional and enhance their capability as pes-
ticides [19, 34].

In the current study, the toxicity of eight photosensitiz-
ers against H. dromedarii male as alternative tick control 
methods was evaluated for the first time, according to our 
knowledge, except for safranin which was applied in our 
previous study against another stage, engorged females, of 
H. dromedarii [32, 35], but this study evaluated its effect 
against H. dromedarii males.

This study showed that ticks were highly susceptible 
to all tested photosensitizers, as mortalities indicated a 
time and dose-dependent relationship. The susceptibility 
of Phoxim as a synthetic acaricide was made to compare 
its efficacy against the applied photosensitizer. The data 
showed that  LC50 of Phoxim was very high, 1161 ppm, 
72 h PT and its  LC90 values 48 and 72 h PT were very high 
25,614 and 13,379 ppm, respectively. As the recommended 
dose of Phoxim is 1 mL/L (1000 ppm), H. dromedarii has 
acquired resistance as it needs doses of Phoxim, 5 and 98 
times, respectively, more than the recommended dose is 
to be effective.

This study indicated that the toxicity indices of tested 
photosensitizers 72  h PT with chlorophyllin, echino-
chrome, field stain, methylene blue, phthalocyanine, rho-
damine 6G, riboflavin, and safranin were 3.2, 3.6, 4.6, 
9.1, 3.8, 4.3, 3.5, and 5.6, respectively, more toxic than 
Phoxim.

Methylene blue was the most effective photosensitizer 
followed by safranin and field stain  (LC50 = 127, 209, and 
251 ppm, respectively); their toxicity indices were 100%, 

Table 3  Relative toxicities and toxicity indices of the tested photosensitizer against Hyalomma dromedarii 

Toxicity index% =  LC50 of the most toxic photosensitizers × 100/LC50 of the tested photosensitizer
Relative toxicity (folds) =  LC50 of the least toxic photosensitizers/LC50 of the tested photosensitizer

Photosensitizer Treatment

Time post-treatment hour

24 h 48 h 27 h

Relative toxicities Toxicity indices Relative toxicities Toxicity indices Relative toxicities Toxicity indices

Chlorophyllin 1.1 52.5 1.1 44.3 1.0 35.1
Echinochrome 1.0 48.3 1.14 47.5 1.1 39.2
Field stain 1.4 65.3 1.3 52.6 1.4 50.6
Methylene blue 2.1 100.0 2.4 100.0 2.9 100.0
Phthalocyanine 1.2 57.7 1.0 41.8 1.2 74.3
Rhodamine 6G 1.2 55.4 1.2 48.5 1.3 46.8
Riboflavin 1.12 53.9 1.1 42.9 1.1 38.3
Safranin 1.4 65.4 1.5 62.0 1.7 60.0
Reference Echinochrome Methylene blue Phthalocyanine Methylene blue Chlorophyllin Methylene blue

Table 4  Relative toxicities of tested photosensitizer over Phoxim 
insecticide against the camel tick, Hyalomma dromedarii 

Relative toxicity (folds) =  LC50 of the least toxic photosensitizers/
LC50 of the tested photosensitizer

Photosensitizer Treatment

Time post-treatment hour

24 h 48 h 72 h

Relative toxici-
ties

Relative toxici-
ties

Relative 
toxici-
ties

Chlorophyllin 1.4 3.3 3.2
Echinochrome 1.3 3.6 3.6
Field stain 1.8 3.9 4.6
Methylene blue 2.7 7.5 9.1
Phthalocyanine 1.6 3.1 3.8
Rhodamine 6G 1.5 3.6 4.3
Riboflavin 1.5 3.2 3.5
Safranin 1.8 4.7 5.6
Phoxim 1 1 1
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60%, and 50.6%, respectively; their relative toxicities 
were 2.9, 1.7, and 1.4 times, respectively, more effective 
than chlorophyllin.; and their  LT50 values were 45, 72 and 
87 h, respectively. Analogous to our results, methylene 
blue was more toxic than hmatomporphyrin (a photosensi-
tizer) against the cotton leafworm, Spodoptera littoralis, as 
MO% PT with  10–2,  10–3, and  10–4 mg/L were 64%, 34%, 
and 18%, respectively, which decreased to 33.7%, 21%, 
and 5.7%, respectively, 10 days PT [36].

