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Abstract
This study provides a holistic and quantitative overview of over 800 mathematical 
methods (e.g., financial and risk models, statistical tests, statistics and advanced 
algorithms) taken out of sampled scientific literature on quantitative modelling, 
particularly, from financial and risk modelling by applying a bibliometric approach 
from 2008 to 2019 and a citation network analysis. This is done to elaborate on the 
influence in the field after the Financial Crisis 2008. We present a content analysis 
of journals, main topics, applied data sets and frontiers within quantitative model-
ling and highlight details about quantitative features such as implemented models, 
algorithms and aggregated model-family combinations. Moreover, we describe 
explications and ties to empirical stylised facts (e.g., asymmetry or nonlinearity). 
Finally, we discuss insights such as our main finding, namely, the non-existence of a 
“single-best”-approach as well as the future prospects.

Keywords  Literature review · Financial modelling · Risk modelling · Financial 
markets · Stylised facts · Quantitative models

JEL Classification  C01 · C02 · C22 · G1

Introduction

Whether it be professionally managed investment funds, corporate pension plans or 
single privately owned assets, during economic buoyancies, and primarily during 
recessions, the financial system and its stability wields an enormous influence on 
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our modern-day societies (Aguilar-Rivera et  al. 2015; Gong and Xu 2018). Start-
ing from the “dot-com bubble”, the terroristic attacks of September 11, 2001, the 
Great Financial Crisis of 2008, the European sovereign crisis to the outbreak of the 
COVID-19 virus in the year 2020 and the Ukrainian war in 2022, turmoil, irrational 
panic and breakdowns of financial markets influence the public confidence and the 
stability of the financial system as a whole and necessitate governmental interven-
tions (Beltratti and Stulz 2019; McKibbin and Fernando 2020). All private per-
sons, investment corporations or other market actors taking an active part in finan-
cial market activities must face the demanding task of foreseeing the future risks 
to and the developments of their investments. Anticipating the progress of financial 
instruments and attempting to pinpoint the next financial crises are actively pur-
sued aspirations of many practitioners and academics (Lo Duca and Peltonen 2013; 
Poon and Granger 2003). In the world of academia, the importance of quantitative 
modelling, especially the task of volatility modelling since the 1990s, continues to 
surge and has been dominant for several decades (Poon and Granger 2003; Aguilar-
Rivera et al. 2015). Actors who intend to find and explore financial market patterns, 
corporate pension funds and single private persons surely differ from traditionally 
assumed rational actors (taken out of neoclassical and modern finance) in terms of 
risk tolerance, assimilation of market information, institutional constraints and het-
erogeneous beliefs (Andrada-Félix et  al. 2016). This, therefore, leads to heteroge-
neity and irrationality within financial markets as well as to differences concern-
ing investment horizons (Ramiah et al. 2015). The aforementioned suppositions can 
possibly be explained by new technological developments, empirically depicted styl-
ised facts and newly found conventions (for example, the Fractal Market Hypothesis 
[FMH]) but not with traditional approaches (Chakrabarty et al. 2015; Aguilar-Rivera 
et al. 2015).

Among the empirical evidence of stylised facts in financial time-series, vola-
tility dynamics (e.g., Adams et  al. 2017), nonlinearity (e.g., Alexandridis et  al., 
2017), asymmetry (e.g., Aguilar-Rivera et  al., 2015), long memory (e.g., Shi and 
Ho, 2015), multifractal and trending characteristics, among other anomalies, can 
be found (Berghorn 2015; Daniel and Moskowitz 2016). Contrastingly, traditional 
approaches such as the Efficient Market Hypothesis (EMH), which fails to explain 
irrational behaviour, the Capital Asset Pricing Model (CAPM) and other long-held 
beliefs and conceptions have been severely critiqued and challenged in the light of 
these opposing findings and panic-induced crashes such as the COVID-19 crash in 
2020 (Narayan and Smyth 2015; Ramiah et al. 2015; McKibbin and Fernando 2020). 
Since new crises possess the capability to exhibit essential risks for the global econ-
omy, the venture towards an improved financial and risk modelling understanding is 
not only an obligation but is of great relevance not only for academics but also for 
the entire financial industry, whole countries and even non-participating individuals 
influenced by such events (Herrera and Schipp 2013; Poon and Granger 2003). Trig-
gered by the above-mentioned incidents, crises-induced severities between theoreti-
cal rationales and practical applications occur frequently in terms of (econometric) 
financial and risk modelling (Linnenluecke et  al. 2017). Consequently, the deter-
mination of the true data generating process (DGP) of financial time-series, with 
respect to stylised facts and other innovations, is advantageous for financial market 
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actors (Beltratti and Stulz 2019; Charfeddine 2014). Therefore, researchers react to 
these implications by further extending and creating new mathematical models and 
methods through the application of artificial intelligence, big data analytics, machine 
learning concepts, signal processing and various other technical conceptions, which 
may occur solely as well as in combination with each other to cope with the above 
mentioned critics (Alexandridis et al. 2017; Berghorn 2015; Duan et al. 2019). Not-
withstanding, many properties and stated stylised facts are still not fully explain-
able; neither does the research community agree upon the exploited approaches or 
given explanations of the latter perspicacity, which still leaves many open gaps and 
potentials (Berghorn 2015; Daniel and Moskowitz 2016; Poon and Granger 2003). 
Our review builds upon the former research findings of Poon and Granger (2003), 
who analysed 93 different volatility-modelling papers. Other past literature reviews 
deduct sophisticated overviews regarding metaheuristics of portfolio optimisation 
(e.g., Doering et  al., 2019), term structured predictabilities of stock prices (e.g., 
Amini et al. 2013), price predictability (e.g., Narayan and Smyth 2015) as well as 
about most influential publications (e.g., Linnenlücke et al. 2017), which unveiled 
respective insights but left the aforementioned gap centred around the current devel-
opment of financial and risk modelling itself open. Additionally, almost two decades 
(filled with turmoil and crisis on financial markets) have passed since then, leading 
to a significant gap after the Financial Crisis.

Thus, we intend to close the stated gap and contribute to this ongoing process 
threefold:

First, we will apply a bibliometric analysis paired with a snowball-sampling 
approach to present an inductive content analysis, highlighting information about 
journals, main research topics and frontiers of scientific research following the Hart-
framework (Hart 1998). Moreover, we will display a full citation network analysis, 
outlining the most relevant publications, defining relevant measures and showing the 
interconnectivities and gaps within the existing research. Second, we will elucidate 
the stylised facts and properties applied in the sampled literature and their intercon-
nections. Finally, we will provide a quantitative overview of the applied data sets 
and mathematical methods (e.g., models, tests, statistics and algorithms). We will 
then present a rationale to indicate the interconnection and respective numbers of 
model families in the form of a combination matrix. Furthermore, we will provide 
an in-depth qualitative description of important models and applications alongside 
practical implications and challenges. We will conclude by discussing results and 
limitations of the paper, the current status quo and future prospects of the field.

Bibliometric analysis and snowball sampling

Methodology

We execute a bibliometric analysis with three main steps: First, we apply a biblio-
metric analysis to identify relevant publications and conduct a subsequent snowball 
sampling procedure by performing an inductive content analysis (Biernacki and 
Waldorf 1981; Duriau et al. 2007). Second, we explore the definitions and methods 
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of financial and risk modelling, illustrating empirical insights and identify the most 
influential publications. Third, we implement a citation network analysis. Following 
Kitchenham and Brereton (2013), we conduct a literature search in two major data-
bases (i.e., “Science Direct” and “Emerald”), looking for the keywords and keyword 
combinations shown in Table 1. The resulting literature needs to comply with the 
following conditions: written in English; published after 2008 and before the end of 
2019 (to represent the development since the Financial Crisis until the end of 2019 
accordingly) and being blind peer-reviewed. The keywords focus on financial and 
risk modelling as well as specified terms from the relevant fields (e.g., “volatility 
modelling”, “momentum”, “trends”). Thus, we query the keywords as stated or in 
any combination with each other to gather all the relevant, non-duplicate results. 
The data set resulting purely from keywords consists of 15,566 papers. To secure 
the quality and validity of the gathered literature, we apply Harzing’s journal rank-
ing list1 to select the relevant journals (Harzing 2019). After removing duplicates, 
filtering the stored data executing this framework results in a list of literature further 
analysed by this paper, which initially sums up to 2012 papers.

Further, following Kitchenham and Brereton (2013), the analysis requires sort-
ing all papers of the sampled literature into categories. Reading of the abstracts 
of all the selected papers leads to a categorisation. The eight resulting categories 
stem from the content and origin of the papers represented in the sampled lit-
erature. We define the categories as Economical (EC), Green Management (GM), 
Behavioral Finance (BF), Financial Modelling (FM), Supply Chain (SC), Risk 
Modelling (RM), Health Management (HM) and Non-Relevant (NR). Important 
(in-scope) areas of research consist of the categories EC, BF, FM and RM, while 
we label the others as out of scope. Moreover, in the style of Linnenluecke et al. 
(2017), displaying research trends based on influential publication content catego-
ries, we can determine that the mentioned categories yield an additional meaning, 
namely, the representation of research streams. Hence, we can interpret the cat-
egories (excluding NR) as research streams and will conduct a detailed analysis 

Table 1   Overview of 
bibliometric analysis with 
referring numbers before and 
after snowball sampling and 
updates

Counts Steps of bibliometric analysis

Initial After snowball 
sampling and 
updates

15,566 22,023 Criteria-based keyword search
2012 2720 Harzing’s framework filtering
684 874 Sorting papers into categories
114 132 Rating papers after Deyner framework

1  Harzing’s journal ranking list consists of 12 different and independent journal rankings (e.g., Ejis2007, 
VHB-JQ3, UQ2011 and EJL2016). Our criteria are blind peer-review, more than two rankings in Har-
zing’s list and a rank that is not the lowest in more than 50% of all given rankings on average.
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on the single research trends in the streams FM and RM matching the research 
question. Please note that there exist many other fields in parallel, not regarded 
within this study, which propose sufficient insights into financial and risk model-
ling such as taken out of nonlinear dynamics, computer science or econophysics, 
which are not elucidated within this study due its stricter scope and methods.

Nevertheless, please refer to Vogl (2022) for an in-depth literature review 
about financial modelling in econophysics and nonlinear dynamics, to Bustos 
and Pomares-Quimbaya (2020) for a market movement forecasting overview, to 
Goodell et al. (2022) for emotions on markets and to Kumbure et al. (2022) for a 
state-of-the-art review for computer science and machine learning approaches on 
financial markets. Regarding the FM and RM research stream results in initially 
684 publications. We rate the previously denoted literature deploying a framework 
described in Briner and Deyner (2012), which ranks a paper in accordance with 
four qualitative criteria, namely Contribution, Theory, Methodology and Data 
Analysis (Briner and Deyner 2012). For each criterion, it is possible to grade the 
content of a paper from low (zero) to high (three) or “not applicable” (Briner and 
Deyner 2012). Thus, we only analyse papers in detail, which results in a Deyner 
Rating equal to or greater than two on average over all criteria. After the initial 
round of search and selection, we obtain a sample of 114 papers. Additionally, 
these 114 papers act as input for a snowball-sampling procedure (Biernacki and 
Waldorf 1981). We finish the snowball sampling with 4263 additional papers and 
select again following the criteria described above and update the results. We end 
up with 487 publications after applying the Harzing’s journal ranking list, which 

Table 2   Keywords applied as queries in the literature databases “Science Direct” and “Emerald” from 
2008–2019 with keyword counts; total count 22,023

Science direct and emerald: 2008–2019

Keywords, keyword-combinations and counts

Trends Financial markets 574 Stochastic trend model-
ling

630

Financial trends 1784 Financial time-series 
modelling

917

Prediction Financial markets 536 Return forecast model-
ling

528

Forecasting Financial markets 880 Return prediction 
modelling

768

Financial forecasting 1693 Neural network Financial markets 179
Financial prediction 1529 Momentum Trends 466
Stock prediction 12 Risk modelling Financial markets 1772
Stock forecasting 1538 Financial risk model-

ling
4028

Stock prediction model-
ling

857 Volatility modelling Financial markets 1141

Stock forecasting 
modelling

1003 Total count 22,023
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results in an addition of 18 sufficiently Deyner-rated publications. A summary is 
contained in Table 2. The categories FM and RM represent a share of 32.12% of 
all in-scope papers, from which we rate 15.10% valid enough for further analysis 
with regard to the referred Deyner ratings. The category FM counts 85 and RM 
47 publications in the sampled literature.

Descriptive results

Publication activity

Subsequently, we analyse the dispersion of the number of analysed papers 
over the last decade by investigating the development of the  number of 
peer-reviewed journal publications per year across all areas of research as 
given in Table  3. Further, we calculate a linear regression analysis stating 
publications(age) = 15.2879 − 0.6469 age , with age (age = 2020-year) as inde-
pendent and the number of publications per year as dependent variable. The results 
indicate a positive correlation of 0.5541 between the number of papers and age. Nev-
ertheless, the slope coefficient is not significant (p > 0.05) . Therefore, we assume 
that the number of papers selected in this specific sample is not significantly age 
dependent. Further, we will conduct the insights of the “Ortega hypothesis” stated 
by Cole and Cole (1972). The hypothesis claims that only a small percentage of 
authors are responsible for scientific progress in a given field (Cole and Cole 1972). 
In total, 307 authors contributed the 132 papers in our sample. While 287 are sin-
gle authorships, 19 authorships consist of two respective publications each and only 
one author  is represented with three papers. Regarding the high number of single 
authors, the count of multiple submissive authors is not conclusive enough to reject 
the Null-hypothesis.

Impact of the financial crisis and discourse in the literature

To determine whether the cause of the sample publications leads back to the Finan-
cial Crisis and if there exists an ongoing discourse and fragmentation inside the 
research community, we have defined two sentiment indicators as shown in Table 4, 
which we will deploy in a binary form. The indication of which of the binary out-
comes should be chosen is determined by analysing, whether the authors state the 
origin of their paper to be associated with the Financial Crisis (this is mainly the 
cause) or not. Otherwise, we analyse the introductory parts, the periods of deployed 
data as well as the concluding parts of the papers on statements stating the corre-
sponding information about the crisis indication. In terms of the fragmentation of 
the research community indicator, we also analyse the introductory and conclud-
ing parts. In addition, we also interpret the connotations and indications of the data 
analysis parts, the general alignment and the discussion parts of the respective pub-
lications carefully. In the scope of the crisis indicator, we conclude that the Finan-
cial Crisis caused the creation of a vast majority (84.84%) of our sample papers. 
Furthermore, we see a clear fragmentation of the research community with 71.21%, 
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which displays the ongoing discourse about the enigmas of the Financial Crisis and 
its influence on research, society and the daily reality of financial markets.

Content analysis

Methodology of the content analysis

We extract relevant information2 from the selected publications deploying the Hart 
framework as displayed in Hart (1998). Thus, we examine the models implemented 
in the research papers and focus on the boundaries and frontiers of research, ana-
lysed data and quantitative findings. The analysis of the papers is focused on its 
main research questions, the boundaries of research and whether or not the research 
community has a common ground of understanding. In addition, the major focus 
is on the mathematical model composition implemented, the applied data sets and 
stylised facts over the past ten years of research. The criteria are summed up in the 
appendix.

Underlying theories and methodological approaches

We analyse the main topics first and examine the abstracts, the research questions 
and the introductory parts of each paper to evaluate the main topics or questions that 
each of the papers are willing to answer.

Afterwards, we execute tag marks, indicating main topics, questions themselves 
or some given reasoning within the latter. In Table 5, we show the aggregated main 
topic tags in descending order, which will partly be described in the following sec-
tions. Moreover, we include two representative papers from our sampled literature 
for each tag to provide further reference. The highest aggregated main topic counts 
referring to tag occurrences belong to the three topics “forecast time-series”, “vola-
tility modelling” and “dynamics” of time-series.

Table 4   Crisis impact 
indicators, crisis indicated 
changes and fragmentation of 
the research community

Crisis impact indicators

Indicator Yes No

Crisis indicated changes 112 20
[%] 84.84% 15.15%
Fragmentation of research com-

munity
94 38

[%] 71.21% 28.78%

2  Please note that all citations of the sampled literature as well as all table references, are proposed in the 
supplementary material of this study.
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Volatility dynamics

Assuming the (financial time-series) volatility to be constant, the corresponding 
interval of confidence can be described as a function of its sample standard devia-
tion. Thus, the conditional variance will be implied by the volatility (Bhar and 
Hamori 2005). If certain sudden or unexpected events, called shocks, such as break-
downs, affect the financial series, the underlying volatility will no longer be con-
stant (Bhar and Hamori 2005; Amado and Teräsvirta 2014). Volatility can multi-
plicatively be decomposed into a conditional and an unconditional part, where only 
the unconditional part faces changes over time, called dynamics (Bhar and Hamori 
2005; Amado and Teräsvirta 2014).

