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Abstract
Purpose of Review  This review intends to examine the role of phytochemicals in plant defense mechanisms against envi-
ronmental stresses and their potential health benefits. Specifically, it aims to explore how pre-harvest insect damage can 
enhance the production of phytochemicals in pecan and strawberries fruits. Additionally, the review intends to examine the 
regulation of plant phenolics and ellagitannin derivatives through signal transduction pathways and how these pathways are 
influenced by biotic stresses.
Recent Findings  The article mentions that signal transduction pathways in plants can be triggered and modulated by stress 
factors, including the wounding damage caused by chewing insects, leading to changes in plant secondary metabolism. Addi-
tionally discusses the speculation that increased biotic stress in plants grown without synthetic chemicals in pesticide-free 
systems as suggested by organic agriculture practices lead to higher levels of phytochemicals, especially phenolic compounds. 
Furthermore, it shows up two examples, strawberries and pecans, which exhibit increased phytochemical levels when facing 
biotic stressors like infections or pest attacks.
Summary  This concise review highlights the significance of phytochemicals for human health, indicating their potential 
roles in preventing and treating chronic cardiovascular and inflammatory diseases, as well as cancer. It emphasizes that 
organic fruits and vegetables are believed to contain elevated levels of secondary metabolites associated with plant defenses. 
The review remarks the importance of understanding the mechanisms of biotic stress in plants and the relationship between 
phytochemicals and their potential health benefits within the context of organic agriculture, ultimately contributing to human 
well-being.
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Introduction

Over the last 20 years, the organic food market has expe-
rienced substantial growth, around 20%, compared to the 
2–4% growth observed in the conventional food product 
market [1, 2]. European countries and the USA lead the 
global market in both production and consumption, while 
other nations, including Australia, China, Argentina, Bra-
zil, and Uruguay, have emerged as significant producers for 
export markets [3]. For the US Department of Agriculture, 
organic products must ensure the preservation of natural 

resources, respect for biodiversity, and the exclusive use 
of approved substances [4]. Certification and labeling of 
organic products positively influence consumer choices and 
support higher prices in this expanding market [5]. Addi-
tionally, studies indicate that organic products may pos-
sess superior qualities, such as higher dry matter content, 
increased levels of healthy fatty acids in dairy products, 
reduced nitrates, and elevated concentrations of antioxidants, 
particularly polyphenols and vitamin C, in fruits and vegeta-
bles [6, 7]. Several investigations have suggested that higher 
levels of phytochemicals, particularly phenolic compounds, 
are associated with increased biotic stress in plants grown 
under organic conditions [8–17, 15]. Furthermore, various 
authors have estimated that the heightened levels of phyto-
chemicals, with a specific emphasis on phenolic compounds, 
can be attributed to the increased biotic stress experienced 
by plants in organic conditions [18–20]. This inference holds 
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significance due to the potential role of phytochemicals in 
human health, encompassing their involvement in the treat-
ment and prevention of chronic cardiovascular conditions, 
inflammatory diseases, and cancer [21–24].

Phytochemicals and Environmental Stresses

Biotic stresses represent a significant challenge to the cul-
tivation of plants and can have profound implications for 
both agricultural productivity and the nutritional quality of 
crops. One notable response of plants to biotic stress is the 
enhancement of phenolic compounds in their fruits. Phenolic 
compounds are a diverse group of secondary metabolites 
with well-documented antioxidant and defensive proper-
ties. When plants are exposed to biotic stressors such as 
pathogens or herbivores, they often increase the production 
of phenolics as part of their defense mechanisms. These 
compounds can act as chemical barriers against herbivores, 
deter pathogens, and mitigate oxidative damage caused by 
stress. Consequently, the enhancement of phenolics in fruits 
is not only a vital component of plant defense but also holds 
considerable significance for human nutrition. The consump-
tion of fruits rich in phenolic compounds has been associ-
ated with numerous health benefits, including reduced risk 
of chronic diseases. Thus, understanding the regulation of 
phenolic production in response to biotic stresses is crucial 
for both plant resilience and the promotion of human health.