Our results are in harmony with former studies that dis-
played that the toxicity indices of methylene blue and eosin 
yellow lactone were 35.78% and 45.68%, respectively, as 
potent as rose Bengal against the cotton leafworm [37]. 
Methylene blue could be attached easily to the biological 

membrane [37]; therefore, it is considered a good pesticide 
in the presence of light.

This study indicated that safranin is a highly potent acari-
cide against male H. dromedarii  (LC50, 24 h PT = 520 ppm, 
respectively). Similar to our finding, safranin is a highly 
effective acaricide against the engorged females of H. drom-
edarii in Egypt (MO% = 100 PT with 4% for 8 h), and its 
 LC50 after 24 h was 0.78% (7800 ppm). At the  LC50 and 
 LC90 levels 24 h PT, safranin was six and 73 times more 
effective than tetramethrin.  LT50 of safranin was 0.80 h PT 
with 4% [32]. Male H. dromedarii in this study is highly sus-
ceptible to safranin than the engorged females of the same 
species [32].

Table 5  Lethal time values (h) and time potency of tested photosensitizer against male Hyalomma dromedarii 

Times potency =  LT50 of the least toxic compound/LT50 of the tested compound

Photosensi-
tizer

Concentrations

Photosensitizer conc. (ppm)

120 180 240

Lethal time Times 
potency

Lethal time Times 
potency

Lethal time Times 
potency

LT50 
(Lower–
upper)

LT90 
(Lower–
upper)

LT50 
(Lower–
upper)

LT90 
(Lower–
upper)

LT50 
(Lower–
upper)

LT90 
(Lower–
upper)

Chlorophyl-
lin

264 (116–
9320)

3477 (583–
1.5 ×  106)

1.6 150 (84–833) 3498 (427–
1.6 ×  106)

1.3 137 
(72–447)

1662 (856–
7.4 ×  105)

1.0

Echino-
chrome

434 (155–
7516)

15,350 
(1791–
9.5 ×  107)

1.0 188 (94–868) 4220 (869–
1.8 ×  106)

1.03 131 
(68–427)

4026 (980–
9.0 ×  105)

1.04

Field stain 227 (105–
1338)

5671 (1062–
4.2 ×  106)

1.9 117 (67–327) 2942 (588–
3.2 ×  105)

1.7 87 (48–224) 2034 (789–
3.7 ×  105)

1.6

Methylene 
blue

103 (45–259) 3728 (931–
6.2 ×  105)

4.2 52 (32–99) 1111 (462–
4664)

3.7 45 (23–90) 241 
(93–1514)

3.0

Phthalocya-
nine

212 (103–
3360)

2530 (505–
2.2 ×  106)

2.0 166 (86–660) 3453 (791–
1.1 ×  105)

1.2 115 
(62–339)

3389 (866–
5.8 ×  106)

1.2

Rhodamine 
6G

182 
(95–1608)

2152 (482–
5.6 ×  106)

2.4 129 (72–395) 2571 (630–
4.4 ×  105)

1.5 96 (54–248) 2299 (720–
3.2 ×  105)

1.4

Riboflavin 205 (101–
1763)

2972 (609–
6.4 ×  106)

2.1 194 (91–906) 6616 (1252–
3.0 ×  106)

1.0 129 
(63–446)

5625 (1177–
1.4 ×  106)

1.1

Safranin 203 (94–995) 6864 (1275–
3.4 ×  105)

2.14 100 (57–253) 2162 (637–
2.6 ×  105)

1.9 72 (37–169) 1247 (788–
3.7 ×  105)

1.9

Reference Echinochrome Riboflavin Chlorophyllin

Table 6  Lethal time values (h) of Phoxim against male Hyalomma dromedarii 

300 ppm 500 ppm 700 ppm

Lethal time Lethal time Lethal time

LT50 (lower–upper) LT90 (lower–upper) LT50 (lower–upper) LT90 (lower–upper) LT50 (lower–upper) LT90 (lower–upper)

