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Abstract 
The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are stud-
ied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling 
Hamiltonian, which includes the two lowest ��∗ excited states and a n�∗ state, which has high energy in the Franck–Condon 
zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes 
of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force 
constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict 
a time scale of 10–15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in 
time-resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experi-
ments, it is found that the reaction initiated by 1��∗

⟵ S
0
 photoexcitation proceeds essentially on a single potential energy 

surface, and the observed coherences bear signatures of Duschinsky mode-mixing along the reaction path. The dynamics 
after the 2��∗

⟵ S
0
 excitation are instead nonadiabatic, and the n�∗ state plays a major role in the relaxation process. The 

simulations suggest a mainly active role of the proton in the isomerization, rather than a passive migration assisted by the 
vibrations of the benzoquinoline backbone.

Graphic Abstract
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1  Introduction

Excited state proton or hydrogen transfer reactions are 
among the most ubiquitous and widely studied processes 
in photochemistry [1–4]. An important reason is that they 
are prototypical models to study fundamental acid-base 
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chemistry, because the migration of the proton from a donor 
to an acceptor group can be initiated precisely and then fol-
lowed in time. In addition, the mechanistic understanding of 
the proton transfer is crucial for the development of fluores-
cent sensors, sunscreen agents and optoelectronic devices 
[5–7]. In particular, excited state intramolecular proton 
transfers (ESIPT), which typically occur in molecules pos-
sessing an intramolecular hydrogen bond, are among the 
fastest reactions in chemistry, and can proceed on a time 
scale of few tens of femtoseconds [8–11].

The ultrafast reaction kinetics is the reason why, although 
evidence of ESIPT exists from the 50s, the detailed elu-
cidation of the reaction mechanism relies on observations 
performed with modern time-resolved spectroscopic tech-
niques. A variety of sophisticated spectroscopies, based on 
different sequences of laser pulses with variable delays and 
wavelengths, has allowed the monitoring of ultrafast ESIPT 
in the femtosecond time scale [10–16].

Given the relevance of this process and the complexity 
of such ultrafast measurements, theoretical approaches are 
needed to model the electronic structure of the involved 
chromophore, its nuclear and electronic photodynamics, 
and their manifestation in the spectroscopic observables. In 
particular, since the migrating proton can undergo tunneling 
and nonadiabatic effects might be operative [16–19], it is 
crucial to develop computational strategies where at least 
the H atom motion is treated quantum mechanically [20–24].

A prototypical molecule to investigate ultrafast ESIPT 
and explore the potentialities of new spectroscopic tech-
niques is 10-hydroxybenzo[h]quinoline (HBQ), which 
undergoes the enol to keto photoisomerization depicted in 
Fig. 1.

This photoreaction was first reported in Ref. [25] and 
studied by Chou et al. using transient absorption and fluores-
cence upconversion spectroscopy with a time resolution of 
150–200 fs.[26] In that study, performed with cyclohexane 
as solvent, a time constant of ∼ 330 fs was attributed to a 
S2 ⟶ S1 internal conversion and, therefore, a nonadiaba-
tic reaction mechanism was proposed. Subsequent transient 
absorption experiments of Takeuchi and Tahara [27] using 
pulses shorter than 30 fs estimated a proton transfer time 
of 25 ± 15 fs for HBQ in cyclohexane and revealed that the 
photoreaction is accompanied by coherences, which, once 
resolved in frequency, could be attributed to vibrational 
modes of the benzoquinoline skeleton in the frequency range 

0–800 cm−1 . These coherences survive for more than 2 ps 
and were observed as well by Riedle and coworkers for HBQ 
and similar chromophores [28, 29], leading to the conclu-
sion that the reaction actually proceeds on a single potential 
energy surface, because nonadiabatic processes lasting for 
hundreds of femtoseconds would lead to a rapid vibrational 
dephasing [27]. In addition, it was suggested [28, 29] that 
the proton transfer coordinate might have a rather passive 
role in the reaction, which might be driven by some skeletal 
vibrations which bring the hydroxyl group and the N heter-
oatom close to each other.

Joo and coworkers performed ultrafast time-resolved 
fluorescence experiments on HBQ and its deuterated form 
(DBQ) in methanol and cyclohexane solutions [11, 30], 
and found proton transfer times of 12 ± 6 fs for HBQ and 
25 ± 5 fs for DBQ, with little dependence on the solvent. 
Since these time scales are compatible with the factor 

√
2 

expected for a ballistic proton migration, the authors sug-
gested that it is the proton to have the active role in the 
reaction, whereas vibrational coherences form afterwards. 
Moreover, time-resolved fluorescence anisotropy measure-
ments by Lee and Joo [31] revealed a component of ≈ 300 fs 
in the anisotropy decay, which was assigned to an internal 
conversion as initially suggested by Chou et al. [26]

The most recent transient absorption experiments per-
formed for HBQ in ethanol had a time resolution of ≈ 10 fs , 
which allowed the resolution of coherent oscillations in the 
spectroscopic signal with frequencies up to 3000 cm−1 [19]. 
The authors explained their observations using a nonadiaba-
tic model based on two coupled harmonic potential energy 
surfaces, including Duschinsky rotations. Only assuming 
an internal conversion between the two surfaces they could 
reproduce the frequencies of the oscillations observed exper-
imentally. Therefore, the coherences were interpreted as a 
signature of non-Born–Oppenheimer reaction dynamics.

In summary, different interpretations are still open for 
the rich amount of data provided by the numerous experi-
mental studies. The extent to which nonadiabatic effects are 
involved in the ESIPT mechanism, the assignment of the 
observed coherences, and their connection to the active or 
passive role of the proton are still under debate. Surprisingly, 
the computational investigations of the electronic structure 
of HBQ are scarce and few example of dynamical simu-
lations are available, based on two-dimensional quantum 
dynamics [28] or on classical trajectories [32], but limited to 
an isolated electronic excited state. The nonadiabatic effects 
invoked in the experimental works cited above have never 
been included in classical or quantum dynamical simulations 
based on ab initio potential energy surfaces.

This work has a double scope. In the first instance, it 
aims at interpreting the body of experimental results for 
the ultrafast excited state dynamics of HBQ, and clarify the 

Fig. 1   ESIPT reaction of HBQ
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debated questions mentioned above. This goal is pursued by 
constructing a multi-state multi-mode diabatic vibronic cou-
pling Hamiltonian for HBQ, starting from quantum chemical 
calculations. This model is then used to simulate the photo-
reaction adopting a full quantum dynamical treatment based 
on the Gaussian-based multiconfigurational time-dependent 
Hartree method [33]. In this way the possible nonadiabatic 
processes and the motion of light atoms are treated in the 
most rigorous way as possible. The formulation of a general 
protocol for this task, applicable to large classes of ESIPT 
reactions, is the other objective of this work.

The rest of the paper is organized as follows: Sect. 2 
describes the quantum chemical investigations of the elec-
tronic structure of HBQ in the enol and keto form, which are 
instrumental to the construction of the molecular diabatic 
Hamiltonian, explained in Sect. 3. Computational details 
are given in Sect. 4. Section 5 discusses the results of the 
quantum dynamical simulations initiated by photoexcitation 
to the first and second excited states. Section 6 summarizes 
the results and concludes.

2 � Electronic structure of the enol and keto 
forms of 10‑hydroxybenzo[h]quinoline

The electronic structure of HBQ was studied using den-
sity functional theory (DFT) and its time-dependent form 
(TDDFT) for the excited electronic states. The polarizable 
continuum model (PCM) was used to account for the effects 
of a non-polar solvent (cyclohexane). Five functionals were 
tested, which differ in the amount of exact exchange ( �HF ) 
included in the total exchange functional. Although an exten-
sive functional benchmark for HBQ is beyond the purpose of 
the present work, this investigation allows the identification 

of some general features of the electronic structure of the 
keto and enol form. In addition, the functional whose predic-
tions agree most accurately with experimental data is then 
chosen to construct the diabatic vibronic coupling model 
used in the quantum dynamical simulations.