Plant secondary metabolites are under the regulation 
of signal transduction pathways, which can be triggered 

and modulated by various abiotic and biotic stress factors 
(Fig. 1) [25, 26]. Research on the production of secondary 
metabolites influenced by biotic stresses has demonstrated 
the induction of phenolic compounds and phytoalexins as 
plant defense responses. These studies have been conducted 
in tissues damaged by piercing-sucking or leaf-chewing 
insects [27–33]. Stressors like wounding and herbivores have 
been shown to alter plant secondary metabolism [34–36]. 
Moreover, systemic induction of secondary metabolites has 
been observed within the same type of plant organ, such as 
the leaf-leaf model in tobacco, tomato, and poplar [37–46]. 
Wounded tissues affect the production of phenylpropa-
noid secondary metabolites both locally and systemically 
within the same organ tissue (e.g., leaves) [26, 47–53]. An 
early study showed that wounded potato and tomato leaves 
enhanced the production of proteinase inhibitors [54]. After 
the recognition of the wounding event, plants under insect 
attack respond with direct and indirect defense mechanisms 
[55, 56]. These responses involve a complex interplay of 
signal molecules, including phytohormones like salicylic 
acid (SA), jasmonic acid (JA), ethylene (ET), abscisic 
acid (ABA), indolacetic acid (IAA), and gibberellic acid 
(GA), along with various reactive oxygen species (ROSs) 
[29, 57–60]. ROSs play critical roles in signaling related 
to plant defenses and other functions [61–64]. Specific 
elicitors released due to insect damage activate multiple 
signaling pathways, resulting in a metabolic rearrangement 
that includes the expression of defense-related genes and 
the release of volatile organic compounds [65]. JA, methyl 
jasmonate (MeJA), and its precursor, 12-oxo-phytodienoic 

Fig. 1   Plant secondary metabo-
lites are regulated by signal 
transduction pathways that can 
be triggered and regulated by 
abiotic stresses (e.g., minerals 
in soil, temperatures, radiation) 
and the main biotic stress fac-
tors (e.g., insects and patho-
gens)
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acid (OPDA), are known as inducers of proteinase inhibitors, 
a key defense mechanism against herbivores [66, 67]. JA 
and ET serve as positive regulators of plant defense against 
insects and some pathogens, while SA is associated with 
resistance against most pathogens [68]. Crosstalk between 
these pathways allows plants to optimize their responses 
against herbivores and pathogens, creating a complex defen-
sive system [29, 63, 64, 69–75].

Biotic Stress in Pecans and Strawberries

The significance of plant secondary compounds (phyto-
chemicals) for human health has prompted research into 
pre- and post-harvest factors that influence the production 
of bioactive phenylpropanoids [18, 20, 76–80]. For instance, 
a comparison of two strawberry cultivars under organic and 
conventional production methods demonstrated that organic 
cultivation led to greater accumulation of total phenolics, 
with these differences maintained under different storage 
conditions [77]. Of particular interest are phenolics like phe-
nylpropanoids and ellagitannins, which have garnered atten-
tion due to their biological activities associated with health 
benefits, including antioxidative, anti-allergic, anti-hyper-
tensive, and anti-tumor effects in both in vitro and in vivo 
studies [22–24, 81, 82]. Strawberry (Fragaria × ananassa) 
and pecan (Carya illinoinensis) are recognized for their high 
content of ellagitannins [83–89].

Strawberries hold a significant position among small 
fruits produced on a global scale. The Food and Agricul-
ture Administration (FAO) data shows, in 2020, an output 
of 8,861,381 tons worldwide [90]. In South America, key 
strawberry producers include Argentina, Brazil, and Chile, 
with substantial cultivation and yields [91–93]. Uruguay, 
while having a comparatively smaller production area of 120 
hectares, boasts impressive yields at 37 tons per hectare. 
This production primarily caters to the local market, sup-
plying a range of national cultivars [91, 94]. Strawberries 
are a valuable source of nutrients such as vitamin C, folate, 
and essential microelements. Moreover, they are rich in 
beneficial phytochemicals [95]. The phytochemical profile 
of strawberries includes anthocyanins, ellagitannins, gallo-
tannins, ellagic acid, and other phenolic compounds, con-
tributing to their antioxidant potential and associated health 
benefits [95–99].