246 (209–299) 510 (422–422) 190 (159–22) 417 (354–524) 81 (51–105) 246 (210–304)
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Alike our results, safranin and methylene blue were 
effective acaricides against the fourth larval instars of the 
black cutworm, Agrotis ipsilon, as poison baits and induced 
stomach and contact toxicities  (LC50 = 0.107 and 0.125%, 
respectively, 72 h PT). Sublethal concentrations of both pho-
tosensitizers adversely affected the developmental stages of 
A. ipsilon [37]. Sublethal concentrations of safranin [32] 
and rose Bengal [35] adversely affected the reproductive 
potential of treated engorged females of H. dromedarii by 
reducing the number of ovipositing females, fecundity, and 
egg hatchability.

Some other dyes (photosensitizers) act as effective pesti-
cides; rose Bengal was 100 times more toxic than chlorpyri-
fos against the common house mosquito, Culex pipiens [38].

As far as we know, there is a patent related to the supe-
rior toxic effects of some photosensitizers as safranin O, 
auramine O, eosine Y; erythrosine B, D, and C; orange 5; 
and thioflavine T against arthropods and reported that they 
exhibit far toxic efficacy compared to phloxine B, once used 
with an optimal adjuvant. Without the specific adjuvant, 
such dyes have little or no lethal effect [39]. Unluckily, this 
patent did not specify which arthropods or the adjuvant was 
used.

In the present work, the least effective photosensitiz-
ers were echinochrome and chlorophyllin  (LC50 = 332 and 
324 ppm, respectively). In contrary to our finding, copper 
and magnesium chlorophyllin photosensitizers have also 
toxic effect against the cotton leafworm, Spodoptera litto-
ralis, as they reduced the number of larvae 15 days post-
spraying and in the second season, 74–90% and 65–95%, 
respectively [40]. Furthermore, chlorophyllin had high toxic-
ity against Culex and Chaoborus  (LD50 = 6.88 and 24 mg/L, 
respectively [41];  LD50 values of chlorophyllin were 2.34 
and 5.88 mg/L against Aedes and Anopheles species, respec-
tively [42] and a lethal dose of 8 mg per Chaoborus crys-
tallinus larvae [43]. Chlorophyll derivatives can be effec-
tively used against malaria, filarial, and dengue vector-borne 
diseases [44]. Echinochrome had high antibacterial, anti-
inflammatory [45] and antiviral effects [46]. After treatment 
for 3 days in the present study, Rhodamine 6G, riboflavin, 
and phthalocyanine were the least effective photosensitizers 
 (LC50 = 271, 332, and 303 ppm, respectively).

Other than the pesticidal effect, photosensitizers are 
efficacious photodynamic materials against many patho-
gens such as fungi, protozoa, and bacteria and resolve 
many environmental problems, such as water disinfec-
tion, sterilization, prohibition of water-borne diseases 
[47], purification of wastewaters, and preservation of ani-
mal species [48]. The photoactive characteristic counts 
on several factors, such as photostability, irradiation time, 
concentration, fluency rate of light delivered, and the other 
biological, physical and chemical features [49, 50].

Dyes are inactive in the dark and no insect mortali-
ties were recorded in the dark [51]; therefore, sunlight 
is very important for dye activation. Exposure of a pho-
tosensitizer to sunlight as in this study would be more 
effective and viable than an artificial light source due to 
the fact that sunlight possesses all wavelengths from UV 
to visible light [32, 35]. This study revealed that meth-
ylene blue exhibited absorption peaks at wavelengths of 
visible to near infra-red region (560–665 nm). Similar 
finding was recorded [52, 53]. In addition, the absorbance 
of safranin and rhodamine 6G in the present study showed 
peaks at wavelengths of visible light at (450–550 nm: and 
485–540 nm, respectively). Analogous data were reported 
[54–57]. Echinochrome showed absorption peaks of 294 
and 550–650 nm. The present work indicated that field 
stain and chlorophyllin showed absorption peaks at low 
wavelengths, which means higher photon energy. Phthalo-
cyanine showed a peak at 630 in this study; like finding 
was recorded [58, 59]. Riboflavin also shows a broad range 
of absorption at low values of wavelengths (342–480 nm) 
in this study; comparable range was reported [60].