The results of the (TD)DFT study are reported in Table 1. 
The molecular geometry was optimized in the ground elec-
tronic state (for the enol form) and the first excited state 
(for the keto form), independently for each functional. A 
stable ground state keto isomer was not found. At both the 
optimized structures the four lowest singlet excited states 
include three states of ��∗ character (their irrep is A′ in Cs 
symmetry) and one state of n�∗ character ( A′′).

The 1��∗ state ( S1 ) is the brightest state. The vertical 
excitation energy predicted by TDDFT for the enol isomer 
increases for increasing fraction of exact exchange, rang-
ing from 3.24 eV for the TPSSh functional ( �HF = 0.1 ) to 
3.76 eV for MN15 ( �HF = 0.44 ) and 3.94 eV for the range-
separated �B97XD functional.

All tested functionals predict that the four excited states 
get stabilized upon ESIPT. For the two lowest ��∗ states 
the energy difference between the enol and keto structures 
is very similar among all functionals and is ≈ 0.75 eV 
and ≈ 0.35 eV for the 1��∗ and 2��∗ states, respectively. 
Although these are “static” results, the fact that the energy 
separation between the lowest ��∗ states increases upon 
photoisomerization suggests a mechanism involving a sin-
gle Born–Oppenheimer surface, at least for long wavelength 
photoexcitation.

The five tested functionals agree in placing the dark A′′ 
state as the fourth excited state in the enol region. Accord-
ing to TPSSh, B3LYP and PBE0, this is the state which 
gets mostly stabilized upon ESIPT, with an energy relaxa-
tion in the range of 0.9–1.2 eV. The reason can be found 

Table 1   Energies of the ground and the four lowest electronic excited states of HBQ, evaluated at the optimized geometries of the enol and the 
excited keto isomers using different DFT functionals and the Def2-TZVP basis set

The optimizations were performed individually for each functional, and the zero of energy is set at the S
0
 minimum and the oscillator strength is 

given in parenthesis. All energies are in eV. The fraction of exact exchange �
HF

 is given in parenthesis for each functional (for the long range cor-
rected functional �B97XD �

HF
 varies over the given range). The experimental data are taken from Ref. [28]

Geometry Electronic state TPSSh [34] B3LYP [35] PBE0 [36] MN15 [37] �B97XD [38] Exp.
(0.1) (0.2) (0.25) (0.44) (0.16–1)

S
0
 minimum 1��

∗ 3.24 (0.17) 3.41 (0.19) 3.53 (0.21) 3.76 (0.23) 3.94 (0.24) 3.26
2��

∗ 3.69 (0.03) 3.81 (0.03) 3.93 (0.03) 4.11 (0.04) 4.32 (0.05)
3��

∗ 4.20 (0.06) 4.33 (0.08) 4.49 (0.10) 4.71 (0.16) 4.97 (0.21)
1n�

∗ 4.42 (0.00) 4.60 (0.00) 4.70 (0.00) 4.70 (0.00) 5.01 (0.00)
1��

∗ minimum S
0

0.53 0.57 0.59 0.70 0.63
1��

∗ 2.52 (0.15) 2.64 (0.17) 2.78 (0.19) 3.04 (0.24) 3.19 (0.29)
2��

∗ 3.38 (0.06) 3.47 (0.06) 3.60 (0.06) 3.80 (0.05) 3.94 (0.05)
3��

∗ 4.00 (0.02) 4.10 (0.03) 4.28 (0.04) 4.51 (0.05) 4.64 (0.09)
1n�

∗ 3.21 (0.00) 3.53 (0.00) 3.77 (0.00) 4.23 (0.00) 4.41 (0.00)
Stokes shift 1.25 1.35 1.35 1.42 1.38 1.28
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by inspecting the Kohn–Sham orbital of the keto isomer, 
depicted in Fig. 2. The dominant configuration in the 1n�∗ 
state (simply denoted n�∗ hereafter) for the photoproduct 
is a transition from the (non-bonding) lone pair of the car-
bonyl oxygen atom, which becomes a bonding orbital at the 
enol structure and has therefore a lower energy. Although 
this state has been identified in previous theoretical inves-
tigations [28], its role in the dynamics of HBQ, induced by 
S1 ⟵ S0 and S2 ⟵ S0 excitations, has never been studied.

The energy stabilization of the n�∗ state upon proton 
transfer is higher for functionals with lower fraction of 
exact exchange. In particular, the TPSSh, B3LYP and PBE0 
functionals predict that both the 2��∗ and the n�∗ state are 
in principle accessible upon vertical 1��∗

⟵ S0 excita-
tion, even without taking their geometrical relaxation into 
account. In Sect. 5.1 this possibility is explicitly tested by 
dynamical simulations.

The calculated energies are compared with the available 
data obtained by the experimental absorption and fluores-
cence spectra of HBQ of Ref. [28]. The TPSSh functional 
gives the best agreement with the experiment, both for the 
vertical excitation energy, compared with absorption maxi-
mum, and the Stokes shift. Therefore, this functional is cho-
sen for further modeling of the potential energy surfaces 
(PESs). On the other hand, the energy gaps between excited 
states and the oscillator strengths, which are key quantities 
to define the diabatic model of Sect. 3, are rather similar 
for different DFT functionals or as compared with coupled-
cluster results [28]. Therefore, the findings obtained by the 
dynamical simulations described below are expected to be 
rather robust.

Figure 3 shows potential energy cuts of the ground and 
excited states of HBQ along a rectilinear dimensionless 
coordinate Q1 , (defined precisely in Sect. 3.1) which con-
nects the minima of the enol and the excited state keto form, 

Fig. 2   Kohn–Sham orbitals involved in the most relevant excitations 
for the three lowest excited states of the keto isomer of HBQ, calcu-
lated at the optimized S

1
 geometry at the TPSSh/Def2-TZVP level

Fig. 3   Rigid (full lines) and relaxed (dashed lines) TPSSh/Def2-
TZVP adiabatic potential energy scans of the lowest singlet states of 
HBQ along the dimensionless rectilinear coordinate Q

1
 (defined in 

Sect.  3), which connects the minima of the S
0
 and the 1��∗ states. 

The sketch shows the Cartesian displacements associated with a dis-
tortion along Q

1
 around the S

0
 minimum
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calculated at the TPSSh/Def2-TZVP level (full lines). This 
“straight line” reaction pathway is predicted to be barrierless 
for the reaction proceeding on S1 , in line with the observa-
tion that the ESIPT reaction occurs on an ultrafast time scale 
of < 20 fs [28]. A conical intersection between the states 
2��∗ and n�∗ , found at a structure intermediate between 
the reactant and the product, provides an electronic relaxa-
tion channel for a photoreaction initiated by the 2��∗

⟵ S0 
excitation.

This work focuses on the dynamics initiated by the 
1��∗

⟵ S0 and 2��∗
⟵ S0 photoexcitation. At all the 

investigated geometries the 3��∗ state lies 0.5–1.0 eV 
above the 2��∗ state. Therefore, even for dynamics initiated 
in the 2��∗ surface, the 2��∗

⟶ 3��∗ internal conver-
sion is expected to be much less likely than the compet-
ing 2��∗

⟶ n�∗ and 2��∗
⟶ 1��∗ processes. For this 

reason, and to make computations more easily feasible, the 
dynamical simulations of the present work only include the 
manifold of coupled 1��∗ , 2��∗ and n�∗ states.

3 � Construction of a diabatic vibronic 
coupling model for HBQ

The preliminary exploration of the potential energy surfaces 
of HBQ suggests that the states 1��∗ , 2��∗ and n�∗ might 
be operative in the photodynamics initiated by light pulses 
with wavelengths in the range 320–380 nm [28]. To simu-
late the photoreaction quantum mechanically, a multimode 
diabatic vibronic coupling Hamiltonian is constructed using 
a protocol presented in this section and based on quantum 
chemical data, which, in this application, are obtained by 
TDDFT calculations using the TPSSh functional.