Strawberries have exhibited a range of biological activi-
ties related to phytochemicals, including the inhibition of 
human colon carcinoma proliferation, anti-inflammatory 
effects on macrophages, modulation of oxidant-antioxidant 
balance in blood phagocytes, anti-hyperglycemic poten-
tial, mitochondrial protection, neuroprotective potential, 
and antimicrobial properties against human pathogens [89, 
100–104]. Numerous studies have indicated that the levels 

of phytochemicals in strawberries are higher when grown 
using organic methods compared to conventional cultivation 
practices. A study conducted by D’Evoli et al. [100] showed 
that the level of vitamin C increased from 45.9 mg/100 g in 
conventional production to 62.2 mg/100 g of fresh fruit from 
biodynamic production (a holistic and ecological approach 
to farming). Biodynamic strawberries had concentrations 
of pelagornidin-3-glucoside (38.8 mg/100 g) significantly 
higher than that detected in conventionally grown strawber-
ries (24.9 mg/100 g). Also, the biodynamic fruits contained 
significantly higher amounts of ellagic acid (53.3 mg/100 g) 
compared to conventional ones (37.9 mg/100 g). The authors 
of this study correlated the elevated level of phenolics with 
improved antiproliferative activity in Caco-2 cell lines, 
derived from human colon adenocarcinoma [100].

Despite the primary biotic stressors affecting strawberry 
cultivation being bacteria and fungi, some arthropods, 
including the aphid Chaetosiphon fragaefolii and the spider 
mite Tetranychus urticae, can negatively impact commercial 
production [105–108]. Ellagic acid, a prominent phenolic 
compound, was found in substantial concentrations in straw-
berries, ranging from 39.6 to 52.2 mg/100 g fresh weight 
in nine analyzed cultivars [109]. Another study compar-
ing organic and conventional production methods revealed 
higher antioxidant activity (8.5%) and increased levels of 
kaempferol (25%) and ellagic acid (9%) in organically grown 
strawberries [110]. Notably, the addition of organic and con-
ventional soil nutrients did not significantly affect strawberry 
yield and quality parameters related to phenolics, such as 
antioxidant capacity [111].

Pecan stands as an important horticultural crop within 
the southern United States, signifying not only economic 
value but also cultural importance. The crop’s value in 2021 
amounted to $551 million, marking a 27% increase from the 
preceding season [112]. This nut, indigenous to the USA, 
particularly flourishes in states such as Texas, Oklahoma, 
Louisiana, Arkansas, Mississippi, Kansas, Missouri, Ten-
nessee, and Kentucky, although its cultivation extends to 
various other southern regions as well [113]. What adds to 
the attraction of pecans is their reputation as a wholesome 
food choice, acknowledged with the potential to prevent dis-
eases linked to oxidative stress in humans. This beneficial 
characteristic can be attributed to pecans’ high content of 
phytochemicals, including ellagitannins, gallotannins, and 
proanthocyanidins, which are known for their biological 
activities [114–117].

Among these phytochemicals, ellagitannins, which com-
prehend compounds like geraniin and peduncalagin, have 
demonstrated their ability to inhibit the growth of the green 
peach aphid (Myzus persicae). Additionally, the hydrolys-
able derivative of ellagitannins, known as ellagic acid, has 
exhibited remarkable effectiveness against the infestation by 
barley greenbug (Schizaphis graminum) [118]. A notable 
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hypothesis suggests that geraniin acts as a protoxin, releas-
ing ellagic acid as a hydrolysis product, which has proven 
detrimental to insects feeding on plants [119]. Moreover, 
research evidences a direct correlation between the level of 
ellagitannins relative to total tannins produced by a plant and 
the extent of harm inflicted upon caterpillars, underscoring 
the importance of these compounds in plant defense mecha-
nisms [120].