Nonlinearity

The empirical modelling of time-series mostly assumes the underlying dynamics to 
be linear (Pesaran and Potter 1992). This is due to the ability of the estimated mod-
els to express the dynamics in terms of their impulse response functions, which is, in 
fact, directly relatable to linear models (Pesaran and Potter 1992). Temporal aggre-
gation across equities, commodities and the behaviour of actors as well as differing 
investment horizons (e.g., noise trader speculations) can cause nonlinearity in time-
series dynamics (Narayan and Smyth 2015; Righi and Ceretta 2013).

Asymmetry and persistence

Volatility dynamics tend to increase drastically with negative news impacts and 
decline with positive ones, resulting in asymmetric effects or simple asymmetry 
(Sener et  al. 2012). Therefore, the decomposition of the innovations of the time-
series volatility process into negative and positive shocks will each follow distinct 
processes (Palandri 2015). The resulting upward volatility is more persistent in 
nature, based on its own past evolution. The persistent part of the downward volatil-
ity resembles the upward volatility, paired with a fast mean-reverting component, 
displaying decaying patterns of impacts to the downward volatility, which results in 
lesser predictability (Palandri 2015; Bodnar and Hautsch 2016). Since these separa-
tions evolve differently, they lead to heteroscedasticity, left-skewed financial time-
series returns, fat-tails and a respective departure from Gaussianity, thus, leading to 
asymmetric characteristics (Zhu and Galbraith 2011; Scharth and Medeiros 2009). 
Persistence in volatility is not constant over time and seen as indicator of the pres-
ence of nonlinearities (Zhu and Galbraith 2011).

Structural breaks and volatility clusters

Sudden changes in the parameters of a given forecasting model are commonly 
referred to as structural breaks (Hansen 2001). Due to crisis or shock-indicated 
increases of the permanent component of the conditional variance, structural breaks 
can be tracked (Wang et al. 2016). Market movements that are sufficiently large to 
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cause structural breaks lead to spurious correlation dynamics, while volatility per-
sistence can be reduced when accounting for structural breaks (Wang et al. 2016). 
These movements display the tendency to occur at the same time, or in (time-var-
ying volatility) clusters, leading volatility to remain at higher levels during market 
distress and vice versa respectively (Charfeddine 2014; Mandelbrot 1977; Boubaker 
and Raza 2017).

Long memory (long‑range dependence) and shocks

The non-constant unconditional (time-series) variance displays long-range depend-
ence or long memory property due to deterministic shifts and changes over time 
(Klein and Walther 2017; Zhu and Galbraith 2011). Long memory can be described 
for a time-series whose autocorrelation functions (ACFs) are significantly differ-
ent from zero, even for large lags, while the effects of the volatility shocks slowly 
decay and approach zero at the same time, implying that shocks bear long-lasting 
effects on volatility. Additionally, ACFs’ spectral densities reveal divergence to 
infinity as the respective frequencies approach zero (Charfeddine 2014; Shi and Ho 
2015). Long memory or long-range dependence effects do not only co-exist, yet, are 
labelled synonymous with the occurrence of nonlinearity in options, exchange rate 
and stock market data. Thus, it is possible to conduct forecasts based on historical 
financial time-series data sets, which outlines a complete contradiction to the EMH 
(Shi and Ho 2015; Charfeddine 2014; Kilic 2011).

Regime switches and structural shifts

Structural breaks or shifts (easily to be confused with long memory effects) between 
different regimes affect the statistical properties of volatility, as financial markets 
often face sudden changes in behaviour (Ang and Timmermann 2012; Ma et  al. 
2017). We further specify the terms “regime” and “change” to facilitate sufficient 
differentiation and understanding. The timely dimension of the persistence of a 
change is generally referred to as regime, while change is defined and induced as 
a shock, altered macroeconomic behaviour, business cycle, or a different period 
in regulation, money market decisions or general politics, among others (Ang and 
Timmermann 2012; Shi and Ho 2015). Furthermore, a regime exhibits different for-
mations such as recurrence (e.g., crisis or economic drawbacks), uniqueness (e.g., 
structural breaks), and persistence (e.g., effects or shocks lasting over several peri-
ods) as well as jumps, which we regard as a special case, as jumps are left after the 
next period terminates (Ang and Timmermann 2012). The regime-switching process 
is able to display structural shifts in the volatility. For respective control for regime 
switches, a differentiation between long memory and regime switches is possible 
(Shi and Ho 2015).

In addition, the inclusion of information measures within the respective regime-
switching coefficients through smooth transition co-integration provides the ability 
to comply with nonlinearities as well as market frictions or shocks (Narayan and 
Smyth 2015). Since the stated long-run effects of shocks vanish, once we account 
for structural changes, it is advisable to apply non-normal innovation distributions to 
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cohere with the effects of long memory and regime switches (Charfeddine 2014; Shi 
and Ho 2015).

Spill‑over and contagion

Financial distress or shocks in general are not tied and contained in one financial 
market and rather tend to spread through the financial system (as aggregate of finan-
cial markets), as drastically seen in the COVID-19 crash in 2020 or the Ukrainian 
war in 2022, indicating connected or integrated markets. Integration as an extreme 
realisation of interdependence is the basis of effect transmissions between these 
respective financial markets. Thus, the channels of effect transmissions play a cru-
cial role in the market linkage (Ioan et  al. 2013; McKibbin and Fernando 2020). 
If no measurable increase in correlation between two respective linked financial 
markets is detected in the aftermath of a shock, these markets are interdependent or 
integrated (Ioan et  al. 2013). Regarding the interdependence of financial markets, 
the effects of contagion and spill-overs mostly occur (Righi and Ceretta 2013; Ioan 
et al. 2013). To separate and differentiate those two effects, it is required to analyse 
the speed of the diffusion of financial distress (Ioan et al. 2013). Therefore, we take 
the propagation (continuance) of a shock between integrated markets into account, 
where the interdependence speeds up the respective effect transmissions, the latter 
itself not being the cause (Ioan et al. 2013). If the propagation of a shock is gradual, 
we refer to the effect of spill-overs, while, in straight contrast, we only consider con-
tagion if no prior interdependence between respective financial markets is present, 
before accounting for a shock (Ioan et al. 2013). Prior research finds that contagion 
is described as a strong and sudden change in observed cross-market synchronisa-
tion, which is due to changes in fundamental macroeconomic rationales and vari-
ables, combined with a rapid increase in co-movements after a respective shock. 
Contagion is measured by return correlations, but it may be influenced by condi-
tional heteroscedasticity of the return time-series (Righi and Ceretta 2013; Jung and 
Maderitsch 2014).

(Multi‑)fractality, scaling and trending

Market actors differ in terms of expectations and investment horizons, thus, enforc-
ing heterogeneity on financial markets. Theories such as the FMH assume that 
actors undertake similar decisions on different investment time horizons, resulting in 
turmoil and high volatility if actors change their respective time preferences (Celeste 
et  al. 2019). Stylised facts and properties (e.g., excess kurtosis, fat tails, volatility 
clustering and long memory) appear as well in these dynamic interactions at het-
erogeneous investment horizons of market actors, which we may analyse with frac-
tal properties, also called self-similarity with non-integer dimensions (e.g., Haus-
dorff–Besicovitch dimension) (Chakrabarty et al. 2015; Celeste et al. 2019).

Fractality is often synonymously notated with the term “scaling”; thus, to 
describe fractal dynamics, we state that each scale illustrates similar but not identi-
cal patterns, resulting in scale-invariant or self-similar data sets (Celeste et al. 2019). 
Since we regard the financial markets as a whole, several scales confront us at once, 
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which results in multifractal (multi-scaling) properties of financial time-series. 
These scales are measurable with the Hurst exponent3 (Celeste et al. 2019). Since 
actors, interact on different investment horizons, now labelled as scales, the assimi-
lation of respective price adjustments reflects new information successively, consti-
tuting trending effects (e.g., the existence of measurable market trends) (Daniel and 
Moskowitz 2016; Berghorn 2015). Apart from this, trending is often regarded syn-
onymously with persistency in financial time-series data (Berghorn 2015; Boubaker 
and Raza 2017; Chakrabarty et al. 2015).

Momentum and momentum crashes

Momentum strategies state that betting on past returns may predict the cross-sec-
tions of future time-series returns by being implementable in buying past winners 
and short-selling past losers (Daniel and Moskowitz 2016; Berghorn 2015). Nev-
ertheless, partly foreseeable momentum crashes in high volatility, panic-induced 
regimes, which are contemporaneous with market rebounds, may occur (Daniel and 
Moskowitz 2016). Following a wavelet decomposition scheme, it is possible to show 
via experiment that, on average, the size, drift, segment and volatility of a trend is 
scaling (resulting in fractal patterns) and follows a respective power law, stating the 
momentum effect, which holds that descriptive outperformance is measurable via 
the momentum exponent (Berghorn 2015). Moreover, trends in real-world data are 
ubiquitous, yielding neither any price independency nor any reproducibility via clas-
sical random walk (with drift) processes. This fact is a contradiction of the tradi-
tional (neoclassical) assumptions since the exploitation of excess returns is not pos-
sible under the EMH (Celeste et al. 2019; Berghorn 2015).

Multi‑resolution analysis and neural networks

Multi-resolution analysis, sometimes called wavelet multi-resolution analysis 
(MRA), can be applied to recover timely fluctuations across differing scales by 
decomposing level prices into orthogonal components at different resolutions 
(Chakrabarty et al. 2015; Khalfaoui et al. 2015). MRA can be applied to isolate high-
frequency noise from given time-series, refered to as an explanation of changes in 
trading activities at different frequency levels as well as being utilised for investment 
heterogeneity in general (Chakrabarty et al. 2015). Even if appropriate for superior 
forecasting attempts, MRA faces the drawback of being shift invariant, which means 
a reduction of availability of data points over long horizons, thereby resulting in 
high-scale information losses. Nevertheless, MRA dependencies are appropriate for 
identifying higher co-movements at low frequencies and higher spill-overs at higher 
frequencies (de Souza e Silva and Legey 2010; Chakrabarty et al. 2015).

Speaking of extracting valuable information from financial time-series, neu-
ral networks (NNs) can extract applicable information from complex, nonlinear 
and mostly noisy data sets and solve insufficiently defined problems via parallel 

3  Hurst exponent = 0.5 equals random walk (EMH valid), < 0.5 mean-reversion and > 0.5 persistence 
(Mackevičius, 2016).
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compositions. Artificial neural networks (ANNs) synonymously with NNs as com-
putational structures show characteristics such as efficiency, robustness and adapt-
ability in terms of classification, decision support or financial analysis problems 
(Tkac and Verner 2016). ANNs further analyse patterns in given data sets by itera-
tively adjusting the underlying synaptic weights according to a respective learning 
algorithm. Nevertheless, optimisation procedures such as genetic algorithms (GAs) 
demand sufficient data sets, present in historical financial market data collections 
(Tkac and Verner 2016; Duan et al. 2019).

Mathematical methods

We present the mathematical methods given in the sampled literature as displayed in 
Tables 6 and 7, which build strongly on the main topics and described stylised facts 
and properties.

In the following, we discuss the mathematical methods by stating didactic ration-
ales between the tags through respective groupings. Eventually, we will investigate 
potentially featured models in more detail in “Interconnections between models and 
blind spots of research”.

Stochastic processes

The first group of Table  6, namely, stochastic processes, contains stationary pro-
cesses, Markov processes and autoregressive models, among others. First, we will 
define stochastic processes, since they are not mutually exclusive. A stochastic 
process can be seen as a random element in a given function space, which incre-
ments, are the differences between two index values, or respective points in time 
(Gusak et al. 2010; Lamperti 1977). Classifications of stochastic processes depend 
mainly on their underlying mathematical properties, including, e.g., random walks, 
Markov processes, Gaussian processes or Lévy processes, among others (Lawler 
and Limic 2010; Lifshits 2012). The unconditional joint probability distribution of 
a stationary stochastic process is time invariant under shifts, meaning parameters of 
moments do not change over time, which is the underlying assumption of neoclas-
sical approaches (Lamperti 1977; Gagniuc 2017). Unit roots or deterministic trends 
present in a time-series are called trend-in-mean and cause violations of stationarity. 
Especially, shocks are persistent and are non-mean-reverting if regarding unit roots 
(Rahman and Saadi 2008). Constancy over time indicates the absence of memory in 
the data series, which will lead to problems, namely the loss of information while 
trying to extract exactly this relevant information of a time-series, once transform-
ing non-stationary series into stationary ones, as commonly practised (López de 
Prado 2018; Chkili et al. 2014). Other important stochastic processes are the discrete 
Markov chain and the continuous Markov process, yielding the Markov-property, 
which states, that the next value of the process depends on the current value, but is 
conditionally independent of previous values of the process (Asmussen 2003; Ross 
1996). Examples for Markov processes are the Brownian motion (BM) (or Wiener 
process) and the Poisson process, while discrete Markov chains are represented via 
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Table 6   Mathematical methods-I presented in terms of content-tags with method-count (#) > 4 and sam-
ple-paper references

Group Tags  # # References

Stochastic processes Autoregression 82 Agosto et al. (2016)
Stochastic processes 29 Herrera et al. (2017)
Markov models 15 Langrock et al. (2012)
Stationarity 14 de Almeida et al. (2018)
Markov switching models 14 Hou (2017)
Stochastic models 12 Serinaldi (2011)
Non-gaussian models 11 Ng et al. (2013)
Non-stationary models 11 McMillan (2009)
Autocorrelation 9 Janus et al. (2014)
Data generating processes 8 Agosto et al. (2016)
Correlation dynamics 8 Adams et al. (2017)
Fuzzy time-series 6 Teoh et al. (2008)
Multivariate methods 5 Linnainmaa et al. (2016)

Regime switches and smooth 
transitions

Regime switching models 19 Bauwens et al. (2014)
Smooth transition models 14 Lin et al. (2012)
Jump models 11 Aït-Sahalia et al. (2015)
Smoothing methods 5 Exterkate et al. (2016)

Nonlinearity Nonlinear dynamics 27 Kilic (2011)
Nonlinear models 23 Alexandridis et al. (2017)
Nonlinear dependencies 16 Andrada-Félix et al. (2016)
Threshold methods 16 Mao et al. (2017)
Non-normality 15 Ng et al. (2013)
Nonlinear structures 10 Bekiros and Marcellino (2013)
Threshold function 9 Mao et al. (2017)

Asymmetry Asymmetric methods 50 Lönnbark (2017)
Skewness 7 Liu (2015)

Structural breaks Structural break models 20 Jung and Maderitsch (2014)
Break point models 6 Choi et al. (2010)

Long memory and fractional 
integration

Fractionally integrated 
Models

28 Conrad et al. (2011)

Long memory processes 20 28 Choi et al. (2010)
Long range dependence 8 Scharth and Medeiros (2009)

Fractals, momentum and 
trends

Scaling laws 28 Berghorn (2015)
Multifractal models 17 Hallam et al. (2014)
Pattern 17 Conrad et al. (2011)
Momentum strategies 13 Mitra et al. (2017)
Multifractal spectrum 12 Sun et al. (2015)
Trends 7 Berghorn (2015)
Mean reversion 7 Xu and Perron (2014)
Beta 6 Bollerslev et al. (2016)
Factor models 6 Focardi et al. (2016)
Market depth 5 Bodnar and Hautsch (2016)
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random walks, among others (Serfozo 2009; Rozanov 2012). Markov switching 
(MS) models depend on the respective model specifications, e.g., hidden Markov 
Models (HMM) for nonlinearity or Markov switching multifractal volatility (MSM) 
models for fractality (Wang et al. 2016; Shi and Ho 2015). In general, time-varying 
transition probabilities are applied for MS models, enabling them to switch between 
different regimes (de Souza e Silva and Legey 2010; Gagniuc 2017). If a given time-
series faces correlations with itself at different points in time by a specified func-
tion of decay, we speak of autocorrelation or serial-correlation, present for instance 
in unit roots, trend-stationary processes or autoregressive processes (Doob 1990; 
Mackevičius 2016). The autoregressive model (AR), which is applied as a stochastic 
difference equation to describe time-varying processes, can be mentioned as highest 
counted representative in our sample. Further, the AR(1) model is seen as a discrete 
time adaptation of the continuous Ornstein–Uhlenbeck (OU) process, as well as an 
expression of a two-state Markov chain (Cordis and Kirby 2014; Gagniuc 2017).