The diabatic electronic states are obtained by an orthogo-
nal transformation between the adiabatic (Born–Oppenhe-
imer) states [39, 40]. For ease of notation, in this and the 
subsequent Sections, the states 1��∗ , 2��∗ and n�∗ , appro-
priately reordered, are also denoted �1⟩ , �2⟩ and �3⟩ , respec-
tively. The diabatic states �̃1⟩ , �̃2⟩ and �̃3⟩ are given as [40]

and are required to be associated with electronic wavefunc-
tions which vary the least as possible as a function of the 
nuclear geometry. The matrices �x(�) , �y(�) and �z(�) are 
3 × 3 rotation matrices depending on the mixing angles � , 
� and �,

(1)
⎛⎜⎜⎝

�̃1⟩
�̃2⟩
�̃3⟩

⎞⎟⎟⎠
= �z(�)�y(�)�x(�)

⎛⎜⎜⎝

�1⟩
�2⟩
�3⟩

⎞⎟⎟⎠
,

The diabatic PESs are related to the adiabatic ones as

and are parametrized according to a predefined ansatz 
inspired by the reaction path formalism [41–43].

3.1 � Reaction path Hamiltonian

The construction of the Hamiltonian starts with a frequency 
calculation performed at the optimized minimum of S0 , to 
obtain frequencies �i and (mass-weighted) normal modes q′

i
 

(after projecting out translations and infinitesimal rotations); 
N dimensionless normal modes are obtained by frequency-
weighting, qi = q�

i

√
�i∕ℏ . At the S0 minimum HBQ has a 

Cs geometry; the in-plane vibrations transform according to 
the irreducible representation a′ , whereas the out-of-plane 
distortions have a′′ symmetry.

An effective dimensionless mode Q1 is then constructed 
as a linear combination of the qis,

where the coefficients Uj1 are defined in such a way that Q1 
connects rectilinearly the minima of S0 and the 1��∗ state, 
i.e. the equilibrium structures of the enol and keto isomers 
of HBQ. In practice, Q1 coincides by more than 90% with 
the normal mode associated with the O–H stretch of HBQ. 
Given that the minimum of the 1��∗ has also Cs symmetry, 
the mode Q1 is totally symmetric.

Normalizing the coefficients such that 
∑

j U
2
j1
= 1 , the 

vector {Uj1} is regarded as the first column of an orthogonal 
transformation matrix which connects the dimensionless 
normal modes to a new set of effective coordinates, among 
which a proton transfer mode Q1—the “reaction 

(2)

�x(�) =

⎛
⎜⎜⎝

1 0 0

0 cos � sin �

0 − sin � cos �

⎞
⎟⎟⎠
,

�y(�) =

⎛
⎜⎜⎝

cos � 0 sin �

0 1 0

− sin � 0 cos �

⎞
⎟⎟⎠
,

�z(�) =

⎛⎜⎜⎝

cos � sin � 0

− sin � cos � 0

0 0 1

⎞
⎟⎟⎠
.

(3)

⎛
⎜⎜⎝

W
1
W

12
W

13

W
12

W
2
W

23

W
13

W
23

W
3

⎞
⎟⎟⎠
=�z(�)�y(�)�x(�)

×

⎛⎜⎜⎝

V
1

0 0

0 V
2

0

0 0 V
3

⎞⎟⎟⎠
× �T

x
(�)�T

y
(�)�T

z
(�),

(4)Q1 =

∑
j

qjUj1,
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coordinate”—is identified. Similarly, the remaining modes 
are given as Qr =

∑
j qjUjr and are regarded as “skeletal 

vibrations”. The precise definition of the remaining coeffi-
cients Ujr , with r = 2,… ,N  , is not necessary at the moment 
and is given in Sect. 3.3.

Having defined the reaction mode, relaxed potential 
energy scans are performed by optimizing the geometries 
of the adiabatic states S0 , �1⟩ , �2⟩ and �3⟩ along a grid of Q1 
values. The relaxed scans obtained at the TDDFT level for 
HBQ are shown in Fig. 3 and the optimization were per-
formed imposing the Cs symmetry, a feature that is helpful 
for the subsequent diabatization procedure.

Q1 - d e p e n d e n t  r e a c t i o n  p a t h s , 
�s(Q1

) =

(
as,2(Q1

),… , as,N(Q1
)

)
 , are thus obtained by col-

lecting the optimized structures for each adiabatic electronic 
state s, including the ground state ( s = 0 ). The diagonal 
diabatic PES of Eq. (3) are approximated using a general 
quadratic reaction path potential,

where the (column) vector � = (Q2,… ,QN) collects the 
skeletal modes, and Es(Q1) , �s(Q1) and �s(Q1) are the dia-
batic energy, gradient and Hessian along the adiabatic reac-
tion path for each electronic state. In particular, this ansatz 
includes Duschinsky correlations between modes, which 
are believed to be important in proton transfer processes 
[44, 45]. The parameters of Eq. (5) are obtained from the 
corresponding adiabatic quantities (obtained ab initio) by 
differentiating the diagonal entries of Eq. (3) with respect 
to the skeletal modes [46] at the geometries on the reaction 
paths. This operation requires the knowledge of the deriva-
tives of the mixing angles with respect to the coordinates 
Qr  , which are, in turn, obtained by differentiating the off-
diagonal entries of Eq. (3), once the diabatic couplings W12 , 
W13 and W23 are known.

To this end, an ansatz is chosen for these functions. The 
coupling between the two ��∗ states is simply taken as only 
dependent on Q1 , i.e. W12(Q1,�) ≡ W12(Q1) ; the couplings 
between the n�∗ state and the ��∗ states are taken as lin-
ear functions of the out-of-plane skeletal modes, with Q1

-dependent coefficients,

The diabatic couplings are parametrized according to the 
property-based approach described in Sect. 3.2. The lengthy 
operations to obtain the diagonal diabatic geometrical 

(5)
Ws =Es(Q1

) + �T
s
(Q

1
)

(
� − �s(Q1

)

)

+
1

2

(
� − �s(Q1

)

)T
�s(Q1

)

(
� − �s(Q1

)

)
,

(6)
Ws3(Q1,�) =

∑

j

� (qj) = a��

�s3,j(Q1)qj, s = 1, 2.

derivatives from the adiabatic ones are given in detail in the 
Supporting Information.

3.2 � Property‑based diabatization

The property-based diabatization [46] is based on the transi-
tion dipole moments between the S0 and the excited states, 
and has strong similarities with the oscillator strength dia-
batization of Ref. [47] and the procedures used in Refs. [48, 
49] to diabatize the ��∗

∕n�∗ intersections of nucleobases.
The structures along the reaction paths are planar and, 

due to this symmetry, the n�∗
⟵ S0 electric dipole tran-

sition is polarized perpendicularly to the molecular plane 
xy. This transition turns out to be essentially dark, with the 
oscillator strength lower than 10−4 in the keto region. The 
two ��∗

⟵ S0 transitions are polarized in parallel to the 
plane of the molecule, along nearly orthogonal directions.

Therefore, for the planar molecule the ��∗ states are 
taken as uncoupled from the n�∗ state, i.e. � = � = 0 in Eqs. 
(1)–(3) at Cs structures. This guarantees that the symmetry of 
the electronic states is not broken upon diabatization. Con-
cerning the two ��∗ states, to enforce an electronic structure 
that depends minimally on the geometry as possible, the 
electronic wavefunctions are mixed so to impose the orthog-
onality between the respective transition dipole moments,

where � is the dipole operator. This is the same strategy 
adopted in Ref. [47]. In principle, the condition of Eq. (7) 
can be applied at arbitrary geometries. In this work, to use 
a minimum number of quantum chemical calculations, it 
is applied only along the relaxed cut for the 2��∗ state, i.e. 
at geometries where the two ��∗ states are the closest and 
the internal conversion more likely. Replacing Eq. (1) into 
Eq. (7) the mixing angle along the reaction path is found by 
solving the equation

where �01 and �02 are the adiabatic transition dipole 
moments. The 1��∗

∕2��∗ diabatic coupling is finally 
obtained from Eq. (3),

Note that the fact that � = � = 0 at Cs structures significantly 
simplifies the derivation.