Pecan orchards are exposed to several pests, among which 
the most prominent are the pecan nut casebearer (Acroba-
sis nuxvorella), the black margined aphid (Monellia cary-
ella), and the yellow pecan aphid (Monelliopsis pecanis) 
[121, 122]. These pests pose a significant challenge as they 
damage pecan trees by engaging in piercing-sucking activi-
ties, primarily targeting the plant’s phloem [123–125]. This 
feeding behavior not only weakens the plants, causing eco-
nomic losses, but also exposes them to diseases vectored by 
these insects [30, 126]. One specific pest, the black pecan 
aphid (Melanocallis caryaefoliae), stands out as a specialist 
insect with a preference for pecan leaves. Its damage aligns 
with the final stages of kernel maturity, typically occurring 
towards the conclusion of the harvest season in the summer 
[125].

The effects of the black pecan aphid have been analyzed 
in field conditions, focusing on its impact on oxidative 
enzymes such as peroxidase, catalase, lipoxygenase, and 
esterase [32]. Additionally, research has unveiled the pres-
ence of over 100 volatile terpenic derivatives in dormant 
buds of two pecan cultivars, Western Schley and Wichita, 
grown in Mexico [127]. Furthermore, an investigation aimed 
at discerning differences in phenolic compounds and ellagic 
acid levels between conventional and organic pecan orchards 
found that organically grown “desirable” pecans boasted 
ellagic acid and catechin levels two to four times higher 
than those in conventionally grown orchards [128]. Another 
study reported increases in total terpenes, condensed tan-
nins, hydrolysable tannins, and lignin in tissues damaged by 
the fruit tree borer insect (Euplatypus segnis) and associated 
fungi, further underscoring the complex interplay between 
pecan trees, pests, and secondary metabolites [129]. Nev-
ertheless, while oxidative enzyme activity was assessed in 
pecan leaves subjected to the influence of the black pecan 
aphid, the levels of phytochemicals remained unreported in 
this study [32].

Despite the lack of detailed information regarding the 
specific phytochemicals produced by pecan trees and their 
effects on insects, it is well-established that hydrolysable 
tannins possess detrimental effects on pests, which could 
play a crucial role in plant defense mechanisms [130–132]. 
Some pecan varieties, particularly those susceptible to infes-
tation by the black pecan aphid, may struggle to produce 
chemical compounds that deter these insects, as suggested 
by Wood and Reilly [125]. Notably, in a comparative study 

involving three susceptible and three resistant pecan cul-
tivars facing the black pecan aphid, it was observed that 
susceptible varieties exhibited increased enzymatic activity 
associated with oxidative stress and reduced lipoxygenase 
levels, a key enzyme implicated in resistance against insects 
[32]. Lipoxygenases play a pivotal role in the production of 
jasmonic acid derivatives, which, in turn, contribute to plant 
systemic responses and the synthesis of defensive phenolic 
compounds [65, 133, 134]. It is important to note that these 
enzymatic activities were primarily measured in the same 
leaves where aphids were introduced, and any non-systemic 
effects were not explicitly addressed [32].

Aphids, when feeding on plants, have the capacity to 
influence the production of phenolic compounds, with vari-
ations that are highly dependent on the specific plant–insect 
interaction. For instance, an experiment involving aphids 
(Sitobion avenae) and plants (maize and barley) revealed 
decreased levels of phenolics compared to undamaged 
plants, although this phenomenon was not valid for another 
aphid species (Rhopalosiphum padi) under similar condi-
tions [33]. The extent of pest damage in pecan trees appears 
to be closely linked to crop management practices, with 
factors such as irrigation, nitrogen availability, and fruit 
load playing a significant role. When pecan trees receive 
adequate irrigation, optimal nitrogen levels, and maintain 
a low fruit load, they tend to be more susceptible to host-
ing pests [135]. Moreover, the timing of aphid infestation 
in pecan trees is critical, as leaves have already undergone 
biotic stress towards the end of the growing season, resulting 
in reduced levels of total phenolic compounds and ellagitan-
nin derivatives compared to more resistant pecan varieties 
such as Pawnee, Shawnee, or Kiowa [136].