The generalisation of the AR model is called vector autoregressive model 
(VAR) and can capture linear interdependencies between respective variables 
(Parzen 2015; Zhou et al. 2011). Another autoregressive model is the Moving-
Average (MA) model, which is assumed stationary and mostly applied to uni-
variate time-series data, since the specified output variable depends linearly on 
its own and the respective error terms past (Bhar and Hamori 2005; Karlin and 
Taylor 2012). Together with the AR model, the MA model is a key component 
of the autoregressive-moving average (ARMA) model, which provides a par-
simonious two polynomial description of a stationary stochastic process (Sun 
et al. 2015; Rahman and Saadi 2008). When the data indicates non-stationarity 
properties, the generalisation of ARMA, namely, the autoregressive integrated 
Moving-Average (ARIMA) model can be applied (Serfozo 2009; Maia and de 
Carvalho 2011). We label the innovations of a stochastic process as a function 
of previous periods of the occurring error term, which implicates a non-constant 
error term variance (Brooks 2014; Shreve 2004). When the variance of the error 
term follows an AR model, we can model time-series exhibiting time-varying 
volatility and volatility clusters by applying the autoregressive conditional het-
eroscedasticity (ARCH) model (Brooks 2014; Engle 1982). Moreover, when 
regarding the value development in ARCH models, the volatility is assumed to 
be completely deterministic in nature, contrasting the family of stochastic vola-
tility (SV) models (Brooks 2014). In SV models, the variance of a stochastic 
process is assumed to be time-varying like in ARCH specifications, but further 
seen as randomly distributed. Therefore, it can be seen as a non-deterministic 
stochastic process in itself, which is previously described as representative 

Table 6   (continued)

Group Tags  # # References

Contagion and spill-over Spill-over 19 Chang et al. (2010)

Contagion 13 Aït-Sahalia et al. (2015)
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Markov process realisation and builds on a BM (or Wiener) process as a basic 
model (Takahashi et al. 2016; Gagniuc 2017). The SV, in contrast to an ARCH 
model, is appropriately modelled via the generalised autoregressive conditional 
heteroscedasticity (GARCH) model if the variance of the error term follows 
an ARMA model specification (Engle 1982; Bollerslev 1986). If a unit root is 
present in the GARCH process, it is possible to apply an integrated GARCH 
(IGARCH) model (Tsay 2010).

Regime switching and smooth transition models

The most commonly applied model in terms of regime switches are MS models 
(Chang et al. 2017). Examples for extensions are MS-VAR models and specified 
threshold models. The latter apply time-varying transitions in the MS or respec-
tive autoregressive fractionally integrated moving average (ARFIMA) model 
structures (Ma et  al. 2017; Piger 2007). As we regard MS models as well as 
ARFIMA specifications, the distribution of respective innovations is assumed 
to be normal. Nevertheless, regimes of financial time-series are not normal, but 
leptokurtic distributed, therefore, normality also should not be assumed inside 
the respective regimes, leading to estimators’ loss of efficiency and consistency 
in MS models (Shi and Ho 2015). Threshold ARFIMA (TARFIMA) models can 
cope with the regime-switching volatility dynamics (Ma et  al. 2017). In more 
detail, examining the DGP of a volatility series under the assumption of persis-
tent volatility shocks leads to further extensions in the models.

Examples for those extensions are the regime-switching ARCH (SWARCH) 
model, which assumes an ARCH(q)-process within the MS-model, an MS-
GARCH realisation, whose parameters fluctuate between low and high volatil-
ity regimes, or alternatively an adaptive GARCH (A-GARCH), which respects 
structural changes in the conditional variance with intercept switches between 
regimes as dictated by the smooth flexible functional form of Gallant 1984 
(Charfeddine 2014; Chang et  al. 2017). If the regime is left after one period, 
jump model specifications can be calculated (Aït-Sahalia et al. 2015).

Nonlinear models

In the volatility of a financial time-series, or realised volatility (RV), highly per-
sistent dynamics, which tend to be nonlinear in nature, are observable (Ma et  al. 
2017). Modelling nonlinear and persistent dynamics in RV can enhance forecasting 
performance (Alexandridis et al. 2017). Introducing thresholds and smooth transi-
tion probabilities into AR processes result in nonlinear TAR and STAR models that 
are able to cope with above mentioned dynamic features (Guidolin et al. 2009; Lin 
et  al. 2012). Additionally, HMM models, which are the simplest dynamic Bayes-
ian network realisations, can be applied to examine nonlinear time-series proper-
ties. The term “hidden” indicates provided information about sequences of states, 
whilst the state itself is not directly observable, even if the state transition parame-
ters are perfectly known (Baum and Petrie 1966; de Souza e Silva and Legey 2010). 
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Different models for respective nonlinearities are the nonlinear asymmetric GARCH 
(NGARCH) as well as the smooth transition ARCH (STARCH) and smooth transi-
tion GARCH (STGARCH), which provide possibilities to deal with nonlinear vola-
tility dynamics and asymmetric features (Zhu and Galbraith 2011).

Asymmetric models

The volatility dynamic process can be distinguished in distinct processes, depend-
ing on the positivity or negativity of news impacts leading to asymmetry within the 
volatility realisation (Palandri 2015; Sener et al. 2012). Especially, the behaviour of 
noise traders can cause anomalies, due to investor’s sentiments, which can be cap-
tured by applying a SWARCH, or an asymmetric version of the exponential GARCH 
(EGARCH) model with no parameter restrictions (Ramiah et al. 2015; Wang et al. 
2016). Regarding the conditional variance, it is seen as favourable to incorporate 
thicker tails and asymmetries, which can be specified in the indicator function of 
the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model (Wang et al. 2016; 
Palandri, 2015). Since the autoregressive dynamics of volatility display persis-
tency, time-varying characteristics as well as asymmetries, a flexible classification 
of Markov chains, labelled as discrete stochastic autoregressive volatility (DSARV) 
models, is able to accommodate stated features properly (Cordis and Kirby 2014). 
Additionally, regarding time-varying asymmetric response changes in volatility 
across different regimes, allows for non-zero thresholds, which can be applied in 
nonlinear as well as asymmetric models (Kilic 2011; Amado and Teräsvirta 2014).

Structural break models

Structural changes or regime switches are indicated by inherent structural breaks, 
which results in sudden asymmetric changes within respective regression parame-
ters (Mumtaz et al. 2017; Hansen 2001). Building structural break models or break 
point models (BPMs) require to determine the points in time at which the break 
occurs, called break-dates or break-points (Bekiros and Marcellino 2013; Choi et al. 
2010). To test for structural breaks, the Chow-test or cumulative sum (CUSUM) test 
is applicable, among others, such as Lagrange multiplier (LM) test variations (Beki-
ros and Marcellino 2013; Conrad et al. 2011).

Long memory and fractional integration models

In contrast to short memory, long memory or long-range dependence is seen parallel 
to self-similar processes (e.g., fractal processes), since their decay functions follow 
a given power law and not an exponential realisation (Malamud and Turcotte 1999; 
Samorodnitsky 2007). Since persistency indicates nonlinearity, smooth transitions, 
should be included within respective models (Kilic 2011; Lin et al. 2012). Addition-
ally, to cope with the non-exponential power laws of long-range dependence, it is 
suitable to apply fractional integrated models, which allow for non-integer values in 
their respective differencing parameters, resulting in slower rates of decay (Granger 
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and Joyeux 1980; Hosking 1981). Only dealing with long memory like in fractional 
integrated GARCH (FIGARCH) models, leads to hyperbolic decays in the ACFs, 
mainly caused by structural breaks. Regarding structural breaks by allowing the 
intercept of the FIGARCH to follow a slowly time-varying flexible function, leads 
to loss of efficiency, if no structural breaks occur in the respective period (Amado 
and Teräsvirta 2014; Charfeddine 2014). The FIGARCH can be generalised by 
allowing the intercept to deterministically alter its values, being possibly extended 
by using an adaptive form (A-FIGARCH) to cope with structural breaks (Amado 
and Teräsvirta 2014; Charfeddine 2014). To account for long memory and nonlin-
ear dynamics in the conditional variance at the same time, a smooth transition frac-
tional integrated GARCH (ST-FIGARCH) can be applied, which also generalises 
the FIGARCH by allowing for smooth transition probability specifications (Chkili 
et al. 2014; Choi et al. 2010). Extending asymmetric power formulations of variance 
with fractional integration leads to sufficient results, as seen in FIAPARCH models 
(Shi and Ho 2015; Conrad et  al. 2011). FIAPARCH models increase conditional 
variance specifications flexibility by allowing for the distinct processes of positive 
and negative news impacts. If implementing controls for long memory and regime 
switches, a distinction should be possible, as seen in ARFIMA or MS specifications 
(Scharth and Medeiros 2009; Shi and Ho 2015). Further, extensions of given models 
are possible, e.g., ARFIMA-FIGARCH models, which perform better out of sample, 
or by applying ARIMA-GARCH, ARFIMA-GARCH, ARFIMA-IGARCH among 
the before-mentioned ARFIMA-FIGARCH model to cope with extreme events, 
which origin of long memory behaviour of time-series (Charfeddine 2014; Chkili 
et al. 2014). In addition, there exists no formal test, which can differentiate between 
true or spurious long memory in literature until the end of the year 2019.

Nevertheless, one may test for structural breaks and long memory by applying 
iterated cumulative sum of squares (ICSS) algorithms, rescaled range (R/S) statistics 
Gaussian semi-parametric methods (GSP), detrended fluctuation analysis (DFA) or 
two-step feasible exact local Whittle (2FELW) methods, among others (Chalaman-
daris and Tsekrekos 2011; Charfeddine 2014; Liu 2015). As indicated, long-range 
dependence follows non-exponential power laws, facing similarities to self-similar 
or fractal processes (Samorodnitsky 2007).

(Multi‑)fractals momentum and trend models

Self-similarity is a characteristic property of fractals resulting in scale invariance (an 
exact form of self-similarity) (Mandelbrot 1977, 1967). A fractal itself is a non-dif-
ferentiable scaling subset of a Euclidean space, which fractal dimension exceeds the 
referring topological dimension (Mandelbrot 2004). Therefore, fractals show similar 
patterns at increasingly small scales, labelled self-similar. If the replication at each 
level is identical, the fractal is affine self-similar (Mandelbrot 1977). Self-affinity 
is defined as another characteristic of fractals, which means different scaling of 
realised values in each of the dimensional directions. Financial market movements 
reveal self-affine properties, which can be applied for via affine level transformations 
(Hallam and Olmo 2014; Hassan et al. 2011). Further, regarding characteristics of 
power laws (i.e., scaling laws) are scale invariance, well-defined means and finite 
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variances. Additionally, power laws in natural processes, do not exhibit well-defined 
variances, indicating the existence of black swan events (e.g., on financial markets) 
(Müller et al. 1990; Glattfelder et al. 2011). It can be concluded that financial time-
series exhibit scaling characteristics, following specified power laws, due to fractal-
ity and the resulting self-similarity property in the respective DGP (Mitzenmacher 
2004; Etro and Stepanova 2018). Neoclassical (traditional) methods as well as 
GARCH class models are not able to reflect multi-scaling characteristics of financial 
time-series data (Ma et al. 2017; Ñíguez and Perote 2016). If we intend to capture 
fractal features in respective models, the heteroscedastic AR (HAR) model, which is 
a linear model with constant coefficients, is applicable. It can cope with long mem-
ory and multi-scaling behaviour of data series and, therefore, often executed when 
describing the RV dynamics of high frequency (as well as other) data sets (Ma et al. 
2017; Andrada-Félix et al. 2016).

Another model type capable of respecting fractality is the before-mentioned 
MSM model, which corresponds to multi-scaling, long memory and structural 
breaks, since it applies parsimonious parametrisations, while allowing for hun-
dreds of different regimes at different time levels in the respective volatility pro-
cess (Charles and Darné 2017; Wang et al. 2016). The MSM assumes hierarchical as 
well as multiplicative structures of the heterogeneous volatility components, which 
contrasts neoclassical (or traditional) volatility models fundamentally (Charles and 
Darné 2017; Wang et al. 2016). To cope with the drawbacks of MSM, namely, to 
generate outliers and spurious long memory, the parameters can be treated more par-
simoniously by applying heterogeneous rates of decay while assuming the underly-
ing returns follow a Markov chain with multi-frequency SV (Gagniuc 2017; Wang 
et al. 2016). Regarding the return distributions of financial time-series, we cannot 
testify Gaussianity.

Once we introduce trade-time, which is determined to be dependent on sub-
ordinated transaction processes of actors, we are able to see nearly Gaussian dis-
tributions in the respective processes (Aldrich et  al. 2016). If a Gaussian random 
walk is generated while applying trade-time, it is fully consistent with a fat-tailed, 
Lévy-stable distribution (Aldrich et  al. 2016). Thus, trade-time returns, which are 
assumed unconditional exhibit fat tails as well as low-volatility clustering. Hence, it 
is possible to develop a time-changed variant of the BM process, allowing for non-
Lévy directing processes, characterised by inter-trade durations, as displayed in the 
autoregressive conditional duration (ACD) model or the Markov switching multi-
fractal duration (MSMD) model (Aldrich et  al. 2016; Herrera and Schipp 2013). 
This opens ways towards momentum strategies, building on the persistence or trend-
ing of financial time-series (Ramiah et al. 2015; Berghorn 2015). These trends can 
be measured by applying wavelet decomposition schemes in combination with R/S 
statistics to measure the respective momentum and Hurst exponent (Celeste et  al. 
2019; Berghorn 2015). Additionally, it is possible to enhance the performance 
of momentum strategies by introducing percentile cut-offs, while following an 
Jegadeesh and Titman (JT-) momentum trading rule to identify respective trends 
(Mitra et al. 2017).Momentum can also be applied in dynamic factor models, which 
can be based on statistical arbitrage, while trading on different time horizons simul-
taneously. Stylised facts occur on different scales for financial time-series. Once we 
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regard more than one time-series, but the aggregate, we analyse the financial market 
as a whole, which results in multi-dynamic or multi-fractal appearances (Hallam and 
Olmo 2014; Bekiros and Marcellino 2013).

Spill‑over and contagion models

If we aim to present the transmissions between volatility on different markets, the 
HAR-ADL (autoregressive distributed lag) model can be applied to calculate the 
RV, whilst TVAR or MS models are additionally able to cope with turmoil regimes, 
indicating strong evidence for structural breaks in causality patterns and contagion 
(Jammazi and Aloui 2010; Jung and Maderitsch 2014). Moreover, to depict spill-
over effects among different financial markets, MGARCH models, especially, the 
Baba, Engle, Kraft and Kroner specification (BEKK-GARCH, or simply BEKK 
model) of the MGARCH, which is applied to investigate international market link-
ages, are suitable (Khalfaoui et al. 2015). Further, bivariate GARCH models, also a 
bivariate BEKK-MGARCH, which simultaneously estimates moments on different 
markets, as well as combinations such as dynamic conditional correlation (DCC) 
with GJR-GARCH specifications (DCC-GJR-GARCH) are considerable (Khalfaoui 
et al. 2015; Adams et al. 2017). MGARCH models are attractive, since they impose 
correlation dynamics, resembling time-varying volatility (Adams et al. 2017). Now, 
if we take a closer look at the multi-scaling details, it is possible to decompose spill-
over on moment’s effects (e.g., mean or variance) into numerous sub-spill-overs, 
which occur on different scales, due to heterogeneity on financial markets (Khal-
faoui et al. 2015; Ang and Timmermann 2012).

Signal processing

Tending or scaling time-series yield two meanings, namely, (1) distributions of 
financial instruments behave differently at different frequencies and (2) financial 
markets reveal frequency properties as well as time properties, which hence are 
exploitable (Chakrabarty et al. 2015).