The ��∗
∕n�∗ couplings are found by forcing the polariza-

tion of the n�∗
⟵ S0 transition to be perpendicular to the 

(7)�̃01 ⋅ �̃02 = ⟨S0���̃1⟩ ⋅ ⟨S0���̃2⟩ = 0,

(8)(tan(2�))�=�2(Q1)
=

(
2�01 ⋅ �02

�
2
01
− �

2
02

)

�=�2(Q1)

,

(9)W12(Q1) =

(
sin(2�)

V2 − V1

2

)

�=�2(Q1)

.
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molecular plane. Denoting �̂ and �̂ the unit vectors defining 
the plane, the condition

is imposed not only at Cs geometries but also for first order 
out-of-plane distortions around a selected reaction path. In 
this case it is convenient to choose the reaction path for the 
n�∗ state �3⟩ . Using again Eq. (1) and evaluating the deriva-
tives of Eq. (10) one obtains the system of equations

which allows the evaluation of the gradients of the mix-
ing angles � and � for Cs geometries. Note that only distor-
tions along non-totally symmetric modes make the in-plane 
components of ��03∕�qj different from zero, i.e. they induce 
intensity borrowing from the ��∗ states. Solving for ��∕�qj 
and ��∕�qj the parameters �s3,j(Q1) of Eq. (6) are finally 
obtained by differentiating the corresponding entries of Eq. 
(3),

where the angle � is obtained using the pre-calculated func-
tion W12(Q1) and Eq. (9) evaluated for � = �3(Q1) . The gra-
dients of the adiabatic transition dipole moment are available 
from Hessian calculations performed along the reaction path 
for the n�∗ state, which need to be performed anyhow to 
parametrize the matrices �s of Eq. (5), and are available 
analytically at the TDDFT level.

In summary, the ingredients needed from quantum chem-
istry to construct the diabatic electronic Hamiltonian of Eq. 
(3) (with some minor approximations described in the Sup-
porting Information) are energies and force constants of the 
three electronic states evaluated each along the respective 
reaction path.

(10)⟨S0�� ⋅ �̂��3⟩ = ⟨S0�� ⋅ �̂��3⟩ = 0

(11)

(
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(12)
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,
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=
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− sin �

��
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) + cos �

��
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)

�=�
3
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,

3.3 � Reduced dimensionality model and anharmonic 
correction

To reduce the dimensionality of the Hamiltonian and speed 
up quantum dynamical calculations, the ��∗

∕n�∗ couplings 
are mainly concentrated into four effective coupling modes, 
constructed by orthonormalization of the modes Q′

2
 , Q′

3
 , Q′

4
 , 

Q′

5
 given by the expressions [50, 51]

where s = 1, 2 and Q∗

1
= 3, 7 are two selected values for the 

reaction coordinate Q1 , corresponding to the keto product 
and a structure intermediate between the enol and the keto 
forms. The normalized modes Q2 , Q3 , Q4 and Q5 are then 
obtained by Gram–Schmidt orthogonalization of the coor-
dinates of Eq. (13), which gives four more columns of the 
transformation matrix Ujr defined in Sect. 3.1. The gradients 
of the coupling functions W13 and W23 along the remaining 
a′′ modes turn out to be negligible for the whole range of 
Q1 values; therefore, these modes are not included in the 
simulations of Sect. 5.

Since the effective modes are constructed as linear com-
binations of dimensionless normal modes, the kinetic energy 
operator contains kinematic couplings and takes the form 
[50, 51]

where �rs =
∑

j �jUjrUjs . To minimize these couplings, 
the remaining effective modes are obtained by making the 
lower (N − 5) × (N − 5) block of the � matrix diagonal. This 
uniquely defines the transformation matrix, which, using the 
chain rule, allows one to express the Cartesian coordinates, 
gradients and Hessians in terms of the effective modes, as 
required by Eq. (3). Since, for HBQ, the Q1 modes mostly 
coincides with the normal mode associated to the O–H 
stretch, the a′ effective modes are also very similar to the 
ground state normal modes.

The inspection of the vectors �s(Q1) along the reaction 
path reveals that most modes undergo little shifts from the S0 
equilibrium, within the validity of the harmonic approxima-
tion. Therefore, the dimensionality of the model is reduced 
by including only the modes whose displacement is larger 
than 0.3 for at least one point on the Q1 grid. This results 
in a total of 30 modes in addition to Q1 , sketched in Fig. 4, 
which also reports the diagonal values of the � matrix. The 
mode Q9 , corresponding to a low-frequency collective bend-
ing of the benzoquinoline rings, is the one with the largest 
displacement, reaching a maximum shift of ≈ 2 for Q1 = 3 . 

(13)
Q�

r
=

∑

j

� (qj) = a��

�s3,j

(
Q∗

1

)
qj,

(14)T̂ = −
�

2

∑
rs

𝛺rs

𝜕
2

𝜕Qr𝜕Qs

,
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Therefore, the diabatic potentials are augmented with anhar-
monic terms of the form c3Q3

9
+ c4Q

4
9
 , parametrized by few 

additional quantum chemical computations, as explained in 
the Supporting Information.

4 � Computational details

The (TD)DFT geometry optimizations, frequency calcula-
tions and potential energy scans of the ground and excited 
states of HBQ were performed using the package Gauss-
ian 16 [52]. For all calculations the Def2-TZVP basis set 
[53] was used. The continuum polarizable model (integral 

Fig. 4   Atomic displacement vectors for the skeletal effective modes 
of HBQ included in the quantum dynamical simulations. For each 
mode, the diagonal element �

rr
 of the metric matrix of Eq. (14) 

is given in parenthesis in cm−1 . The proton transfer mode Q
1
 is 

sketched in Fig.  3 and is associated with a kinematic frequency 
�

11
= 2696 cm

−1
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equation formalism) was used, with cyclohexane as solvent, 
to account for non-polar solvation effects. A brief compari-
son with excitation energies obtained for the molecule in 
vacuo is given in the Supplementary Information.

The relaxed potential energy cuts along the coordinate 
Q1 , which can be expressed as a linear combination of Carte-
sian coordinates, were performed exploiting the generalized 
internal coordinates (GIC) module implemented in Gauss-
ian 16. Q1 was scanned from −3 to 12 with unit steps. Using 
Cs symmetry, planar stationary points were found along the 
reaction path. The frequency analysis showed that these 
structures are indeed stable minima for fixed Q1 , with the 
exception of few points for Q1 < 0 (see Supporting Informa-
tion). All Q1-dependent quantities were computed on the Q1 
grid and interpolated via a quadratic spline.

4.1 � Quantum dynamics using the G‑MCTDH method

The dynamics of HBQ following the photoexcitation to the 
1��∗ and 2��∗ states were simulated quantum mechani-
cally on the 31-dimensional diabatic vibronic coupling 
model described in Sect. 3. The time-dependent Schrödinger 
equation

was solved using the hybrid Gaussian-based multiconfigura-
tional time-dependent Hartree (G-MCTDH) approach [33, 
54, 55], which approximates the wave packets associated 
with different electronic states as a sum of Hartree products 
according to the ansatz

where s refers to the electronic state and � is a multi-index 
� = (j1,… , jN) . The coordinates are partitioned into N sub-
sets (“combined modes”), each of which is associated with 
a prescribed number of single-particle functions. For M sub-
sets of coordinates (the so called “primary modes” 
�1,… , �M  ) accurate functions �(�,s)

j
 are used, which are 

expanded on discrete variable representation (DVR) grids 
and are adapted to the different electronic states. In the pre-
sent application the primary modes include the coordinates 
Q1,… ,Q5 , which refer to the large amplitude reaction coor-
dinate and the diabatic coupling modes.