Photosensitizer molecules absorb photon energy with 
the appropriate wavelength, which excites an electron into 
a higher energy orbital according to the Jablonski diagram 
[61]. The more absorption wavelengths, the more energy 
participates in the photosensitizer molecule. Therefore, 
dyes such as methylene blue, phthalocyanine, rhodamine 
6G, safranin, and echinochrome are likely to acquire 
higher energy, because they exhibit absorption wave-
lengths peaks in the visible light range from 400 to 700 nm 
[54, 59]. Because of listed variations of the absorption 
ranges, these dyes are good candidates as pest control. 
Similar findings were recorded for safranin [32].

Optical measurements of the tested photosensitizers 
were recorded immediately and a few days after treatment 
of the ticks show high absorbance, especially for methyl-
ene blue owing to their photostability and photoliability 
which suggested they can be used in sunlight for a long 
time. Methylene blue is stable enough to be used in sun-
light and not easily degraded and needs additional help for 
its degradation as titanate nanoparticles [62] and graphene 
oxide or tin oxide [63–65].

Phthalocyanine and echinochrome, as well as methyl-
ene blue, exhibit absorption peaks in the visible to near-
infrared spectral region (between 640 and 700 nm) and 
they have a wide optical bandgap which does not provide 
enough energy to the photon to excite [19]. This also sup-
ports their stability in long storage and for their applica-
tion in the presence of sunlight.

The optical bandgap energy determines how much energy 
of the light or sun is needed for the photon to excite. The 
behavior of the applied dyes is assumed to be of indirect 
bandgap (n = 1/2). It is interesting to note that the optical 
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bandgap was not altered with increasing dye concentration 
as expected because of the absorption peak was not shifted 
because of concentration change. This was explained by the 
linear relationship between photon energy and concentration.

Optical bandgap energies of phthalocyanine, chloro-
phyllin, echinochrome, rhodamine 6G, and Riboflavin in 
this investigation showed more than one optical bandgap 
energy indicating more activity over a broad range of pho-
ton frequencies, representing higher lethal capability. These 
data agree with the phototoxicity of tested photosensitizers 
[66–68].

Although safranin and phthalocyanine in this work have 
one bandgap energy and energies were still low, indicating 
that they could be applied as a potent pesticide. Low values 
of optical bandgap, as well as the broadening of the absorp-
tion spectra, were pointing out good photoactive dye [69].

Photosensitizers’ toxicity mechanisms against arthropods 
pest were summed up [70]. The membranes of the midgut 
wall seem to be the first susceptible sites to be photo dam-
aged. The symptoms appeared in membrane permeability 
as well as alteration of potassium levels in the hemolymph. 
Photosensitizers affect water level, weight, and protein mass, 
leading to fatal energy compression in the treated pests. A 
reduction in the fertility rate has been exhibited as a second-
ary effect. Photosensitizers also induce morphological and 
physiological mutations. They also affected the immature 
stages and the reproductive outcome of the treated pests [32, 
35–37].

5  Conclusions

This study revealed that H. dromedarii had acquired resist-
ance against phoxim and evaluated a novel approach of 
using photosensitizers against ticks as an alternative con-
trol strategy [31]. Methylene blue was the most efficient 
photosensitizer followed by safranin and field stain. They 
exhibit rather much broader absorption spectra, higher 
absorption intensity compared to the other dyes. Whereas 
the phthalocyanine, rhodamine 6G, and riboflavin exhib-
ited almost equal toxic effects with almost comparable 
optical properties. While echinochrome and chlorophyl-
lin have the least toxic effect, which was supported by 
their lowest relative absorption intensity. The optical 
parameters together with results of the toxicity measure-
ments suggested that the phototoxicity of the tested pho-
tosensitizer dyes was strongly related to their photoactiv-
ity and can be correlated. Methylene blue, safranin, and 
field stain showed better stability and a broad absorption 
range. Therefore, it is recommended to use methylene 
blue followed by safranin and field stain for field applica-
tion (on hosts and the environment) after revealing their 

ecotoxicological profile to avoid pest resistance and reduce 
the reliance on chemical acaricides.
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