To enable those exploitations, signal analysis, which is taken from the field of 
applied physics, can be applied (Blackledget 2006). Signal analysis encompasses 
topics such as MRA, Fourier transformation (FT) and wavelets, among others. FT 
characterises the frequency composition of a given time signal while applying linear 
combinations of basic trigonometric sine and cosine functions on periodic (or sta-
tionary) functions (Chakrabarty et al. 2015). Nevertheless, extracting the frequency 
information with FT results in a complete loss of time information, since the basis-
functions are not localised in time, as well as in the inability to detect spectral vari-
ations across time (Chakrabarty et al. 2015). If we still want to apply FT concepts 
on signals with properties such as for example long memory, fast fractional differ-
encing, which is based upon fast FT (FFT) offers recommendable computational 
speedups. Additionally, FT does not cope well with non-stationary (or non-periodic) 
signals, since sinusoids basic functions in the transformation range to infinity and 
are not localised in time, which voids detection of frequency component varia-
tions across time (Chakrabarty et al. 2015). Application of constant time localised 
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windows, which each will assumed to be stationary and, therefore, be analysable 
for spectral components with FT, is an often-used extension varyingly called Short-
Time FT (STFT), Windowed FT (WFT), Local FT (LFT) or Gabor Transformation 
(Chakrabarty et al. 2015).

The wavelet multi-scale analysis or wavelet transformation (WT) was developed 
from synergies with FT, driven by its drawbacks as well as from harmonic anal-
ysis and coherent state formalism (Chakrabarty et  al. 2015). To detect changes of 
frequency components across time, wavelets can be translated across time, since a 
wavelet basis is a flexible alternative for the Fourier basis. It is possible to capture 
frequency variations across time or time variations across frequency ranges when 
applying respective wavelet functions (Boubaker and Raza 2017). By considering 
dyadic regrouping of FT, wavelets can be seen as undulatory mathematical functions 
with constant shape, limited duration and time integral of zero (Chakrabarty et al. 
2015; Jammazi and Aloui, 2010). To define this phenomenon in more detail, the 
analysis requires orthogonal bases obtained by dyadically dilating and translating 
a pair of wavelet functions, called mother and father wavelet (Boubaker and Raza 
2017). Smooth and low-frequency components of a given signal are captured by the 
father wavelet, which is a scaling function with corresponding coarse scale coef-
ficients, while details and high-frequency parts are described by the mother wavelet, 
whose coefficients are localised in time (i.e., prone to the Heisenberg uncertainty) 
(Boubaker and Raza 2017; de Souza e Silva and Legey, 2010). To analyse multi-
scale coherence and phase properties in multiple time-series, which are non-station-
ary and time-varying, wavelet coherence models (e.g., maximum overlap discrete 
wavelet transforms [MODWT]) can be implemented, capturing covariation of both 
time- and frequency varying features (Boubaker and Raza 2017; Khalfaoui et  al. 
2015). Wavelet decomposition methods are able to cope with first and second-order 
non-stationarity, asymmetries, heterogeneity, structural breaks and nonlinearity, 
among others (Chakrabarty et al. 2015).

Possible extensions are the optimisation of time–frequency localisations by 
orthogonal wavelet basis functions, which are part of Hilbert spaces as well as the 
transition from continuous to discrete wavelets based on computer sub-band fil-
ters (Chakrabarty et al. 2015; Jammazi and Aloui 2010). The latter application of 
low- and high-pass filters via pyramid algorithms are part of formerly introduced 
MRA and decompose finite energy signals into dyadic frequency bands, which can 
be reassembled using inverse discrete wavelet transformations (Chakrabarty et  al. 
2015). Alternatively, the already mentioned MODWT can be used instead of dis-
crete wavelet transforms (DWT), since it applies non-orthogonal transforms leading 
to non-dyadic length sample sizes, invariant translations and results in higher reso-
lutions at coarser scales (Alexandridis et al. 2017; Khalfaoui et al. 2015). Locating 
MODWT into discrete Hilbert spaces results in MODHWT, allowing for multi-scale 
coherence and phase property investigations of non-stationary and time-varying sig-
nals (Khalfaoui et al., 2015).
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Neural networks and machine learning algorithms

Examples of the application of NNs next to volatility analysis are predictions of 
financial market indices, bankruptcy, stock performance, macroeconomic indica-
tions, the rating of bonds and derivatives, among others (Aguilar-Rivera et al. 2015; 
Tkac and Verner 2016). NNs are able to deliver approximations of nonlinear pro-
cesses, while setting no further beforehand assumptions about the DGP (Aguilar-
Rivera et al. 2015; Tkac and Verner 2016). Most of the time backpropagation with 
gradient decent algorithms are deployed in same-labelled conventional backpropa-
gation NNs. Other implementations are support vector machines (SVMs), fuzzy 
NNs and multi-layered NNs, which stand in contrast to more traditional logit mod-
els in terms of bankruptcy predictions as well as crisis, risk and fraud assessments 
(Tkac and Verner 2016). Furthermore, combining mathematical techniques and 
models with NNs delivers promising results (Tkac and Verner 2016). One example 
are volatility forecasts with wavelet neural networks (WNNs), where the activation 
function is represented via wavelet functions, called wavelons (Alexandridis et  al. 
2017). Others are the determination of shifts with genetic reinforcements, or hybrid 
NNs, instead of standard backpropagation approaches or SVMs (Aguilar-Rivera 
et al. 2015; Tkac and Verner 2016). Optimisations are applicable while deploying 
a type of algorithm taken out of computer science, namely evolutionary or genetic 
algorithms (GA) and genetic programming (GPs), representing white-box solutions 
(Aguilar-Rivera et al. 2015; Alexandridis et al. 2017).

Copula models

Nonlinearity, asymmetry, autocorrelations, heavy tails or other stylised features 
occur within time-series marginal and joint probability functions. Therefore, a new 
type of function, namely, a copula function, can be applied (Righi and Ceretta, 
2013). Copula families determine the shape and magnitude of nonlinear serial- and 
cross-interdependence between returns and volatilities of financial instrument time-
series, since they are functions that link a univariate marginal to its respective mul-
tivariate distributions (Righi and Ceretta 2013; Lira Salvatierra and Patton 2015).

It is mostly possible to map vectors of random variables into a vector with uni-
form margins, which can be split into the respective dependence, namely, the copula 
(Righi and Ceretta 2013; Lira Salvatierra and Patton 2015). Copulas do not need 
information about the marginal distribution; hence, it is possible to model an indi-
vidual series, while the interdependence is displayed via the copula function. The 
copula returns the joint probability of respective events as a function of the marginal 
event probabilities building univariate behaviour of regarded variables (Righi and 
Ceretta 2013; Bodnar and Hautsch 2016). Copula functions can further be related 
to other dependence measures; for example, the absolute dependence by Kendall´s 
tau through conversions with according bivariate copulas (Righi and Ceretta 2013; 
Bodnar and Hautsch, 2016). To model volatility, the Joe copula, Clayton 180° 
rotated copula (survival), Gumbel copula, BB6-copula or the BB8-copula, among 
others, can be implemented (Righi and Ceretta 2013). If we map innovations of a 
non-negative dynamic process (e.g., volatility process) into the Gaussian domain, 
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it is possible to apply a copula transformation, by assuming the innovations origin 
from a vector multiplicative error model (VMEM) (Righi and Ceretta 2013; Bod-
nar and Hautsch 2016). Trying to capture higher-order dependence structures can be 
implemented by decomposing the dynamics via Gaussian copulas (Righi and Cer-
etta 2013).

Extreme value models

To determine the potential loss and risk, which may occur during financial crises or 
other negative impacts, we can apply risk measures such as the expected shortfall 
(ES), Value-at-Risk (VaR), RiskMetrics, among others, or can alternatively apply 
the concept of extreme value theory (EVT) (Chiu and Chuang 2016; Sener et  al. 
2012). The ES is a coherent risk measure, which considers extreme negative returns 
in a given financial time-series (Zhu and Galbraith 2011). When we talk about the 
RiskMetrics model, we mean a parametrisation for volatilities of financial instru-
ment return-series executing an exponentially weighted moving average (EWMA) 
for the conditional variance (Chiu and Chuang 2016). One of the most popular and 
widely spread risk-loss measure is the VaR method, which estimates the distribution 
function of a specified asset return-series, with a fully parametric setup for volatility 
dynamics under the assumption of conditional normality (Zhu and Galbraith 2011). 
In consideration of stylised facts and clustering of extreme events and crisis paired 
with serial-correlations, the underlying Gaussianity and ~ iid assumptions typically 
are violated, leading to massive misspecifications of the VaR as shown by financial 
institutions during market turbulences (Zhu and Galbraith 2011; Chiu and Chuang 
2016). These volatility clusters, paired with before-mentioned effects, result in criti-
cal issues within practical implementations of VaR during turmoil, crises or other 
extreme events, which could lead to respective corporate insolvencies (Herrera and 
Schipp 2013). This is due to the unconditional DGP method of the VaR estimates, 
which focuses on the entirety of the predefined distribution and does not regard 
potential dynamics in the respective underlying volatility process (Sener et al. 2012).

To cope with those drawbacks, extensions of the VaR methods can be seen, such 
as the fractionally co-integrated VaR (CoVaR), which assumes the time between 
extreme events as a distinct stochastic process (Zhu and Galbraith 2011). Another, 
more common extension is the conditional VaR (CVaR) method, which when frac-
tionally integrated (FCVaR) is the link in the literature to unit root co-integration 
tests (Chiu and Chuang 2016; Herrera and Schipp 2013). Applying asymmetric 
characteristics to CVaR methods result in more accurate calculations (Zhu and Gal-
braith 2011). Further, the highest return-to-risk performance under capital allocation 
penalisations can be attained by respecting for volatility dynamics in corresponding 
distributions, namely, by applying conditional autoregressive VaR (CaViaR) mod-
els (Chiu and Chuang 2016; Rodriguez et  al. 2017). Along with the VaR specifi-
cations, it is possible to apply the EVT concept in combination with other models 
to determine extremes. Examples hereto include applications of EVT to the condi-
tional return distribution through a two-stage method in combination with GARCH 
specifications for respective residuals, called GARCH-EVT (Rodriguez et al. 2017). 
EVT with residuals of ARMA-GARCH models, follow an EVT distribution, which 
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is designed to model extreme movements with given excess loss over a given thresh-
old. Once this threshold is reached, the excess loss distribution is displayed via a 
generalised Pareto distribution (GPD), while the VaR can be extracted via the peaks 
over threshold (POT) model (Chiu and Chuang, 2016; Rodriguez et  al. 2017). If 
clusters in volatility are assumed, a self-exciting point process version of the POT 
method is applicable, called Hawkes POT (Rodriguez et al. 2017). Another method 
to capture respective clusters is the combination of ACD and POT (ACD-POT), 
which in contrast to GARCH-EVT is able to model the conditional intensity for 
inter-exceedance times, which is interpretable as volatility proxy (Chiu and Chuang 
2016; Rodriguez et al. 2017).

Simulations, performance and other methods

If sufficient data is not present, or if we aim to model defaults or want to reduce 
future errors, simulations such as the Monte Carlo (MC) simulation or historical 
simulation are applicable (de Almeida et al. 2018; Fahling et al. 2018). MC simu-
lation means generating respective return-series based on a stochastic differential 
equation, which reflects the asset dynamics. Hence, MC simulations can for example 
differentiate between pure ARFIMA and MS processes (Sener et al. 2012). Alterna-
tively, MC simulations can be employed with maximum likelihood estimators for the 
inference modelling of SV in Markov Chain Monte Carlo (MCMC) models (Saloff-
Coste 2004; Shi and Ho 2015). Another simulation method is the historical simula-
tion, which actually is no simulation, since distributions of actual return-series are 
used to determine sampled quantile measures (Chiu and Chuang 2016; Sener et al. 
2012). Both historical and MC simulation are non-parametric approaches, which 
aim to determine quantiles in tailed ends of specified distributions, assuming the 
exploitability of the past for near-future predictions (e.g., performance, bankruptcy 
or default probabilities, among others) (Chiu and Chuang 2016; Sener et al. 2012).

Assets and data sets

Table 8 provides an overview regarding asset classes, periods and frequencies and 
state asset classes and the corresponding data specifications, financial instruments 
or underlying financial instruments in case of derivatives sorted, descending by 
denoted frequency (from high to low). For each asset class, we count the according 
financial instruments for each frequency notation separately. This indicates that the 
same financial instrument can occur more than once in each asset class, but in a dif-
ferent frequency notation, respectively. The count defines how often the authors use 
a specific financial instrument time-series at a given frequency. In total, we identify 
13 asset classes, 8 different frequency notations and a sum of 180 time-series. The 
most frequently analysed asset classes are stocks, commodities and exchange rates 
at a daily frequency. Sorted by total count per frequency, the daily-denoted financial 
instrument time-series of S&P500, Nikkei225, WTI-Oil, DIJA30 and FTSE100 (the 
last three facing equal counts) take dominant roles in the sample. In addition, authors 
regard daily denoted time-series of HSI, DAX30, Brent-Oil, USD/JPY, USD/EUR, 
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CAC40 and USD/GBP as data sets worthy to analyse. Notwithstanding, we abstain 
from taking a particular position in the ongoing discourse of whether opportunity 
and volatility time-series should be recognised and acknowledged as distinct asset-
class or not, but state them as such for didactic reasons. We do so because some 
authors mention VIX time-series as differently typed entities in comparison to other 
asset types4 (Basher and Sadorsky 2016; Fahling et al. 2018; Nohel and Todd 2015).

Models and research design

We analyse the complete context, data analysis and mathematical sections of the 
sampled literature and note every unique method (e.g., models, algorithms) occur-
rence per paper within a dictionary accordingly.5 Table 9 shows an overview of the 
mathematical composition. We find a total of almost 850 unique techniques, models, 
tests and other mathematical constructs within the analysed papers. More than five 
authors account for only 80 composites each at the same time in our sample, which 
equals 9.42% of the total composition. This means, only in 80 cases, more than five 
authors apply the same mathematical method. In contrast, 634 findings occur only 
once in the sample, which corresponds to 74.68% of all findings. In total, we count 
1905 non-unique models, tests and other mathematical method usages contained in 
the condensed list of literature. On average, we identify 14.3018 methods (with a 

Table 9   Aggregated overview of 
the mathematical composition 
with total counts (#) and 
respective percentage shares 
(Dec)

Mathematical methods overview

Label # Dec

Total unique 849 1
Total unique(count >  = 5) 80 0.0942
Total unique (count = 1) 634 0.7468
Total non-unique count 1905 –
Unique type differentiation
Model 387 0.4558
Test
Statistic
Estimator

136 0.1601

Distribution 32 0.0377
Ratio
Criterion

70 0.0824

Algorithm
Process
Function

155 0.1826

Other type 69 0.0813

5  We provide a complete model dictionary stating every single finding with its abbreviation and name in 
the supplementary material.

4  Further information and literature review about VIX as asset can be found in Gonzales-Perez (2015).
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standard deviation of 7.060) in total per research paper, from which six techniques 
or models are unique in comparison with the overall condensed list of literature. 
We notice that only a few authors apply the same set of mathematical methods at 
the same time, whilst the majority implements different methods. We differentiate 
these 849 mathematical procedures into six categories: “Models”, “Tests-Statistics 
and Estimators”, “Distributions”, “Ratios and Criterions”, “Algorithms, Processes 
and Mathematical Functions” and “Other Types”, which do not fit into the before 
mentioned categories. We find 387 models (45.58%), 155 algorithms, processes 
and functions (18.26%) as well as 136 tests, statistics and estimators (16.01%) as 
main categories of the 849 total unique composites. In the following, we present the 
highest-ranking findings in each category by further introducing the top 15 counted 
results (with example reference and explication) if they have at least a count of two.

First, we ascertain that neoclassical (traditional) models as well as basic variants 
such as GARCH, ARCH, AR, ARMA and VAR to be the highest-counted models 
as annotated in former sections and as displayed in Table 10. The analysis of the 
data sections of the referring papers indicate that authors tend to apply basic and 
accepted models as benchmark for potential enhancements, extensions or the crea-
tion of new models. In addition, several historical enhancements have been estab-
lished as points of orientation as well, namely, EGARCH, FIGARCH, IGARCH 
ARFIMA, HAR and MCMCs among others, which can be interpreted as ongoing 
extension of respective models under consideration with regards to earlier men-
tioned stylised facts and properties.

In terms of statistical tests, statistics and estimators, we state the highest-count-
ing method to be the maximum likelihood estimation (for distribution parameters). 
Regarding tests, accepted set ups such as Jarque–Bera (for normality), Augmented-
Dickey-Fuller (for unit roots), Ljung-Box (for ACs), Diebold-Mariano (for forecast 
performance comparison), Kolmogorov-Smirnow (for distribution fits) and Phillips-
Perron (for integration) tests take the highest place in the authors test choices as 
stated in Table 11. Additional tests are the Kwiatkowsi–Phillips–Schmidt–Shin (for 
trend stationarity), likelihood (for model comparison), model confidence set (also 
for model comparison), probability integral transformation (for uniformity) and the 
Wald (for variable significance) test.