The dynamics of the remaining “secondary modes” (in 
this case the modes Q9,… ,Q58 of Fig. 4) are approximated 
by a set of frozen Gaussian wave packets (GWPs) 
g
(�)

j
∝ exp

(
−

1

2
�T
�
�

(�)

j
�
�
+ �T

�
�
(�)

j
(t)

)
 , where �(�)

j
 is a time-

(15)i�
𝜕�𝛹 , t⟩
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= Ĥ�𝛹 , t⟩

(16)

�� , t⟩ =�
s

�s⟩�
�

A
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�
(t)

×
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�=1

�
(�,s)

j
�

�
�
�
, t
� N�
�=M+1

g
(�)

j
�

�
�
�
;�

(�)

j
�

(t)
�
,

independent diagonal matrix of inverse standard deviations 
and �(�)

j
 are complex-valued vectors containing the time-

dependent parameters accounting for the motion of the 
GWPs in the phase space. All time-dependent quantities are 
propagated in time according to equations of motion derived 
from the time-dependent variational principle. To make the 
propagation more stable and save computation time, the 
same set of GWPs is used for all electronic states (single-set 
formalism in the MCTDH nomenclature [56]).

Gaussian wave packets have been already used success-
fully to simulate proton migration dynamics in the ground 
state [57]. The G-MCTDH approach is implemented in a 
self-developed code, whose details have been given in 
previous works [55, 58]. In the present calculations the 
G-MCTDH wavefunction was propagated using a sec-
ond order constant mean field scheme, whereby the mean 
fields and the Hamiltonian matrix are updated on a coarse 
time grid instead of the dense integration grid. The accu-
racy of this approximation, which significantly speeds up 
the numerical propagation, was controlled as described in 
Refs. [33, 59]. The single particle functions, including the 
GWP parameters, were propagated using a fourth-order 
Runge–Kutta integrator with adaptive step size. The equa-
tions of motion for the configuration coefficients A(s)

�
(t) , lin-

ear in the constant mean field scheme, were solved using a 
variable order Lanczos integrator [56].

The details of the structure of the G-MCTDH wavefunc-
tions used in the calculation of Sects. 5.1 and 5.2 are given in 
Table 2. The secondary modes are grouped into two subsets, 
where the first one includes the five modes which undergo 
the largest shifts along the relaxed path. The initial state in 
the quantum dynamical simulations is the vibrational ground 
state of S0 in the harmonic approximation, located in one of 
the ��∗ states,

Note that the initial Gaussian wavefunction is invariant 
under orthogonal transformations between dimensionless 
normal modes.

5 � Quantum dynamical simulations 
and discussion

5.1 � 1��∗

⟵ S
0
 excitation

5.1.1 � Reaction dynamics and time constants

The calculated electronic population dynamics after excita-
tion to the lowest ��∗ state is shown in Fig. 5a. Despite the 
presence of a coupling with the other ��∗ state and four 

(17)�� , 0⟩ = �s⟩ exp
�
−
1

2

31�
r=1

Q2
r

�
, s = 1��∗, 2��∗.
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a′′ modes inducing ��∗
∕n�∗ couplings, more than 95% of 

the wave packet remains in the initially populated electronic 
state. This is indeed expected, because the potential energy 
surface of the 1��∗ state is energetically well separated 
from the other surfaces (see Fig. 3). In particular, no curve 
crossing involving this state is observed along the reaction 
pathway. This is in contrast with the interpretation given to 
the most recent ultrafast transient absorption experiments,19 
where the observed quantum beats were interpreted using 
a two-state nonadiabatic model. Even in some earlier time-
resolved experiments a time constant around 300 fs was 
assigned to a nonadiabatic mechanism [26, 31].

The present quantum dynamical simulations, based on a 
realistic molecular Hamiltonian, suggest instead a mecha-
nism which does not substantially violate the Born–Oppen-
heimer approximation. To investigate whether these results 
are compatible with the experimental findings mentioned 
above, the vibrational coherences arising in the photoreac-
tion are analyzed. These non-trivial quantities are usually 
investigated in the so called coherent vibrational spectrum 
[19] (CVS) which is obtained by resolving the quantum 
beats of the spectroscopic signals in frequency, via Fourier 
transform. A related observable is the time-dependent aver-
age excitation energy gap between ground and excited states, 
weighted by the oscillator strength,

where the sums are over the electronic states and W0 is the 
ground state adiabatic potential ( S0 is always considered 
isolated). This quantity can be taken as a measure of the 
average photon energy measured in transient stimulated 

(18)⟨�E⟩(t) =
∑

s fs⟨� , t�s⟩�Ws −W0

�⟨s�� , t⟩∑
s fs⟨� , t�s⟩⟨s�� , t⟩ ,

Table 2   Details of the 
G-MCTDH wavefunctions 
used to simulate the dynamics 
initiated by 1��∗

⟵ S
0
 and 

2��
∗
⟵ S

0
 photoexcitation

HO-DVR and sin-DVR indicate the harmonic oscillator and the sine DVR, respectively, and the numbers 
in parenthesis are the number of grid points; the grid for the Q

1
 mode ranges from −2.6 to 11.8; n(s)

�
 is the 

number of single particle functions used for each combined mode and electronic states

Simulated process Combined mode �
�

Representation n
(s)

�

1��
∗
⟵ S

0
Q

1
sin-DVR (49) 13, 3, 3

(Q
2
,Q

3
) HO-DVR (17,17) 9, 3, 3

(Q
4
,Q

5
) HO-DVR (17,17) 8, 3, 3

(Q
9
,Q

16
,Q

19
,Q

44
,Q

54
) GWP 11

(Q
12
,Q

13
,Q

18
,Q

21
,Q

22
,Q

26
,Q

29
,

Q
34
,Q

35
,Q

36
,Q

42
,Q

43
,Q

45
,Q

47
,

Q
49
,Q

51
,Q

52
,Q

53
,Q

56
,Q

57
,Q

58
)

GWP 15

2��
∗
⟵ S

0
Q

1
sin-DVR (49) 11, 9, 8

(Q
2
,Q

3
) HO-DVR (17,17) 9, 9, 9

(Q
4
,Q

5
) HO-DVR (17,17) 7, 7, 8

(Q
9
,Q

16
,Q

19
,Q

44
,Q

54
) GWP 11

(Q
12
,Q

13
,Q

18
,Q

21
,Q

22
,Q

26
,Q

29
,

Q
34
,Q

35
,Q

36
,Q

42
,Q

43
,Q

45
,Q

47
,

Q
49
,Q

51
,Q

52
,Q

53
,Q

56
,Q

57
,Q

58
)

GWP 15

Fig. 5   a Electronic population dynamics of HBQ following the ini-
tial 1��∗

⟵ S
0
 excitation; b oscillator-strength weighted energy 

gap (purple) and Gaussian-exponential background (orange); c wave 
packet broadening along the proton transfer coordinate Q

1
 . The insets 

in panels (b) and (c) highlight the short time dynamics
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emission or fluorescence upconversion spectra (with ideal 
time resolution), and oscillates with the same quantum beats 
of the spectroscopic signals. The factors fs are the oscil-
lator strengths for the excited-to-ground state transitions. 
The calculations use the values fs = 0.146, 0.057 and 0.0 for 
1��∗ , 2��∗ and n�∗ , respectively, which were obtained by 
the TDDFT calculations at the optimized geometries of the 
different excited states.

The calculated energy gap ⟨�E⟩ is plotted in Fig. 5b. 
According to Eq. (18), the initial value, ⟨�E⟩(0) = 3.21 eV 
is the energy gap between S0 and 1��∗ averaged over the 
initial wave packet, and it is close the vertical excitation 
energy (see Fig. 3). ⟨�E⟩ decays to ≈ 2.07 eV in the first 
≈ 10 fs, indicating an initial ultrafast wave packet motion 
towards the keto region of the 1��∗ PES. Although such 
ultrashort time constant is hard to measure experimentally, 
many time-resolved spectroscopic measurements agree on 
a mechanism where the photoisomerization occurs in less 
than 20 fs [11, 19, 27]. In particular, the time scale of the 
present simulations agrees well with the time constant of 
12 ± 6 fs measured by Lee, Kim and Joo by time-resolved 
fluorescence [11, 30].