The relationship between aphids and pecan trees cent-
ers on the intricate chemical interplay between the insect’s 
piercing-sucking apparatus and the plant’s phloem. Multiple 
secondary metabolites come into play in this interaction, 
shaping its dynamics and outcomes [30, 137]. Specifically, 
in the case of the interaction between the black pecan aphid 
and Choctaw cultivar trees, it appears that the aphid may 
circumvent the local defense mechanisms of the plant while 
continuing to sap photosynthates, leading to a depletion of 
sugars that cannot be efficiently translocated to the sink tis-
sues (kernels). This, in turn, affects the production of high 
C/N compounds, including ellagitannin derivatives [137].

Conclusions and Future Perspectives

Phytochemical accumulation is influenced by genet-
ics [138], but also significantly shaped by agronomic 
practices and external environmental factors, including 
biotic stressors. Notably, ellagitannins, gallotannins, and 
proanthocyanidins play a pivotal role in the tree’s defense 
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mechanisms against biotic stressors, offering not only vital 
protection for the tree but also potential health benefits for 
humans through their antioxidant and anti-inflammatory 
properties. Pecan trees respond to biotic stressors, such 
as infestations by the black pecan aphid or fungal attacks, 
by elevating the production of these phytochemicals. This 
increased synthesis serves as a defensive strategy, effec-
tively deterring pests, and pathogens, thereby ensuring the 
tree’s survival. The intricate relationship between phyto-
chemicals and biotic pre-harvest effects in pecans under-
scores the complex interplay between plants and their 
environment, offering insights into both natural defense 
mechanisms and the potential utilization of these phyto-
chemicals for human well-being.

Similarly, strawberries boast a repertoire of phytochemi-
cals, including anthocyanins, ellagitannins, gallotannins, and 
ellagic acid, serving as crucial components for the plant’s 
natural defense mechanisms and holding promise as health-
enhancing agents for humans. When strawberries confront 
biotic pre-harvest stressors, such as bacterial and fungal 
infections or attacks from arthropods like aphids and spider 
mites, they respond by upregulating phytochemical produc-
tion. This heightened synthesis acts as a protective shield, 
effectively deterring pests and pathogens and bolstering the 
plant’s chances of survival. The intricate connection between 
phytochemicals and biotic pre-harvest effects in strawber-
ries underscores the dynamic ways plants adapt and protect 
themselves in their natural environment [139••]. Further-
more, these phytochemicals, with their diverse applications 
in health and nutrition, ranging from antioxidant and anti-
inflammatory properties to their role in preventing chronic 
diseases, positions strawberries as not just a delectable fruit 
but also a valuable source of bioactive compounds.

The importance of understanding the relationship 
between biotic stress and the accumulation of phytochemi-
cals, particularly phenolic compounds, in fruits cannot 
be overstated. As the demand for organic food products 
continues to grow globally, the knowledge of how biotic 
stressors influence the production of these health-enhancing 
compounds holds significant relevance for both agricultural 
practices and human nutrition. The examples of pecans and 
strawberries serve as valuable case studies, highlighting the 
dynamic interplay between plants and their environment. 
These plants respond to biotic stressors by increasing the 
production of phytochemicals as part of their defense mecha-
nisms, ultimately enhancing the resilience of the crops. The 
implications of this enhanced phytochemical content extend 
beyond plant defense; they encompass the potential for pro-
viding health-promoting benefits to consumers. Therefore, 
delving into the intricate relationship between biotic stress 
and phytochemical production in fruits is crucial not only 
for agricultural sustainability but also for advancing human 
well-being through nutrition and health.
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