The most frequently applied distribution is the Student´s t – Distribution executed 
to test for Gaussianity in a given set of data (see Table 12). We find other counts 
of distributions such as the Weibull (for failure rates over time), generalised Pareto 
(for decay densities), gamma (for maximum entropy probabilities), complementary 
cumulative distribution function (CCDF) (for tail exceedances), generalised error 
(for continuous symmetry) and the generalised extreme value (for EVT distribution) 
among others.

Regarding ratios and information criterions, the Bayesian information criterion, 
synonymous with the Schwarz information criterion (both deployed for model selec-
tion), the Akaike information criterion (for model quality determination) count high-
est as Table  13 displays. Furthermore, the authors apply the mean squared error, 
which measures average squared model errors. In addition, scholars seem to accept 
root mean square errors (for forecasting performance differences), quasi-maximum 
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likelihood estimators (for distribution parameters) and mean absolute errors (for 
continuous variable differences) as vastly acceptable measures.

Additionally, the Sharpe ratio (for excess return), quasi-likelihood (for overdis-
persion) and the mean square forecast error (for prediction quality), among several 
others, must be mentioned.

Note, that the number of models fairly exceed those of distributions, tests and 
performance measures. Since the same test or performance measure as well as the 
same distribution is applicable for many model realisations and data sets at the same 
time, their respective total number is lower. Table 14 shows algorithms, processes 
and functions, which we cluster in three categories, namely, stochastic processes, 
signal analysis as well as other diverse functions. In terms of stochastic processes, 
we see the DGP as means to describe potential real data set mechanisms, random 
walks, BMs and ACs. Signal analysis represents different types of FTs, WTs and 
functions.

Table 15 shows framework calculation methods. Most of these belong into the 
domains of artificial intelligence (AI), into signal analysis or are  split into other 
methods. The majority of AI concepts contain ANNs (or NNs) and backward propa-
gation of variance, while MRA is part of signal analysis, respectively. Others (e.g., 
superior predictive ability, filtered historical simulation method and mixed data sam-
pling) are frameworks for simulations or performance measures.

Interconnections between models and blind spots of research

We investigate interconnections of the category “Models”, while visualising inter-
connections by a heat map as displayed in Fig. 1. To gain deeper insights from 387 
unique models, we firstly analyse them and form root- and junction model groups. 
Each group can be interpreted as particular model family, while a junction stems 
from its root.6 This means, a junction model is the offspring of a root model. Thus, 
we label the latter proposition as model evolution. Additionally, we take stylised 
facts and properties into account, which the authors reference or seem important 
enough to explicitly model into their mathematical conceptions. Table 16 shows 13 
root families, 14 junction families and four properties. For each root family, exist-
ing junctions are presented. The first root-junction tree displays AR models. HAR 
and VAR models are based upon AR models, which means that HAR and VAR 
are the junctions of the root AR. The next root are MA models, which in this case 
cross with the AR root to create combined junctions, namely ARMA, ARFIMA and 
ARIMA models. The same logic applies for CC and GARCH model roots and their 
respective junctions.7 In addition, some roots as well as junctions may have been 

6  Root-Junction relationships can be seen similar to mother-daughter relationships, therefore as (1: n)-
relations. One root (or mother) model can be the origin of one or more junction (or daughter) models.
7  CCC and DCC models offspring CC models, while EGARCH, FIGARCH, among others, originate 
from the standard GARCH model.
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created to express specific properties or stylised facts accordingly. The properties, 
which are partly inherited in roots and junctions, are fractal characteristics, smooth 
transitions, regime switches and threshold functionalities. We deduce whether or not 
a selected single model belongs to one or more respective model families. If the 
model is part of several model families, we mark it accordingly. Further, we count 
the models, which belong to one model family only.

Fig. 1   Symmetric combinatory matrix of model variations per model family, which combines all defined 
roots, junctions and properties with each other. The main diagonal itself represents the number of varia-
tions (saplings) occurring solely within each root or junction. Off the main diagonal counts show which 
root or junction- model families or properties are combined with each other and how often. Since it is 
symmetric, the counts above (or below) the main diagonal are redundant by conception
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Therefore, one unique model count represents one variation of the respective root 
or junction model (labelled sapling8) of the concurring model family.

We present their aggregated numbers, which we interpret as the number of varia-
tions in each respective model family. With this approach, we separate the variations 
in two aspects. First, the number of variations of the root-model within a model 
family itself and second, the number of variations of models, which originate from 
several model families. If a model belongs to more than one model family, each 
respective model family receives one variation count as result. We consider several 
models as junction, even if these models originally belong to a given root-model 
family also represented within the graphic. This is due to the fact that these respec-
tive junction models form families of their own. Therefore, we define such junction 
families as too important to cluster them as saplings into their original root-model 
family. To sum up, we see two kind of model families, namely root model and junc-
tion model families, which we interpret as daughter families of a given root model 
family. Variations (or saplings) of the latter two can additionally represent stated 
properties, which seem to be worth modelled into authors research as new model, 
respectively. We did not include all stylised facts and properties shown in this study 

Table 16   Model family tree, 
combinations and shared 
properties: Each model family is 
represented by a referring root-
model, which may display one 
or more sub-families (junctions), 
which are represented for each 
model family representative; 
both roots and junctions may 
share properties, stated below 
the roots and junctions column

Model family tree combinations

Root Junction Root Junction

Copula Markov
VEC Volatility
ACD ARCH
POT GARCH EGARCH
EVT FIGARCH
Probit/logit MGARCH
AR HAR APARCH

VAR FIAPARCH
MA ARMA BEKK-GARCH

ARFIMA GJR-GARCH
ARIMA Properties

CC CCC​ Fractal
DCC Smooth transitions

Regime switch
Threshold

8  Each root model can have several junctions, while each of them can show manifold realisation counts 
(saplings) on their own. As an example, we can state AR as the root, HAR as the junction and within the 
AR-HAR relation, a sapling as a HARX (HAR with exogenous variables) or a TV-HAR (time-varying 
HAR) model, among others. Therefore, we label a root-junction-sapling realisation as, e.g., AR-HAR-
HARX, since HARX is a variation of its junction HAR, which stems from the root, namely AR. If we 
regard ARX (AR with exogenous variables), we see a sapling of a root model only, where no junction is 
involved, resulting in a (1: m) relation.
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since many root or junction models themselves can properly incorporate some of the 
stated features. We only include properties, which are explicitly modelled as model 
family variation, hence as a new model specification.

A combinatory matrix of model variations (or saplings) per model family is 
shown in Fig. 1 and combines all defined root and junction model families and pre-
sented properties with each other. The main diagonal itself represents the number 
of variations (saplings) occurring solely within each root or junction model fam-
ily, respectively. There are models whose only purpose is to catch some of the 
announced properties, which we state in the matrix as well. Examples of such mod-
els are MSM, TGARCH, MRS-GARCH, ST-GARCH, 2S-ARFIMA or TSTRSM, 
among many others. The other values off the main diagonal represent the number 
of variations (cross-saplings), which occur in combinations of the model families. 
Figure  1 shows which root model families, junction model families or properties 
are combined and how often. The families with the highest number of saplings are 
the GARCH family with 26, the volatility family (e.g., RV, IV models) with 15, the 
Copula family with 10 and the AR family with 7 variations. We exclude the “others 
family” with 52 counts in this comparison since it represents unique models that 
do not belong to a superordinate family. The ones with the lowest amount are the 
threshold and regime-switching property-based families with zero and one sapling 
correspondingly, the MGARCH as well as the ARIMA daughter families and the 
GJR-GARCH family with one sapling each. As we continue with the cross-combi-
nations between different model families, we identify four major, two weaker fields 
and some single occurrences of model family “pairings”. The field with the high-
est counts represents the combinations of BEKK-GARCH, Markov and volatility 
models with the stated properties, especially, the combinations of Markovian with 
regime-switching properties bear models with 23 saplings, which seem to be very 
promising in terms of combination numbers, followed by the combination of general 
volatility models with unrelated other models counting 12 variations.

The second field represents the same families, namely BEKK-GARCH, Markov 
and volatility models in combination with AR, HAR and VAR families. The pair-
ing of volatility models with the HAR family leads with 12 respective saplings. 
The third field consists of AR, HAR and VAR families crossing the given proper-
ties. We find that HAR and other unrelated models count 12 variations. The fourth 
major field takes a combination of GARCH, EGARCH and FIGARCH families 
with ARMA, ARIMA and ARFIMA families, while the highest count of eight sap-
lings belongs to the GARCH and ARMA constellations. The first of the two minor 
fields consist of the combination of GARCH, EGARCH, FIGARCH families with 
the respective properties, where the combination of GARCH models with regime-
switching and threshold-based models are represented with eight and, respectively, 
six counted saplings. The second minor field shows the crossing of property bearing 
models with themselves, mainly resulting in eight counted saplings for fractal and 
regime-switching model combinations. Furthermore, we identify some single occur-
rences in the combination of BEKK-GARCH and Markov families counting seven 
respectively, in the combination of Markov and VEC as well as regime-switching 
models and ARFIMA models bearing five counted saplings each. Our approach 
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allows us to identify some blind spots or “missing links”, i.e., combinations that are 
not sufficiently tested in prior research.

First, there are model families, with which we do not see any intersections with 
any other model family, such as copula, probit or logit, MA and ARIMA model fam-
ilies. Second, there exist clusters, which do not show combinations of certain model 
families at all. Examples are the combination of VEC, ACD and POT families with 
GJR-GARCH, AR, HAR, VAR, MA, ARMA, ARFIMA, ARIMA, CC, CCC, DCC 
and BEKK-GARCH models. To sum up, we find enhancements and variations in 
each model family itself respectively, as indicated by Poon and Granger (2003). 
Therefore, we confirm their expected course of action, stating that initially varia-
tions occur inside of root model families themselves as logical first step, especially, 
shortly after the occurrence of the Financial Crisis  in 2008. Furthermore, we con-
firm combinations of model families as crossing of different model families as suc-
cessive next step, yielding the highest number of saplings. As a third step, we rec-
ognise the combination of root and junction families with the properties of financial 
instrument time-series as well as the combination of model families with unrelated 
models not regarded so far. In addition, we either remark empty spots as mathemat-
ically not viable options, simply not researched model combinations or combina-
tions, which may not be contained in our sample.

Frontiers, conclusions and avenues of research

We identify frontiers (or boundaries) by examining the research papers data sec-
tions, findings and parts of the conclusions. Further, we define frontiers as unre-
solved issues or open gaps, as research boundaries, which mirror questions and 
upcoming challenges and as technical limitations. In total, frontiers in our under-
standing should reflect the state-of-the-art of current research activities as well as 
the border towards technological capabilities. Thus, we group frontiers, displayed in 
Table 17, into three topics, namely, boundaries and limitations arising with model-
ling extensions itself, borders of understanding of the causes or origin of given prop-
erties (or certain effects) and the front occurring with technological enhancement or 
improvement of given methods or models.

Volatility modelling

Since financial markets are highly dynamic environments, a sufficient level of 
adaptability is required, which in terms of determining the true DGP of financial 
assets drive the border for existing econometric methods (Narayan and Smyth 2015; 
Ghandar et  al. 2016). In the scientific  literature the latter supposition is centred 
on econometric models or stochastic time-changes applied to explain the underly-
ing dynamics, which have mostly been drawn out of the volatility directly. Further, 
determining the trading dynamics outside the first conditional moments, but also in 
conditional covariance and by inserting time-varying uncertainty measures, result-
ing in dynamic correlation structures, can be stated as future tasks of modelling 
attempts (Aldrich et al. 2016). Not only the correct specification of dynamics, but 



SN Bus Econ (2022) 2:183	 Page 45 of 69  183

also of the full-featured variety of other stated stylised facts and properties, deter-
mine the frontiers in terms of understanding these stylised facts as well as in upcom-
ing implementations of respective model implementations.

Table 17   Frontiers and limitations presented in terms of content-tags with limitation-count (#) > 1 
and sample-paper references; labels stand for the following: (1) B = Boundaries and Limitations, (2) 
T = Technological Enhancements and Challenges, (3) O = Cause or Origin of properties

Frontiers and limitations

Tags # References Label

Volatility modelling 30 Grassi and Santucci de Magistris (2015) B
Forecasting accuracy 15 Hou (2017) T
Nonlinearity 15 Lin et al. (2015) T
Modelling 14 Madaleno and Pinho (2014) B
Long memory 9 Andrada-Félix et al. (2016) O
Prediction abilities 8 Caporin et al. (2013) T
Neural networks 7 de Souza e Silva et al. (2010) T
Nonlinear fitting 7 Maia et al. (2011) O
Asymmetry 7 Dark (2015) O
Computational speed 5 Bauwens et al. (2014) R
DGP 5 Ng et al. (2013) B
Information extraction 4 Sun et al. (2015) T
Disturbances 4 Mao et al. (2017) T
Market intercorrelation 4 Balclair et al. (2017) O
Momentum crashes 3 Daniel and Moskowitz (2016) O
Simple modelling 3 Jammazi and Aloui (2012) B
Structural modelling 3 de Souza e Silva et al. (2010) B
Physical aspects 3 de Souza e Silva et al. (2010) O
Patterns 3 Linnainmaa et al. (2016) T
Copula models 3 Mizen and Tsoukas (2012) B
Big data 3 Emrouznejad et al. (2016) T
Banks-core capabilities 2 Sun et al. (2015) T
Banks-technology 2 Sun et al. (2015) T
Contagion-feedback effects 2 Agosto et al. (2016) B
Economic impact 2 de Souza e Silva et al. (2010) O
Dynamics 2 Niguez and Perote (2016) B
Fractal trends 2 Berghorn (2015) O
Dynamic factor model 2 Exterkate et al. (2016) O
Social media news impact 2 Gong and Lin (2018) T
Default impacts 2 Agosto et al. (2016) B
Others 22
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Predictive capabilities

Reviewing forecasting attempts with nonlinear specifications reveal high demands 
of computational power as well as the menace of overfitting, which is only solv-
able by optimisation of the nonlinear complex problematics (Ghandar et al. 2016). 
However, since financial market relationships are time-variant, optimisation for non-
linear dynamics results in increased complexity. This may lead to the processing of 
redundant information and non-optimal solutions. The possible solutions to com-
plex tasks in dynamic environments are not fully examined yet (Narayan and Smyth 
2015; Exterkate et al. 2016). The majority of research focuses on financial distress, 
bankruptcy, forecasting of financial time-series and decision supports with special 
attention to classifications (e.g., Tables 1 and 2 in Tkac and Verner, 2016), which are 
solvable via NNs or ML-algorithms due to availability of computational power (e.g., 
Tables  1 and 2 in Aguilar-Rivera et  al. 2015) (Duan et  al. 2019; López de Prado 
2018). Until recent years, computational demands have been a major barrier, which 
concurrently lowers and simultaneously reveals new application possibilities to opti-
misations via new families of algorithms (e.g., CI, GA or evolutionary specifications 
in GP) (Cordis and Kirby 2014; Narayan and Smyth 2015).

Forecasting accuracy

The frontier until the end of 2019 can be seen in the combination or synthetisa-
tion across multiple econometric methods, which should not be extended piecewise, 
but integrated into panel-based frameworks, resulting in cross-validations of model 
performances in a standardised manner (Narayan and Smyth 2015; Doering et  al. 
2019). Speaking of optimisation, Ghandar et al. (2016) see the majority of current 
research focusing on the outperformance of neoclassical (traditional) or more com-
mon methods when applying new algorithms (e.g., CI), while the selection of opti-
mal optimisation procedures for given model settings is concurrently underrepre-
sented. After analysing our sample, we see these trends in our sample occurring in 
a similar manner, stating that the majority of authors aim towards performing better 
than a respective benchmark model, instead of seeking optimisation procedures for 
given model settings or specifications first. Nonetheless, implementing heuristics 
based on CI or AI methods, have the capability to achieve high-quality solutions, 
since CI algorithms can successfully be implemented for large numbers of nonlinear 
variables, potentially widen upper mentioned frontiers. This is due to the closeness 
of CI to evolutionary algorithms and AI (Ghandar et  al. 2016; Duan et  al. 2019). 
Therefore, optimisation algorithms can be seen as a mean to drive frontiers to the 
rear, since they are able to provide more realistic decision-making solutions in finan-
cial modelling (e.g., optimisation of implied volatility of option prices via prediction 
of random subset selection algorithms). Further, the availability of big financial data 
on a tick-by-tick basis reveals potentials towards a deeper understanding of stated 
properties, trading processes or the management and assimilation of financial asset 
risks (Cordis and Kirby 2014; Bodnar and Hautsch 2016).
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Combination of research fields

Moreover, we do not only see frontiers in terms of technical capabilities, but also 
with regards to human behaviour, yielding the ongoing synergetic metamorphosis 
between econophysics and BF, providing new methodologies (e.g., GP, GA, qualita-
tive research or neuro finance) (Chakrabarty et al. 2015; Linnenluecke et al. 2017). 
The combination of respective research fields and cross application of models and 
methods leads to a new variety of possible applications. For example, we state the 
combination of WNNs with GAs and a human behaviour factor (e.g., stress, irra-
tional decision probabilities), which can be compared to benchmarks such as 
standardised NNs with radial basis functions and SVMs (Alexandridis et al. 2017; 
Chakrabarty et al. 2015). Regarding nonlinear dynamics in combination with irra-
tional actors at different scales, may lead to chaotic behaviour, which can be tangled 
with Mackey–Glass equations in combination with GA-NNs, which has not been 
intensively researched yet (Alexandridis et al. 2017; Boubaker and Raza 2017).