After this initial decay a slower rise on a time scale 
of few hundreds of fs is observed, accompanied by pro-
nounced oscillations due to the molecular vibrations dis-
cussed below. After 500 fs ⟨�E⟩ oscillates around an average 
value of ≈ 2.15 eV . The difference between the initial and 
the asymptotic value of ⟨�E⟩ is about 1.05 eV and compares 
well with the calculated and measured Stokes shift discussed 
in Sect. 2.

The initial decrease followed by a slight increase (or vice 
versa) has been observed, with similar time constants, in 
the pump-probe experiments of Refs. [27, 28, 31]. In most 
spectroscopic studies, a time constant of 300–350 fs was 
found for the slower step, which follows the proton transfer. 
It has been suggested [26, 31] that this might be an indica-
tion of an electronic relaxation from the 2��∗ state, which, 
depending on the excitation wavelength, might be initially 
populated. However, the present simulation suggests that a 
purely intra-state process, namely the intramolecular vibra-
tional redistribution, contributes, at least partially, to the 
observed time constant.

This is illustrated in Fig. 5c, which shows the width of 
the wave packet on the state 1��∗ along the proton transfer 
mode Q1 , evaluated as

Given that dimensionless units are used, the initial width is 
1∕

√
2 . Already the during initial reaction step (10–20 fs) the 

wave packet broadens by a factor 2.4 and the width reaches 
the value ≈ 1.7 . In the 200–300 fs time scale a slower relaxa-
tion takes place, due to the vibrational energy transfer to the 

�⟨� �Q2
1
��⟩ − ⟨� �Q1��⟩2� 1

2 .

skeletal modes. As shown in Fig. 3, the relaxed PES is rather 
shallow around the 1��∗ minimum, so that the wave packet 
tends to broaden along Q1 reaching a final width of ≈ 2.3 , 
more than three times the initial width on the ground state.

5.1.2 � Vibrational coherences

The quantum dynamical simulations predict coherent oscil-
lations during the whole dynamics. The oscillation ampli-
tude only slightly decreases after the first picosecond; after 
this time other intra- or intermolecular motions, neglected 
in the simulation, are likely to lead to an increase of the 
dephasing rate. Nevertheless, the high dimensionality of the 
simulation is adequate to model the vibrational coherences. 
To extract the ultrafast time constant and resolve the coher-
ences in frequency the oscillator strength-weighted energy 
gap ⟨�E⟩ is fitted to a sum of a Gaussian and an exponential,

The result of the fit is shown in Fig. 5b. The Gaussian term, 
with the standard deviation �1 fitted to 5.8 fs, accounts for 
the initial ultrafast decay of ⟨�E⟩ , which is associated to the 
proton transfer. Taking 2�1 as a measure of the reaction time, 
the process is predicted to occur in less than 15 fs. The sec-
ond time constant is associated to the vibrational broadening 
described in Sect. 5.1.1 and the value resulting from the fit is 
�2 = 149 ± 17 fs , which is of the same order of magnitude of 
the 300–350 fs time constant observed in numerous experi-
ments. Using various different fitting functions (e.g. only 
exponentials, three instead of two terms, etc.) values for �2 
in the range of 140–200 fs are obtained. Note, however, that 
the initial state in the dynamics corresponds to a wave packet 
created by an ideal �-pulse; the experimental finite duration 
pulses create wave packets that are narrower in energy and 
therefore could relax slightly more slowly.

Subtracting the decaying background from the energy gap 
function ⟨�E⟩ gives a residual trace which oscillates around 
zero. This trace was Fourier transformed after application 
of a Hann window to cure for the leakage due to finite time 
propagation [60]. The resulting coherent vibrational spec-
trum is shown in Fig. 6a. A number of vibrational peaks 
of different intensity are visible and their frequencies are 
reported in the figure. In the range of 0–700 cm−1 the cal-
culated sequence of peaks is in excellent agreement with 
the CVS obtained experimentally for HBQ in cyclohexane 
[11, 27, 28]. Although the experimental intensity pattern 
depends on parameters such as the duration and the carrier 
wavelength of the pulses, as well as the time resolution of 
the experiment, the intensity of the peak around 390 cm−1 
is almost always dominant, as nicely reproduced in the 
calculation.

(19)Fdecay(t) = A0 + A1e
−

t2

2�2
1 + A2e

−
t

�2 .
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A high-resolution CVS has been recently obtained exper-
imentally for HBQ dissolved in ethanol [19]. Despite the 
proticity and the higher polarity of the solvent, similar fre-
quencies were reported for the quantum beats. A summary 
of the frequencies obtained in Refs. [19, 27] is reported in 
Table 3. The agreement between the experiments and the 
quantum chemical and quantum dynamical simulations is 
excellent and validates the present computational protocol. 
The experimental peaks observed around 392–396 cm−1 
and 543–550cm−1 are reproduced as doublets in the cal-
culation, suggesting that more modes of similar frequency 
contribute to the peak. In the most recent experiment, with 

a time resolution of 11 fs, the same splittings were actually 
obtained by performing a linear prediction singular value 
decomposition of the spectroscopic signal (see the Supple-
mentary Information of Ref. [19]).

Given the absence of strong nonadiabatic effects, this 
simulation proves that the vibrational coherences emerging 
in the ESIPT reaction of HBQ are perfectly explicable with a 
process occurring on a single potential energy surface. This 
agrees with the molecular dynamics simulations by Higashi 
and Saito, who obtained similar CVS frequencies, including 
just a single Born–Oppenheimer surface.

Therefore, the present results suggest that the two state 
nonadiabatic model proposed by Kim et al. in Ref. [19] has 
been probably over-interpreted. Their model uses two har-
monic potential energy surfaces for the photoexcited HBQ, 
which refer to the enol and keto form. The normal modes 
of the two surfaces are displaced and rotated (Duschinsky 
mixing). Including a transition from the “enol” to the “keto” 
surface (and only in this case) the authors could success-
fully explain and assign the quantum beats observed in the 
transient absorption signal. Such two-state harmonic model 
is actually consistent with the present quantum dynami-
cal simulation, where the wave packet evolves essentially 
on a single anharmonic surface. However, what the model 
actually captures is the Duschinsky rotation of the skeletal 
modes along a reaction path on a single electronic state, 
rather than a non-Born–Oppenheimer dynamics.

The quantum dynamical results allow the assignment 
of the peaks in the CVS in terms of the modes of Fig. 4. 
To this end, the expectation values of the skeletal coordi-
nates, ⟨Qr⟩(t) = ⟨� , t�Qr�� , t⟩ are evaluated and resolved in 
frequencies (after exponential background subtraction and 
Hann-filtering). The Fourier transforms ⟨Q̃r⟩(�) are plot-
ted in Fig. 6 for the most relevant modes, i.e. those hav-
ing lower frequencies. The wave packet oscillates along 
the HBQ modes at the same frequencies observed in the 
CVS. In particular each of the peaks reported in Table 3 
can be assigned to a small subset of coordinates, which in 
most cases includes a single mode. The fact that multiple 
modes can contribute to the same peak is a signature of the 
Duschinsky correlations along the reaction path, mentioned 
above.

The modes which mostly contribute to each peak are 
reported in Table 3. The modes Q9 , Q12 , Q13 , Q16 , Q18 and 
Q19 , associated with the most intense peaks observed experi-
mentally and theoretically, involve displacement of either the 
N or the O atom, or both (see Fig. 4). As shown in Fig. 2, 
this is expected since the initial ��∗ excitation significantly 
alters the electron density at these atoms. Whether the vibra-
tional coherences are formed after the reaction, or in a con-
certed way, is discussed in Sect. 5.3.