In conclusion, we will now evaluate the findings and conclusions of the authors 
as stated in Table 18, which will reflect key points as well as stated fields of our 
study. The topic with the most counts is volatility dynamics. Time-varying volatil-
ity, meaning parameter evolution over time inside time-series paired with autore-
gressive features (Bekiros and Marcellino 2013). Asymmetric and, therefore, non-
linear features follow volatility dynamics in time-series. Since positive and negative 
news affects the latter data series differently, they lead to differing (or asymmetric) 
dynamics, hence, nonlinearity (Exterkate et al. 2016; Aloui and Mabrouk 2010). In 
addition, long memory (or long-range dependence), which yields the persistence 
of shocks and structural breaks within respective time-series belong to the corre-
sponding conclusions. Further, regime switches or jumps as a special case, which 
mostly follow structural breaks, enhance nonlinearity and bear different dynamics 
(Choi et al. 2010; Shi and Ho 2015). Moreover, empirically confirmed stylised facts 
and features, are scaling, trending and fractal patterns, which are incorporated in 
momentum strategies to exploit such structural patterns (Berghorn 2015; Wang et al. 
2016).

Irrational actors trade on different time-levels or scales, but also effects may 
spread throughout different (integrated) financial markets, yielding spill-over and 
contagion effects, which can be decomposed on different time-levels into sub-effects 
as well (Jung and Maderitsch 2014; Khalfaoui et al. 2015). In conclusion, research-
ers conclude neoclassical (traditional) models as insufficient in hindsight of styl-
ised facts and properties (e.g., trending and scaling characteristics, momentum, see 
Berghorn, 2015), which are further examinable due to the upcoming availability of 
high frequency and financial big data as well as advanced AI and ML-algorithms. 
In addition, actors are challenged by this broad variety of effects which occurs at 
distinct interconnected markets at different time-levels simultaneously (e.g., Celeste 
et al. 2019), while traditionally relied upon thought-constructs such as the EMH are 
contradicted completely (Duan et al. 2019; Berghorn 2015).



	 SN Bus Econ (2022) 2:183183  Page 48 of 69

Ta
bl

e 
18

  
M

ai
n 

co
nc

lu
si

on
s p

re
se

nt
ed

 in
 te

rm
s o

f c
on

te
nt

-ta
gs

 w
ith

 c
on

cl
us

io
n-

co
un

t (
#)

 >
 3 

an
d 

sa
m

pl
e-

pa
pe

r r
ef

er
en

ce
s a

lo
ng

si
de

 th
e 

m
ai

n 
st

at
em

en
t

C
on

cl
us

io
ns

Ta
gs

#
Re

fe
re

nc
es

M
ai

n 
st

at
em

en
t

D
yn

am
ic

s
48

B
ek

iro
s a

nd
 M

ar
ce

lli
no

 (2
01

3)
C

om
pl

ex
 d

yn
am

ic
s o

f t
im

e-
se

rie
s a

re
 h

et
er

og
en

eo
us

 o
n 

di
ffe

re
nt

 ti
m

e 
sc

al
es

N
on

lin
ea

rit
y

27
En

ge
le

n 
et

 a
l. 

(2
01

1)
M

ul
tif

ra
ct

al
 m

od
el

s c
an

 m
od

el
 n

on
lin

ea
rit

ie
s, 

ca
us

ed
 b

y 
m

ar
ke

t a
ct

or
s

A
sy

m
m

et
ry

25
Ed

er
in

gt
on

 e
t a

l. 
(2

01
0)

St
oc

k 
m

ar
ke

t v
ol

at
ili

ty
 is

 h
ig

hl
y 

as
ym

m
et

ric
; d

eg
re

e 
di

ffe
rs

 d
ep

en
di

ng
 o

n 
pr

ed
ic

tio
n 

m
ea

su
re

 (e
.g

., 
as

ym
-

m
et

ric
 ti

m
e-

se
rie

s o
r R

V
 m

od
el

)
Po

or
 tr

ad
iti

on
al

 m
et

ho
ds

25
R

ah
m

an
 a

nd
 S

aa
di

 (2
00

8)
Ec

on
om

et
ric

 p
ro

bl
em

s a
ris

e 
in

 u
ni

t r
oo

t t
es

ts
 to

 te
st 

ra
nd

om
 w

al
ks

 d
ue

 to
 st

yl
is

ed
 fa

ct
s (

e.
g.

, s
tru

ct
ur

al
 

br
ea

ks
), 

w
hi

ch
 in

 th
em

se
lv

es
 c

on
tra

di
ct

 w
ea

k 
fo

rm
 o

f E
M

H
Lo

ng
 m

em
or

y
22

M
cM

ila
n 

et
 a

l. 
(2

00
9)

Lo
ng

 m
em

or
y 

of
te

n 
sp

ur
io

us
 d

ue
 to

 st
ru

ct
ur

al
 b

re
ak

s o
r i

gn
or

ed
 fe

at
ur

es
 (e

.g
., 

no
nl

in
ea

rit
y)

 in
 d

ai
ly

 
vo

la
til

ity
 se

rie
s;

 b
ut

 d
om

in
an

t l
on

g-
te

rm
H

ig
h 

fr
eq

ue
nc

y
19

A
ld

ric
h 

et
 a

l. 
(2

01
6)

H
ig

h-
fr

eq
ue

nc
y 

da
ta

 u
se

d 
in

 p
ar

si
m

on
io

us
 in

te
r-t

ra
de

 d
ur

at
io

n 
m

od
el

 to
 a

rr
iv

e 
at

 a
 h

ie
ra

rc
hi

ca
l m

od
el

 o
f 

re
tu

rn
s i

n 
cl

oc
k 

tim
e 

to
 e

xp
la

in
 d

yn
am

ic
s a

nd
 u

nc
on

di
tio

na
l n

at
ur

e 
of

 o
bs

er
ve

d 
re

tu
rn

s
St

ru
ct

ur
al

 b
re

ak
17

C
ho

i e
t a

l. 
(2

01
0)

A
cc

ou
nt

in
g 

fo
r s

tru
ct

ur
al

 b
re

ak
s i

nc
re

as
es

 fo
re

ca
sti

ng
 p

er
fo

rm
an

ce
 a

nd
 a

llo
w

s i
nc

re
as

ed
 p

re
di

ct
io

ns
 o

f 
fu

tu
re

 b
re

ak
 d

at
es

Re
gi

m
e 

sw
itc

h
16

Pa
n 

et
 a

l. 
(2

01
4)

In
cr

ea
se

d 
im

po
rta

nc
e 

of
 re

gi
m

e 
sw

itc
hi

ng
 a

nd
 a

sy
m

m
et

ry
 in

 m
od

el
lin

g 
of

 e
nh

an
ce

d 
m

od
el

s a
nd

 c
or

re
la

-
tio

n 
str

uc
tu

re
s

Tr
en

ds
15

H
ar

ris
 a

nd
 Y

ilm
az

 (2
00

9)
N

on
lin

ea
r t

re
nd

s a
re

 id
en

tifi
ab

le
 a

nd
 lo

w
 fr

eq
ue

nc
y 

m
om

en
tu

m
 tr

ad
in

g 
yi

el
ds

 h
ig

he
r r

es
ul

ts
Sc

al
in

g
13

B
er

gh
or

n 
(2

01
5)

M
ar

ke
t i

nd
ic

es
 w

ith
 re

sp
ec

t t
o 

tre
nd

 si
ze

, t
re

nd
 d

rif
t a

nd
 tr

en
d 

vo
la

til
ity

 e
xh

ib
it 

sc
al

in
g 

la
w

s
N

on
-n

or
m

al
 d

ist
rib

ut
io

n
11

N
g 

et
 a

l. 
(2

01
3)

N
on

-g
au

ss
ia

n,
 n

on
-p

ar
am

et
ric

 d
ist

rib
ut

io
n 

m
od

el
s p

er
fo

rm
 b

et
te

r p
re

di
ct

io
ns

Sp
ill

-o
ve

r
11

K
ha

lfa
ou

i e
t a

l. 
(2

01
5)

St
ro

ng
 e

vi
de

nc
e 

of
 ti

m
e-

va
ry

in
g 

vo
la

til
ity

; m
ea

n 
an

d 
vo

la
til

ity
 sp

ill
-o

ve
r e

ffe
ct

s c
an

 b
e 

de
co

m
po

se
d 

in
to

 
m

an
y 

su
b-

sp
ill

-o
ve

rs
 o

n 
di

ffe
re

nt
 ti

m
e 

sc
al

es
 a

cc
or

di
ng

 to
 h

et
er

og
en

eo
us

 a
ct

or
s

Sh
oc

ks
10

Pa
la

nd
ri 

(2
01

5)
D

ow
n 

vo
la

til
ity

 e
xh

ib
its

 p
er

si
ste

nc
y,

 e
qu

al
 to

 th
at

 o
f u

p 
vo

la
til

ity
 c

ou
pl

ed
 w

ith
 fa

st 
m

ea
n-

re
ve

rs
io

n.
 

C
om

bi
na

tio
n 

de
te

rm
in

es
 d

ec
ay

in
g 

pa
tte

rn
s o

f s
ho

ck
s t

o 
do

w
n 

vo
la

til
ity

 w
ith

 v
er

y 
sh

or
t i

ni
tia

l h
al

f-
lif

e 
eq

ua
l t

o 
up

 v
ol

at
ili

ty
St

ru
ct

ur
al

 p
at

te
rn

s
9

Lo
 D

uc
a 

et
 a

l. 
(2

01
3)

Jo
in

 o
f v

ar
io

us
 in

di
ca

to
rs

 in
 m

ul
tiv

ar
ia

te
 fr

am
ew

or
k 

pe
rfo

rm
s b

et
te

r i
n 

di
sc

re
te

 c
ho

ic
e 

m
od

el
s t

ha
t s

ta
nd

 
al

on
e 

vu
ln

er
ab

ili
ty

 in
di

ca
to

rs
 in

 te
rm

s o
f s

ys
te

m
ic

 e
ve

nt
 p

re
di

ct
io

n
C

lu
ste

r
9

D
a 

Fo
ns

ec
a 

an
d 

Za
at

ou
r (

20
15

)
Tr

ad
in

g 
ac

tiv
ity

 a
s a

 ti
m

e-
se

rie
s e

xh
ib

its
 c

lu
ste

rin
g 

an
d 

m
ea

n 
re

ve
rs

io
n 

eff
ec

ts
, w

hi
ch

 c
an

 b
e 

m
od

el
le

d 
vi

a 
H

aw
ke

s p
ro

ce
ss

es



SN Bus Econ (2022) 2:183	 Page 49 of 69  183

Ta
bl

e 
18

  (
co

nt
in

ue
d)

C
on

cl
us

io
ns

Ta
gs

#
Re

fe
re

nc
es

M
ai

n 
st

at
em

en
t

C
on

ta
gi

on
9

Ju
ng

 a
nd

 M
ad

er
its

ch
 (2

01
4)

St
ru

ct
ur

al
 b

re
ak

s a
nd

 c
on

di
tio

na
l h

et
er

os
ce

da
sti

ci
ty

 e
ffe

ct
 sp

ill
-o

ve
rs

; a
fte

r r
eg

ar
di

ng
 fo

r i
t: 

co
nt

ag
io

n 
no

 m
or

e 
de

te
ct

ab
le

; r
eg

ar
di

ng
 ti

m
e-

va
ry

in
g 

vo
la

til
ity

 sp
ill

-o
ve

rs
 o

nl
y 

in
te

rd
ep

en
de

nc
e 

no
 c

on
ta

gi
on

 
m

ea
su

ra
bl

e
M

om
en

tu
m

8
M

itr
a 

et
 a

l. 
(2

01
7)

Je
ga

de
es

h 
an

d 
Ti

tm
an

 m
om

en
tu

m
 ru

le
 o

f 1
99

3 
de

cl
in

es
 in

 im
po

rta
nc

e;
 R

/S
 ra

tio
s i

nd
ic

at
e 

hi
gh

 p
er

si
s-

te
nc

e 
an

d 
tre

nd
in

g;
 m

om
en

tu
m

 st
ra

te
gi

es
 p

ro
fit

ab
le

Ju
m

ps
8

C
ha

rle
s a

nd
 D

ar
né

 (2
01

7)
Ju

m
ps

 ta
ke

n 
in

to
 a

cc
ou

nt
 in

 v
ol

at
ili

ty
 p

re
di

ct
io

ns
 y

ie
ld

 h
ig

he
r f

or
ec

as
tin

g 
pe

rfo
rm

an
ce

B
ig

 fi
na

nc
ia

l d
at

a
8

Su
n 

et
 a

l. 
(2

01
5)

B
ig

 fi
na

nc
ia

l d
at

a 
be

ar
s s

ig
ni

fic
an

t v
al

ue
 b

y 
m

ak
in

g 
in

fo
rm

at
io

n 
ex

tra
ct

ib
le

 a
t h

ig
he

r f
re

qu
en

ci
es

Fr
ac

ta
lit

y
7

H
al

la
m

 a
nd

 O
lm

e 
(2

01
4)

M
ul

tif
ra

ct
al

 p
ro

ce
ss

es
 st

at
ist

ic
al

ly
 li

nk
 m

om
en

ts
 o

f r
et

ur
n 

pr
oc

es
s a

t d
iff

er
en

t s
am

pl
in

g 
in

te
rv

al
s;

 d
ire

ct
 

es
tim

at
io

ns
 fr

om
 h

ig
h-

fr
eq

ue
nc

y 
da

ta
 im

pr
ov

es
 fo

re
ca

sti
ng

 p
er

fo
rm

an
ce

C
ha

ot
ic

 b
eh

av
io

ur
6

B
ou

ba
ke

r a
nd

 R
az

a 
(2

01
7)

St
ro

ng
 e

vi
de

nc
e 

tim
e-

va
ry

in
g 

vo
la

til
ity

 a
ffe

ct
ed

 b
y 

ow
n 

ne
w

s, 
ot

he
r v

ol
at

ili
tie

s a
nd

 w
av

el
et

 sc
al

e;
 

de
co

m
po

si
tio

n 
of

 sp
ill

-o
ve

rs
 in

to
 su

b-
sp

ill
-o

ve
rs

 o
n 

di
ffe

re
nt

 ti
m

e 
sc

al
es

 a
cc

or
di

ng
 to

 h
et

er
og

en
eo

us
 

ac
to

rs
; d

ec
re

as
in

g 
m

ar
ke

t c
or

re
la

tio
ns

 d
ue

 to
 c

ha
ot

ic
 re

sp
on

se
 o

f a
ct

or
s

Fi
na

nc
ia

l n
ew

s i
m

pa
ct

6
A

da
m

s e
t a

l. 
(2

01
7)

D
ai

ly
 c

or
re

la
tio

n 
dy

na
m

ic
s a

re
 sp

ur
io

us
 si

nc
e 

be
in

g 
co

ns
eq

ue
nc

e 
of

 c
or

re
la

tio
n 

br
ea

ks
 o

cc
ur

rin
g 

in
 

re
sp

on
se

 to
 sh

oc
ks

; c
on

tro
lli

ng
 fo

r n
ew

s a
nd

 d
ec

ay
 p

ar
am

et
er

s s
ho

w
 c

on
st

an
t c

or
re

la
tio

ns
St

ru
ct

ur
al

 sh
ift

s
5

A
m

ad
o 

an
d 

Te
rä

sv
irt

a 
(2

01
4)

D
ep

en
de

nc
e 

str
uc

tu
re

 o
f r

et
ur

n 
se

rie
s w

el
l e

xp
la

in
ed

 b
y 

de
te

rm
in

ist
ic

 c
ha

ng
es

 in
 u

nc
on

di
tio

na
l v

ar
ia

nc
e 

(n
on

-c
on

st
an

t)
M

ic
ro

str
uc

tu
re

 n
oi

se
5

Su
n 

et
 a

l. 
(2

01
5)

W
he

n 
ap

pl
yi

ng
 ti

ck
-b

y-
tic

k 
da

ta
 th

e 
m

ar
ke

t m
ic

ro
str

uc
tu

re
 n

oi
se

 w
ill

 c
ha

lle
ng

e 
da

ta
 m

in
in

g 
m

et
ho

ds
; 

G
O

W
D

A
 a

lg
or

ith
m

 fo
r D

en
oi

si
ng

N
on

 p
ar

am
et

ric
ity

5
Ja

nu
s e

t a
l. 