Fig. 6   a Coherent vibrational spectrum for the dynamics initiated by 
the 1��∗

⟵ S
0
 excitation of HBQ, calculated by Fourier transform-

ing the oscillator strength-weighted energy gap of Fig. 5b after back-
ground subtraction; the frequencies of the main peaks are reported 
explicitly. b Fourier transform of the average wave packet trajectory 
along the a′ modes included in the dynamics; the same normalization 
is used for all modes
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5.2 � 2��∗

⟵ S
0
 excitation

The ESIPT dynamics of HBQ initiated on the second excited 
��

∗ state have never been studied theoretically, although a 
few spectroscopic experiments using pump wavelengths 
lower than 360 nm, which can induce the S2 ⟵ S0 excita-
tion, have been performed. Riedle and coworkers have also 
measured the ultrafast transient absorption spectrum and the 
CVS using a pump wavelength of 310 nm, which is near the 
2��∗ absorption maximum [28].

However, much less data are available for excitation of 
HBQ in shorter wavelength range, therefore, the simulations 
presented below have a rather predictive purpose and might 
serve as an indication to future experiments.

5.2.1 � Reaction dynamics and time constants

The electronic population dynamics following the excita-
tion to the higher ��∗ state are shown in Fig. 7a. In contrast 
to the long wavelength excitation of Sect. 5.1, the simula-
tion predicts richer nonadiabatic effects when the reaction is 
induced by shorter wavelengths. A substantial fraction of the 
wave packet leaves the 2��∗ state in the first 40–70 fs, with 
a minor amount (about 15%) relaxing directly to the lowest 
��

∗ state in the first 20 fs. The short time population dynam-
ics correlates well with the time scale of the proton transfer 
process, which is analyzed in more detail in Sect. 5.3. The 
major fraction of population, about 60%, is transferred to 
the dark n�∗ state in 60–100 fs. In a second step, a slower 
n�∗

⟶ 1��∗ internal conversion is observed and the lowest 
��

∗ becomes the most populated state after ≈ 650 fs . About 
20% of the population remains trapped in the 2��∗ state for 
the whole simulation time. This is in line with the higher 
energy gap predicted by TDDFT between the two ��∗ states 
(see Fig. 3), which makes the 2��∗

⟶ 1��∗ relaxation 
possible only in the reactant zone, and less likely after the 
ultrafast ESIPT. However, additional modes not included in 

the simulation (including solvent fluctuations) might induce 
an additional electronic relaxation after the first 0.5–1.0 ps.

Nevertheless, the n�∗ state, whose potential energy sur-
face crosses the one of the 2��∗ state, turns out to play the 

Table 3   Calculated frequencies 
of the coherent vibrational 
spectrum of HBQ following the 
1��

∗
⟵ S

0
 and 2��∗

⟵ S
0
 

photoexcitation, frequencies of 
the quantum beats observed in 
the time-resolved spectroscopic 
experiments of Refs. [27] 
(cyclohexane) and [19] 
(ethanol), and assignment in 
terms of the modes of Fig. 4

Frequency Main 
contributing 
modes

Quantum dynamics 
1��

∗
⟵ S

0

Quantum dynamics 
2��

∗
⟵ S

0

385 nm pump/620 nm 
probe (cyclohexane)

385 nm pump/670 nm 
probe (ethanol)

247 253 242 237 Q
9

389,417 391,426 392 396 Q
12
 , Q

13

527,547 535 550 543 Q
16
 , Q

18
 , Q

19

700 707 692 688 Q
21
 , Q

22

810 807 794 Q
26

862 866 842 Q
29

998 1008,1036 990 Q
34
 , Q

35

1073 1071 Q
36

Fig. 7   a Electronic population dynamics of HBQ following the ini-
tial 2��∗

⟵ S
0
 excitation; b oscillator-strength weighted energy 

gap (purple) and Gaussian-exponential background (orange); c wave 
packet broadening along the proton transfer coordinate Q

1
 . The insets 

in panels (b) and (c) highlight the short time dynamics
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major role in the relaxation process after the 2��∗
⟵ S0 

excitation. Although this state was indicated as relatively 
stable by the calculations of Ref. [28], its role in the photo-
dynamics has never been investigated. The present simula-
tions suggest instead that the n�∗ state should be taken into 
account in the study of the ESIPT initiated by wavelengths 
< 360 nm in HBQ or similar enol-keto molecules [61–63].

The weighted energy gap ⟨�E⟩ resulting from the dynam-
ics is plotted in Fig. 8b. This quantity decreases from the 
initial value of 3.70 eV, nearly coinciding with the verti-
cal excitation energy of Table 1, to an asymptotic value of 
≈ 2.40 eV. In this case another exponential function, A3e

−
t

�3 

was added to Eq. (19) to fit the background. The decays 
constant resulting from the fit are 6.5 ± 0.1  fs, 45 ± 3  fs 
and 681 ± 42  fs and are assigned to the ultrafast proton 
transfer, the initial depopulation of the 2��∗ state and the 
slower n�∗

⟶ 1��∗ vibronic relaxation. As for the initial 
1��∗

⟵ S0 transition, the latter process occurs concertedly 
with the broadening of the wave packet along the proton 
transfer coordinate, as illustrated in Fig. 7c. In this case, due 
to the larger total energy, the broadening is larger and, in the 
picosecond time scale, reaches a value of ≈ 2.6 , almost four 
times the initial wave packet width.

As written above, it is difficult to compare these theo-
retical data with experimental observations, because spec-
troscopic measurements with relatively short pump wave-
lengths are scarce. Moreover, since the 2��∗

⟵ S0 and 
1��∗

⟵ S0 bands overlap, it is difficult to create optically 
an initial wave packet purely localized in the 2��∗ state. 
However, the present results might serve to guide new exper-
iments to address the reaction mechanism. In particular, it 
is worth to emphasize that the n�∗ state is dark in emission; 
therefore, it might remain elusive in stimulated emission 
or fluorescence signals. In contrast, the novel techniques 
based on infrared probes might provide signatures of the 
transiently populated n�∗ state [64].

5.2.2 � Vibrational coherences

Compared to the case of initial 1��∗
⟵ S0 excitation, the 

coherent oscillations observed in Fig. 5b are much less pro-
nounced. This is expected by the faster dephasing due to the 
higher density of states at the wave packet energy. However, 
given the large propagation time of 4 ps, it is still possible 
to resolve them into relatively narrow frequency peaks. The 
resulting CVS is plotted in Fig. 8a and displays very similar 
frequencies to those of Fig. 6a, with the highest intensity for 
the peaks at 391 cm−1 and 535 cm−1 . As shown in Fig. 8b, the 
mode assignment is also the same.

This is in line with the experimental results of Ref. [28], 
where the CVS of HBQ in cyclohexane was found to be 
largely independent on the excitation wavelength when this 
was varied in the range of 310–380 nm. This observation 
was explained by assuming an ultrafast internal conversion 
to the lowest excited state. Indeed, the nonadiabatic quan-
tum dynamics show that, already after 40 fs, the 1��∗ state 
gives the dominant contribution to the energy gap ⟨�E⟩ , as a 
consequence of its higher oscillator strength. After 100 fs the 
1��∗ state is the most populated emissive state. The fact that 
the PESs of the states 1��∗ and 2��∗ are nearly parallel is 
also likely to facilitate the conservation of the coherences to 
a good extent, despite the high dimensionality of the system.

Fig. 8   a Coherent vibrational spectrum for the dynamics initiated by 
the 2��∗

⟵ S
0
 excitation of HBQ, calculated by Fourier transform-

ing the oscillator strength-weighted energy gap of Fig. 7b after back-
ground subtraction; the frequencies of the main peaks are reported 
explicitly. b Fourier transform of the average wave packet trajectory 
along the a′ modes included in the dynamics; the same normalization 
is used for all modes
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5.3 � Active or passive role of the proton?

The observation of the coherent vibrational motion in the 
ESIPT of HBQ and similar chromophores have stimulated 
a debate about the possibility that the proton might have a 
completely or partially passive role in the reaction. By this 
is meant that the skeletal vibrations bring the enol and the 
N heteroatom close to each other, so that the proton migra-
tion is a secondary reaction step [11]. In contrast, a mecha-
nism with the active role of the proton would imply that the 
coherences form after the reaction has taken place, due to 
the dynamics induced in the HBQ skeleton by the changed 
potential energy landscape in the keto form.