(2
01

4)
D

yn
am

ic
 c

op
ul

as
 a

nd
 M

on
te

 C
ar

lo
 si

m
ul

at
io

ns
 a

s e
xa

m
pl

e 
of

 n
on

-p
ar

am
et

ric
 a

pp
ro

ac
he

s r
es

ul
t i

n 
ou

t-
pe

rfo
rm

an
ce

 o
f o

th
er

 m
et

ho
ds

Sh
ift

s
5

X
u 

an
d 

Pe
rr

on
 (2

01
4)

Ti
m

e-
va

ry
in

g 
pr

ob
ab

ili
ty

 o
f s

hi
fts

 a
s a

 fu
nc

tio
n 

of
 th

e 
oc

cu
rr

en
ce

 a
nd

 m
ag

ni
tu

de
 o

f l
ar

ge
 n

eg
at

iv
e 

la
gg

ed
 

re
tu

rn
s w

ith
 m

ea
n 

re
ve

rs
io

n 
of

 ju
m

p 
co

m
po

ne
nt

s i
m

pr
ov

e 
fo

re
ca

sti
ng

 m
od

el
s

Sk
ew

ed
 in

no
va

tio
ns

5
W

an
g 

et
 a

l. 
(2

01
6)

Pe
rs

ist
en

cy
 o

f c
or

re
la

tio
n 

pr
oc

es
s i

s s
tro

ng
 a

nd
 im

pa
ct

 o
f t

he
 in

no
va

tio
ns

 is
 la

rg
e;

 p
ot

en
tia

l s
ol

ut
io

n 
w

ith
 

sk
ew

ed
 in

no
va

tio
ns

Sy
ste

m
at

ic
 p

at
te

rn
4

Sc
ha

rth
 a

nd
 M

ed
ei

ro
s (

20
09

)
St

ro
ng

 e
vi

de
nc

e 
of

 m
ul

tip
le

 re
gi

m
es

 li
nk

ed
 to

 re
tu

rn
 p

at
te

rn
s

Sp
ur

io
us

 c
or

re
la

tio
n

4
A

da
m

s e
t a

l. 
(2

01
7)

M
an

y 
co

rr
el

at
io

n 
dy

na
m

ic
s a

re
 sp

ur
io

us
 a

nd
 d

is
ap

pe
ar

 o
nc

e 
co

rr
el

at
io

n 
br

ea
ks

 a
re

 c
on

tro
lle

d 
fo

r



	 SN Bus Econ (2022) 2:183183  Page 50 of 69

Ta
bl

e 
18

  (
co

nt
in

ue
d)

C
on

cl
us

io
ns

Ta
gs

#
Re

fe
re

nc
es

M
ai

n 
st

at
em

en
t

Ex
tre

m
e 

va
lu

es
4

C
hi

u 
an

d 
C

hu
an

g 
(2

01
6)

In
 fa

vo
ur

 o
f E

V
T 

th
e 

Va
R

 e
sti

m
at

or
s s

ho
ul

d 
be

 u
pd

at
ed

 fo
r i

nf
or

m
at

io
n 

ch
an

ge
s;

 u
se

 o
f s

w
itc

hi
ng

 m
od

el
 

ap
pr

oa
ch

es
Pr

ic
e 

sh
oc

ks
4

M
ad

al
en

o 
an

d 
Pi

nh
o 

(2
01

4)
O

il 
pr

ic
e 

sh
oc

ks
 in

 p
er

io
ds

 o
f w

or
ld

 tu
rm

oi
l o

r fl
uc

tu
at

io
ns

 o
f g

lo
ba

l b
us

in
es

s c
yc

le
 h

av
e 

si
gn

ifi
ca

nt
 

im
pa

ct
 o

n 
re

la
tio

n 
of

 o
il 

an
d 

sto
ck

 m
ar

ke
ts

Sm
oo

th
 tr

an
si

tio
ns

4
Li

n 
et

 a
l. 

(2
01

2)
N

on
lin

ea
r s

m
oo

th
 tr

an
si

tio
n 

dy
na

m
ic

 m
od

el
 fo

r c
ap

tu
rin

g 
sm

oo
th

 v
ol

at
ili

ty
 a

sy
m

m
et

rie
s i

n 
in

te
rn

at
io

na
l 

fin
an

ci
al

 m
ar

ke
ts

 b
y 

em
pl

oy
in

g 
in

tra
-d

ay
 d

at
a 

fa
vo

ur
ab

le
In

te
lli

ge
nt

 d
ec

is
io

ns
4

Su
n 

et
 a

l. 
(2

01
5)

B
ig

 fi
na

nc
ia

l d
at

a 
al

lo
w

s e
xt

ra
ct

io
n 

of
 m

ic
ro

str
uc

tu
re

 a
nd

 h
ig

h 
fr

eq
ue

nc
y 

in
fo

rm
at

io
n,

 w
hi

ch
 is

 b
as

is
 o

f 
in

te
lli

ge
nt

 a
lg

or
ith

m
s

Li
ne

ar
ity

4
C

he
n 

et
 a

l. 
(2

01
2)

N
on

lin
ea

r m
od

el
s (

e.
g.

, C
aV

ia
R

) o
ut

pe
rfo

rm
 li

ne
ar

 V
aR

 m
od

el
s

O
th
er
s

66



SN Bus Econ (2022) 2:183	 Page 51 of 69  183

Citation network analysis

Citation network

The structure of the analysis is as follows: First, we calculate metrics and other test 
parameters for the complete sample. Second, we plot the citation network deploy-
ing the “Force-Atlas2-algorithm” provided by the software package Gephi (Jacomy 
et al. 2014). Third, we modify the plot by implementing filters, size as well as colour 
manipulations, which represent given metrics (Cherven 2015). Lastly, we provide an 
interpretation.

To prepare the input data for Gephi, we include the sampled literature as “mother-
nodes”, whilst deploying their respective references of papers as “daughter-nodes”.9 
Once uploaded, we calculate the HITS-metrics, randomised modularity, Eigenvec-
tor Centrality (EC) with 100 iterations and the average path length as displays in 
Table 19. In terms of HITS, we concur that not many research papers provide hyper-
links and are not dominant within the visible surface web, since the value tends to 
be zero10 (Kleinberg 1999). Regarding the EC, which represents the influence of a 
node within the network, we see a weak influence between the respective research 
papers. We state a diameter of two as well as an average path length of 1.015, which 
suggests that the nodes in the network tend to be closer together (Newman 2010). 
Modularity, which represents the weights of the edges, is very strong, with a value 
of 0.914 (Blondel et al. 2008). After the creation of in total 53 communities in terms 
of modularity, we apply three different node-size and colour manipulations and one 
filtration each. First, we change the node-sizes from small to large as well as their 
colour, regarding the “Betweenness Centrality (BC)”, which measures how often a 
node appears on the shortest paths between nodes in the network. Furthermore, we 
then apply a filter, which only shows nodes, which correspond to a degree greater 
than two. In our second attempt, we set the colours in terms of the authority meas-
ure, where red tones indicate significance and the sizes equal the EC of each node 
as displayed in Fig.  2. The aggregate of important publications as well as their 
measure values,11 are shown in Table 20. In the final round of changes, we let the 
node-sizes remain at the EC and change the colours to display the communities, 
which remain after the degree-filter greater than two applies, as shown in Fig.  3. 
Following the modularity construction, we regard the five highest-scoring commu-
nities. Orange labelled nodes (community I) belong to the contents of “Predictabil-
ity and Modelling”, pink labels (community III) reflect “Regimes and Shocks” and 
red nodes (community V) contain represent papers, which contribute to “Volatility 

9  This process uses pdf-files of the sample literature, extracts references and creates JSON-files, which 
we then convert into Gephi-readable-formats deploying self-written Python code.
10  Each parameter starts with the value of one and will be normalised into [0, 1], which can be inter-
preted as probabilities.
11  The Hub parameter has two representations, namely, 0.003688 in paper Scharth and Medeiros (2009), 
which yields a “Betweenness-Centrality” of 49.0 and Gupta and Wohar (2017) with 0.170282. The only 
other paper with a “Betweenness-Centrality” is Arroyo and Maté (2009) with a value of 29.0. Others 
yield zero-values.
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and Asymmetries”, whilst green marked papers (community IV) originate from 
“Dynamics and Copulas”. Finally, blue-labelled nodes (community II) centre on 
“Oil and Stock Markets”. These major groups reflect the findings and are consistent 
with the contents presented in this paper so far. We present two respective example 
papers out of each community in Table 21    

Behaviour of bubbles, crashes and financial crises

An elaboration on the definition and modelling of bubbles, crashes and crises serves 
as bridging avenue between the topics and various scientific fields. It represents the 
connection between nonlinear dynamics, financial and risk modelling and proposes 
potential explications for the occurrence of said bubbles and crises. To begin, no 
agreed upon nor precisely noted definition of bubbles12 is stated within the sampled 
academic literature of the citation network, while given presuppositions or attempts 
of definitions are inconclusive (Balcilar et al. 2016; Bhattacharya and Yu 2008). The 
first major insight to note is that a rise in a given asset price per se does not represent 
always a proper implication of irrationality or respective bubble formation (Balcilar 
et  al. 2016). Second, the presupposition is agreed upon that the determination of 
bubbles are not possible in an ex-ante point of view (Balcilar et al. 2016; Kaizoji 

Fig. 2   Citation network: version 1: Degree > 2, Size equal to significance in Eigenvector Centrality 
(small to big) and colour (black-white-red: low-mid-high values) represent the authority measure

12  Due to the inexistence of a proper definition, one may see bubbles, crashes or crises as either syn-
onymous or may follow our suggestion of bubbles being smaller or equal to crashes, which are smaller 
or equal to crises in magnitude. Note that the latter suggestion is our opinion and not backed up by the 
literature. Mostly, extreme events are referred to as bubbles within the literature.
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and Sornette 2008; Bhattacharya and Yu 2008; Gurkaynak 2008). Moreover, analys-
ing existing literature dictates complicated as well as contradictory theories and tests 
about bubble formation and statements of their respective existence (Balcilar et al. 
2016). Little consensus about the cause and effect relation in hindsight of bubbles 

Table 20   Leading publications with a Degree > 2 and significant markings in terms of Eigenvector Cen-
trality and authority; citation counts taken from Google Scholar as of November 2019. The references are 
proposed accordingly in the Supplementary material of this study

“–” indicates zero value

Paper Cited by Authority Eigenvector centrality

Schwarz (1978) 40,051 0.020167 0.411765
Engle (1982) 25,889 0.005565 0.058824
Hamilton (1994) 3586 0.155503 0.352941
Bollerslev (1986) 26,588 0.001021 0.058824
Glosten et al. (1993) 9083 0.032082 0.352941
Diebold and Mariano (1995) 7185 0.001046 0.058824
Engle and Kroner (1995) 4694 0.031743 0.352941
Jones and Kaul (1996) 1429 0.163682 0.352941
Baille et al. (1996) 2652 0.001021 0.058824
Bollerslev and Mikkelson (1996) 1398 0.002293 0.117647
Estrella and Mishkin (1998) 1438 0.092672 0.117647
Sardorsky (1996) 1657 0.102784 0.235294
Ang and Chen (2002) 1653 0.031952 0.294118
Stock and Watson (2003) 1648 0.092672 0.117647
Granger and Hyung (2004) 770 0.009715 0.058824
Hansen (2005) 1106 0.013068 0.577855
Sardorsky (2006) 411 0.006823 0.058824
Hansen (2006) 369 0.013528 0.117647
Giacomini and White (2006) 1335 0.014302 0.117647
Patton (2006) 1937 0.000193 0.058824
Taylor (2007) 3599 0.010016 0.117647
Kilian (2008) 829 0.094374 0.176471
Scharth and Medeiros (2009) 72 0.000908 0.058824
Arroyo and Maté (2009) 104 0.000908 0.058824
Corsi (2009) 1575 0.000276 0.058824
Kilian and Park (2009) 1209 0.007275 0.058824
Hansen et al. (2011) 166 0.003362 0.235294
Nyberg (2011) 80 – 0.003639
Kilian and Vigfusson (2011) 217 0.092672 0.117646
Baumeister and Peersman (2013) 353 0.050692 0.058824
Balcilar et al. (2013) 41 0.092672 0.117647
Broadstock and Filis (2014) 135 0.092672 0.117647
Gupta and Wohar (2017) 28 – –
Bjornland et al. (2018) 22 0.092672 0.117647
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exist, large crashes are deemed outliers and, thus, a specialised theoretical rationale 
as well as specific treatment of these events is required (Sornette 2003; Kaizoji and 
Sornette 2008).

Moreover, several types of bubbles are depicted within the literature, namely, (1) 
rational expectation bubbles, i.e. the appearance in presence of rational actors, who 
excerpt their will to gain large returns offered as remuneration of crash risk dur-
ing bubbly periods within the markets, (2) credit fuelled bubbles and (3) irrational 
behaviour bubbles, among others (Hüsler et  al. 2013; Balcilar et  al. 2016). Bhat-
tacharya and Yu (2008) display an early reasoning for bubble formation within the 
literature as follows: (1) existent limits to arbitrage, which are caused by respective 

Fig. 3   Citation network: version 2: Degree > 2, Size equal to significance in Eigenvector Centrality and 
colours representing major (Top 5) modularity communities (Orange; I: Predictability & Modelling, 
Pink; III: Regimes & Shocks, Red; V: Volatility & Asymmetries, Green; IV: Dynamics & Copulas, Blue; 
II: Oil & Stock Markets, Black-collections: centralisation of all other publications, which do not belong 
into the Top 5 communities)

Table 21   Example bridging 
paper out of each community

Community # Paper

Predictability and modelling I Hansen (2005)
Diebold and Mariano (1995)

Oil and stock markets II Jones and Kaul (1996)
Khalfaoui et al. (2015)

Regimes and shocks III Granger and Hyung (2004)
Klaassen (2002)

Dynamics and copulas IV Engle and Kroner (1995)
Joe (2005)

Volatility and asymmetry V Glosten et al. (1993)
Patton (2011)
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noise traders, (2) existence of synchronisation risk, (3) existing constraints in term 
of short selling opportunities, (4) lack of closely given substitutes for herding, (5) 
existence of heterogeneous beliefs within the markets and (6) delegated investments 
and the existence of psychological biases. Previously depiction states the seemingly 
“outdatedness” of the EMH clearly (Kaizoji and Sornette 2008). Furthermore, two 
conditions in general have to be invoked to set deviations from fundamental asset 
values in motion, namely, a given level of irrationality and rational investors’ inabil-
ity to drive back asset prices due to given limits in arbitrage (Kaizoji and Sornette 
2008). A more financial analytical proposition in terms of bubble definition can be 
found in DeMarzo et al. (2008), stating the following points: (1) existence of asset 
market prices, which are higher than their discounted sums of expected cash flows, 
supposing the risk free rate as discount rate, (2) said cash flows yield non-negative 
correlations with aggregate risks and (3) a holding decision is made by risk-averse 
investors given the information proposed in (1) and (2).

The general opinion within the literature is to denote positive feedback effects 
and herding behaviour as key factors for bubble growth (Kaizoji and Sornette 2008). 
This is seen due to (1) synchronisation failures among rational traders, which desta-
bilise the market systems, (2) noise traders, (3) agency costs and monetary incen-
tives given to competing fund managers and (4) rational imitation effects in the 
presence of uncertainty in combination with social imitations (Kaizoji and Sornette, 
2008).