A rather passive role for the proton was suggested by 
Riedle and coworkers on the basis of transient absorption 
experiments as well as theoretical calculations on HBQ, 
its deuterated form (DBQ) and the less rigid molecule 
2-(2’-hydroxyphenyl)benzothiazole (HBT) [28, 29]. The 
faster time scale for the ESIPT in HBQ as compared to 
HBT was attributed to the generally higher frequencies of 
the HBQ backbone, which activates the reaction more rap-
idly. A semi-passive role for the proton was also reported 
by Higashi and Saito on the basis of molecular dynamics 
simulations [32].

In contrast, the time-resolved fluorescence measurements 
performed by Joo and coworkers on HBQ and DBQ support 
the active role of the proton [11, 30], because they find an 
ESIPT slower by factor ≈

√
2 upon deuteration, which is 

expected from a ballistic proton migration.
Although a rigorous definition of active vs. passive mech-

anism is hard to give, the role of the vibrations in assisting 
the reaction can be quantified, at the level of linear correla-
tions, by monitoring the Pearson coefficient [65]

for the different modes during the proton transfer process. 
C1,r(t) varies between −1 and 1. If it is close to zero for a 
certain mode Qr , then the mode can be reasonably regarded 
as a “spectator” of the photodynamics of the proton.

Figure 9a, a’ reports the vibrational distributions along 
the proton transfer mode in the first 100 fs after the photo-
excitation to the 1��∗ and 2��∗ states, respectively. They 
are obtained by integrating the squared wavefunctions over 
all remaining coordinates. The distributions are similar for 
the two cases, the main difference being a slightly larger 
broadening for the 2��∗

⟵ S0 excitation, due to the rapid 
population transfer to the other electronic states. In the first 
15–20 fs the distributions move from Q1 ≈ 0 to Q1 ≈ 6 , 
near the minima of the ��∗ states (see Fig. 3). Note that the 

(20)

C1,r(t) =

�
� , t

���
�
Q1 − ⟨Q1⟩t

��
Qr − ⟨Qr⟩t

����� , t
�

��
� , t

���Q2
1
− ⟨Q1⟩2t ���� , t

��
� , t��Q2

r
− ⟨Qr⟩2t ��� , t

�

interplay between the n�∗ and the ��∗ states, described in 
Sect. 5.2, occurs when the wave packet is mostly in the keto 
region, where the n�∗ state is more stable.

Figure 9b–e and b’–e’ reports the correlation coefficients 
of Eq. (20) for the 26 totally symmetric modes of the model 
for the two ��∗

⟵ S0 excitations. For almost all modes 
|C1,r| remains generally below 0.3 for the first 20 fs, during 
which the ESIPT takes place. The only notable exception is 
the mode Q58 , for which C1,58 reaches a value of ≈ 0.5 (see 
Fig. 9e, e’). This mode is a combination of the bending of 
the OH group and stretch of the neighboring aromatic C=C 
bond, which is strongly weakened by the ��∗ transitions, 
as suggested by the orbitals of Fig. 2. The modes Q13 , Q19 , 
visible in the CVS spectra, and the mode Q54 are the next in 
order of importance.

Despite these minor correlations, the analysis indicates 
that the proton mode itself is the most active coordinate in 
the ESIPT of HBQ, and receives just a minor assistance from 
the Q58 mode, which has a frequency ℏ�58 = 1710 cm−1 . 
Indeed, the ultrashort time scale of the photoreaction is faster 
than the vibrational period of most other skeletal modes. On 
the other hand, as shown in Fig. 9b, b’, the lowest frequency 
modes preserve some correlation with Q1 for some hundreds 
of fs, and therefore, mediate the earliest steps of vibronic 
relaxation of the keto product. In this time scale the mode 
most correlated to the proton transfer is, not unexpectedly, 
Q9 , which involves substantial distortion of the C–O group 
and the N atom (see Fig. 4). In contrast, the motion along 
most modes of higher frequency becomes rapidly uncor-
related with the proton transfer coordinate.

6 � Conclusions

The coherent excited state intramolecular proton transfer 
dynamics of HBQ were simulated quantum mechanically 
for the molecule initially prepared in the 1��∗ and the 2��∗ 
states.

The simulations rely on a multimode diabatic vibronic 
coupling Hamiltonian which includes 31 vibrational modes, 
the lowest ��∗ excited states, and a n�∗ state which lies at 
high energy in the Franck–Condon zone, but stabilizes 
between the two ��∗ upon proton transfer. The model is 
parametrized from first principles using time-dependent 
density functional theory calculations performed with the 
TPSSh functional, which gives the best agreement between 
the experimental and the theoretical Stokes shift, as well as 
the absolute vertical excitation and emission energies. The 
parametrization follows a protocol which is not specific for 
the HBQ molecule, but can be applied to general proton 
transfer processes that can be reasonably described using a 
large amplitude reaction coordinate and a harmonic bath for 
the molecular backbone [61, 62, 66].
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The simulations predict a reaction time of 11–15 fs in 
agreement with the pump-probe spectroscopic experiments 
with the best time resolution performed so far. During this 
time the proton motion has little correlation with the vibra-
tions of the benzoquinoline backbone. This excludes a pri-
marily passive reaction mechanism guided by the skeletal 
vibrations, and suggests a rather active role of the proton.

The reaction initiated in the 1��∗ state, which is reached 
with excitation wavelengths around 380 nm, mainly pro-
ceeds on a single potential energy surface, despite inter-state 
couplings being included, and leads to the formation of mul-
timode vibrational coherences. Their calculated frequencies 
agree very well with the experimental values, proving that 
a nonadiabatic mechanism does not need to be invoked for 
their interpretation. Each coherent vibration is assigned 
dominantly to a subset of 1–3 modes and, to a lesser extent, 
to the other modes because of the Duschinsky correlation 

along the reaction path. In addition, the calculations suggest 
that the ≈ 300 fs time constant measured in many pump-
probe experiments is likely due to intramolecular vibrational 
relaxation, as initially proposed by Takeuchi and Tahara 
[27], and not to an internal conversion, as suggested in other 
works [26, 31].

The initial excitation to the 2��∗ state, which is possi-
ble with wavelengths shorter than ≈ 360 nm [28], leads to 
a nonadiabatic isomerization mechanism. 20% of the wave 
packet relaxes directly to the lowest 1��∗ state in 15–30 fs; 
the majority of the wave packet follows the slower relaxa-
tion route 2��∗

⟶ n�∗
⟶ 1��∗ , which occurs after the 

proton transfer and involves the n�∗ state. The experimen-
tal observation of this path is challenging, because the n�∗ 
state is dark in emission. The dynamics preserve less coher-
ent oscillations, but their frequencies are the same of those 

Fig. 9   a, a’ Vibrational 
distributions along the proton 
transfer mode Q

1
 in the short 

time dynamics initiated by the 
1��

∗
⟵ S

0
 and 2��∗

⟵ S
0
 

transitions. b–e, b’–e’ Time-
dependent Pearson correlation 
coefficients between the proton 
transfer mode and the skeletal 
vibrations
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obtained for the initial excitation to the 1��∗ state, in agree-
ment with the observations of Riedle and coworkers [28].

The role of the n�∗ states was investigated in the excited 
state intramolecular hydrogen transfer of malonaldehyde 
[16], but never in hydroxyquinolines, which are an important 
class of compounds in sensing applications [7]. The present 
results suggest that future studies of excited state proton 
transfer reactions should address the energetic position of 
these states and their role in the proton transfer mechanisms. 
To this end, it will be valuable to use spectroscopies based 
on probes alternative to optical emission, such as excited 
state infrared absorption [64] or photoelectron emission 
[15].

Supplementary information The Supporting Infor-
mation presents the equations to evaluate the geometrical 
derivatives of the diabatic potentials starting from the adi-
abatic ones.

The files of the potential parameters and a Python mod-
ule which implements the evaluation of the full-dimensional 
diabatic potential energy surfaces are also provided. The 
basic usage of the module is described in the Supporting 
Information.
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