As stated previously, stock market shocks are capable to yield adverse conse-
quences with significant repercussions (Balcilar et al. 2016). Following Sornette 
(2003), stock market crashes are an inherent personification of extreme events, 
observed within the study of complex systems. Systemic stock market price 
shocks imply actual returns to investment and financial stability to be interwo-
ven within a complex financial system (Balcilar et al. 2016). Thus, the pinpoint-
ing of a bubble (or crash) origin is more subtle as assumed within the literature 
so far, thence, is progressively constructed by the market as a whole, namely, 
as a self-organising process or systemic instability (Sornette 2003). Such a pro-
cess indicates investment rewards and market catastrophes (i.e., bubbles and 
crashes) occur in irregularly frequented, generational cycles (Sornette 2003). 
Therefore, this is seen as the main mechanism leading to proposed positive feed-
back effects (i.e., self-reinforcement such as imitative behaviour and herding) 
assumed within the literature (Sornette 2003). The latter positive feedbacks pro-
vide an inherent implication for the development of speculative bubbles, which 
prepare the instability for a major market drawdown (or crash) (Sornette 2003). 
Elaborating on the nature of complex systems further, reveals that the complex 
structures are indeed fractal, leading to the presupposition that predictions of the 
detailed evolutionary paths of such a complex system is futile (i.e., void or not 
worth it) (Sornette 2003). Nonetheless, the latter premise does not exclude the 
possibility to predict evolutionary phases of the complex systems, which matter 
in the predictability of extreme events, which are representable, via bifurcation 
points (Sornette 2003). Further, crises are labelled as rarely occurring extreme 
events, albeit featuring extraordinary impact, thus, such events are completely 
undersampled, leading analytical theoretical rationales as well as “brute force” 
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numerical algorithms to fail (Sornette 2003). The movement of asset prices is 
determined by the according market actors buying and selling activities, which 
may lead to deviations from a random walk in the stock market price trajectory 
(Sornette 2003). Negative feedback effects, therefore, tend to regulate growth 
within markets towards an equilibrium, while positive feedback effects asserts 
that the price increase of the recent past will lead to future price growth effects 
(Sornette 2003). According to Youssefmir et al. (1998), the latter positive feed-
back effects, when unchecked, tend to produce runaways until the deviation from 
denoted equilibrium is large enough to trigger otherly effects, which lead to rup-
tures and bubble bursts. According to Vogel and Werner (2015) most of the aca-
demic literatures’ models are based upon the presupposition that rationality will 
prevail and that markets are predominantly efficient, leading in general to insuf-
ficient models and a vast critique, namely the “you know one if you see one” 
ex-post detection approach.

Further, following Vogel and Werner (2015), states that the power of eco-
nomic testing is weak due to the definition aspect, namely, inventive bubble 
notations such as rational, churning, collapsing, exploding, intrinsic, which 
reflects the “tenuous grasping at straws” in terms of bubble predictability. An 
overview of most common existing bubble models is proposed in Table  22, 
while a detailed review and summary is proposed by Sornette (2003).

Table 22   Brief overview on sampled bubble models out of the citation network literature. The literature 
is given in the supplementary material

Bubble model References

Variance bound test Shiller (1981)
Hausman specification test Hausman (1978)
Nonparametric procedures Evans (1986)
Periodically collapsing bubbles Blanchard (1979)
Unit root tests Diba and Grossmann (1988)
Regime switching collapsing bubbles Van Norden and Shaller (1993)
Dynamic bubble tests Hall et al. (1999)
Business cycle fluctuation Bernake et al. (1999)
Ising model Kaizoji and Sornette (2008)
MTAR​ Adämmer and Bohl (2014)
Supremum ADF (SADF), generalised ADF (GADF) Phillips et al. (2011, 2015)
Chow test and CUSUM Homm and Breitung (2012)
State space MS model Al-Anaswah and Wilfling (2011)
Nonlinear stochastic processes Corsi and Sornette (2014)
Heterogeneous agents for nonlinear dynamics He et al. (2019)
Johansen-Ledoit-Sornette (JDL) model Sornette et al. (2013)
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Discussion and conclusions

In this paper, we answer the question, “What are the insights, cognitions and devel-
opments in financial and risk modelling in the information age and since the Finan-
cial Crisis of 2008, till the end of 2019?”. To oblige and answer the research ques-
tion at hand, we construct a bibliometric content analysis in combination with a 
snowball sampling approach and a citation network analysis. Hence, we do so by 
rating the research papers applying the Deyner-rating to ensure high quality, before 
analysing them with the Hart framework. The main subjects of authors’ research 
are the topics of “financial forecasting”, “volatility modelling” and “financial time-
series dynamics”.

Theoretical implications

Time-series (or volatility) dynamics are the non-constant unconditional variance 
changes over time, which react to news differently (Amado and Teräsvirta 2014). 
These different reactions can be presented as distinct processes, asymmetric charac-
teristics, which lead the time-series (or volatility) dynamics to show (multivariate) 
nonlinearity (Righi and Ceretta 2013; Palandri 2015). In these multivariate dynamic 
volatility processes, downward volatility is less predictable (Bodnar and Hautsch 
2016). Moreover, nonlinear volatility dynamics result in heteroscedasticity, left-
skewed returns and a deviation from Gaussianity (Zhu and Galbraith 2011; Scharth 
and Medeiros 2009). Sudden changes in the unconditional variance of financial 
time-series are labelled as structural breaks, which occur due to persistency induc-
ing shocks to the conditional variance (Ñíguez and Perote 2016).

Persistency mainly causes volatility clusters, which reflect the occurrence of cer-
tain events at the same time (Charfeddine 2014; Boubaker and Raza 2017). Deter-
ministic shifts in the unconditional variance lead to long memory (or long-range 
dependence), which reveals non-exponential decays (non-exponential power laws) 
of the respective time-series ACFs (Klein and Walther 2017; Zhu and Galbraith 
2011). Long memory may easily be confused with regime switches (or jumps as a 
special one-period case), since regimes display the timely dimension of persistency, 
which, in contrast, is caused by the aforementioned structural breaks. This problem 
is solvable with co-integrative or smooth transitive methods (Ang and Timmermann 
2012; Ma et al. 2017). If we observe persistency on different time horizons at the 
same time, we identify fractal patterns, scaling and trending characteristics within 
respective time-series, which are exploitable through momentum-based strategies 
(Chakrabarty et al. 2015; Celeste et al. 2019). In the case of shock transfers between 
different markets, we can detect changes in transmission speed while respecting the 
effects of contagion for non-integrated markets and spill-overs for integrated mar-
kets (Ioan et al. 2013; Jung and Maderitsch 2014). When regarding spill-overs and 
contagion between different markets at different scales, we can determine the pos-
sibility of, for example, sub-spill-overs, as decomposition depends on the respec-
tive time-level (Khalfaoui et al. 2015). Therefore, we state that the aforementioned 



SN Bus Econ (2022) 2:183	 Page 59 of 69  183

stylised facts and properties occur on different markets at different scales simultane-
ously, generating an extreme complex aggregate called financial market, which is 
susceptible to respective theoretical as well as practical rationales, implications and 
modelling suspects.

In our sample, the majority of applied models are stochastic processes, mainly 
Markov and autoregressive processes. While Markov chains are representable via 
random walks, Markov processes tend to occur in the form of BMs or Poisson pro-
cesses (Parzen 2015). Autoregressive processes yield the vast majority of presented 
models, building on the AR model, which in the case of an AR(1) specification can 
be approximated via a two-step Markov chain (Florescu 2015; Gagniuc, 2017). In 
general, most stochastic processes can be approximated via each other. As we regard 
several time-series at once, the AR can be extended to the VAR model, while, in 
combination with MA models, it can build the basis for the ARMA model, which 
can again be enhanced to the ARIMA model with non-stationary data (Parzen 2015; 
Sun et al. 2015). Not only are the financial time-series assumed time-varying, but 
so are their respective error variances too, yielding ARCH models as long as this 
variance follows an AR process (Brooks 2014). In contrast to ARCH models, SV 
models assume the error variance realisations to be randomly distributed (Gagniuc 
2017). If the error variance follows an ARMA process, the standard GARCH model, 
with a unit root in the IGARCH model, is applicable (Tsay 2010).

To deal with regime switches in MS models, combinations such as MS-VAR 
models or threshold specifications (e.g., TARFIMA) are suitable (Ma et al. 2017). 
Since the displayed regime switches are related to the persistency of respective 
shocks SWARCH (ARCH[q] in MS processes), MS-GARCH or AGARCH models 
are applicable (Charfeddine 2014; Chang et al. 2017).

We assume regimes and persistency dynamics to be different, which results in 
presented nonlinear characteristics; again, other models are appropriate, namely, 
TAR, STAR, NGARCH, ST-GARCH or STARCH models, among others (Lin et al. 
2012; Chkili et  al. 2014). Nevertheless, nonlinearity can also be caused by asym-
metric features, which can additionally be respected by SWARCH models, asym-
metric EGARCH or the GJR-GARCH inter alia (Wang et al. 2016). Models trying to 
combine the aforementioned properties are DSARV models, among others (Cordis 
and Kirby, 2014). Shock persistency leads to long memory effects, which standard 
GARCH models with a short memory cannot reflect properly, enforcing the neces-
sity to apply fractional integration methods such as FIGARCH models. Such models 
yield a loss of efficiency if no structural breaks occur (Jammazi and Aloui 2010; 
McMillan & Ruiz, 2009). To be able to cope with those drawbacks as well as with 
nonlinearity, smoothing transitions, in combination with fractional integration, can 
be used in models such as A-FIGARCH, ST-FIGARCH or in MS environments with 
FIAPARCH or 2S-ARFIMA models (Chkili et al. 2014; Shi and Ho 2015). To deal 
with more properties, a variety of combinations are observable, such as ARIMA-
GARCH, ARFIMA-GARCH and ARFIMA-FIGARCH. Furthermore, various tests 
and algorithms for verification are deployed in the sampled literature, such as ICSS 
algorithms or R/S statistics (Chkili et al. 2014; Liu 2015). Nevertheless, almost all 
of the aforementioned models are unable to display fractality (and multifractality) 
or respective scaling and trending characteristics properly on different scales or 
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time-levels. The GARCH class cannot reflect multi-scaling or self-similarity prop-
erly and, thus, cannot describe financial time-series volatility properly (Hallam and 
Olmo 2014; Mandelbrot 2004).

Models that can outline multi-scaling as well as other properties are, for example, 
the HAR, MSM, or, if they apply different time definitions, the ACD or MSMD, 
among others (Aldrich et al. 2016; Charles and Darné 2017). In addition, trends can 
be modelled and exploited with momentum strategies, while betas are observed to 
be scale sensitive (Mitra et al. 2017; Focardi et al. 2016). If we analyse more than 
one market at once, the effects of contagion and spill-overs are seen, which can be 
represented by BEKK-GARCH models (Jung and Maderitsch 2014). Respecting 
multi-markets and multi-scaling effects simultaneously, the HAR-ADL or TVAR 
models are suitable (Jammazi and Aloui 2010; Bekiros and Marcellino 2013). Leav-
ing stochastic processes, applications to measure risks, defaults or potential losses 
such as VaR and EVT are applicable. Extensions, also in combination with Monte 
Carlo simulations, are possible (e.g., CVaR, CaViaR, GARCH-EVT, POTs and 
ACD-POTs) (Chiu and Chuang 2016; Rodriguez et al. 2017).

Linkages

To sum up, we can confirm the future indications by Poon and Granger (2003), pros-
pecting that models will first be combined within their respective families. We show 
this feature with our main diagonal of the combinatory matrix, stating respective 
root family models and their combinations.

Furthermore, Poon and Granger (2003) indicate for the future that models will 
be cross-combined with different model families, building new families, respec-
tively. This can be demonstrated in the root-junction trees in the combination matrix 
and be confirmed as well. Moreover, among the vast variety of models (over 800 
unique mathematical methods alone in this study), a lack of panel-based compari-
sons reveals another gap within the field of financial and risk modelling (Narayan 
and Smyth 2015). Since different performance and error measures (see Table  13) 
as well as diverging data sets (see Tables 8 and 9) exist, we do not find an overall 
comparison of explanatory power and forecasting performance unambiguously to 
be feasible and overall conclusive. In signal analysis, we state the result that time-
series bear frequency as well as time information, which is first extracted imple-
menting FT or STFT methods. Due to the loss of all time information by applying 
FT, MRA and further wavelet (e.g., MODWT, MODHWT or DWT) transformations 
can be applied to obtain respective time–frequency resolution information (Klein 
and Walther 2017; Alexandridis et al. 2017). In terms of computer science, we see 
a rise in the implementation of AI and ANN concepts, which is driven by the avail-
ability of higher computational power. We also see a development ranging from 
the standard backpropagation NN or SVM towards more sophisticated applications 
such as multi-layered NNs or combinations with signal theoretical concepts such as 
WNNs, resulting in high quality outcomes (Tkac and Verner, 2016; Alexandridis 
et al. 2017).These cross combinations of model families with respective properties 
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or technological advances are also prospected for the future by Poon and Granger 
(2003) and can be confirmed for our sampled literature. Moreover, outstanding 
advances are the optimisation of respective procedures.

Further, we do not deduce a triangulation of methods, but an extension of appli-
cation areas from one field of research to another. In conclusion, we see a major aca-
demic advance in the field of financial and risk modelling in terms of model exten-
sions, model creation and the beginning of crossing with different fields.

Practical implications, limitations and future research

Turmoil in financial markets affects actors and may as well lead to corporate bank-
ruptcies. Therefore, the proper ability to cope with financial market properties and 
implement well-defined and well-functioning models in practical systems is inevi-
table and of major importance to practitioners. Many academic solutions (e.g., the 
transformation of non-stationary into stationary time-series with the inherent loss 
of valuable memory information) cannot be implemented or applied to daily practi-
cal routines (Emrouznejad et al. 2016; López de Prado 2018). In addition, we con-
firm alluded crises-induced severities between theoretical rationales and practical 
applications. Examples of underlying problems refer to the definition of importance 
within the modelling approaches. Only one paper of our sample deemed it worth-
while to explicate the impulses of their research on the generation of respective 
excess returns (or alphas), while the creation of alphas for practitioners yields more 
essential prominence than for mathematical rigour, elegant constructions and ration-
ales (Amini et al. 2013; López de Prado 2018).

Thus, we will discuss these limitations by further elucidating stated frontiers and 
barriers of current research attempts. One main frontier is the determination of the 
true DGP of time-series (Ghandar et  al. 2016). When it comes to explaining the 
mentioned stylised facts and properties, researchers tend to apply new technical con-
cepts (e.g., NNs) to create models, which outperform other models, rather than opti-
mising existing procedures first. Additionally, optimisations in terms of nonlinear 
dynamics are computational demanding and not exhausted yet (Emrouznejad et al. 
2016; Exterkate et al. 2016). One given boundary is the not yet fully accepted cross-
ing of fields (e.g., with econophysics, BF) (Chakrabarty et al. 2015).

Moreover, we specify the potential limitations of our study, namely the num-
ber of 132 papers under review, the subjective aspect of the application of respec-
tive Deyner ratings as well as the categorisation in itself. Moreover, we exclude 
the research streams BF and EC, as well as other research fields such as nonlinear 
dynamics or econophysics which may reveal further information. In addition, we do 
not review other innovative approaches such as Islamic finance or alternative finan-
cial systems (Linnenluecke et al., 2017). Furthermore, we did not elaborate on the 
distinct difference between financial and risk model deployment on developed versus 
emerging markets. This is of importance, since our sample majorly (yet, not exclu-
sively) has data sets under analysis originating from developed markets. Thus, we 
refer to Kearney (2012), Isik and Uygur (2021) as well as Nazlioglu et al. (2022) for 
further guidance. We do not elaborate on evolutionary algorithms (e.g., Darwinian 
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algorithms, GP, GA), which can be seen as the current frontier in the emergence of 
finance and computer science (Aguilar-Rivera et al. 2015). We have not presented 
a timeline for the evolution of the sampled models and methods, which in addition 
to our combination matrix is expected to reveal further correlations and intercon-
nections with the dates of the respective crisis. Thence, we did not elaborate on the 
distinct influence of the Basel regulations in the aftermath of the Financial Crises 
in 2008 on financial and risk modelling, in particular. In total, we need to state the 
unquestionable contribution of neoclassical (traditional) finance, but in view of the 
prevalent properties, stylised facts and results contradicting the doctrine, we can-
not attribute EMH and other represents of traditional concepts, to be able to clarify 
the present financial markets anymore (Aguilar-Rivera et al. 2015; Berghorn 2015; 
Ramiah et al. 2015).

Therefore, we see an increase in theoretical research after the Financial Crisis in 
2008  as well as an ongoing discourse and fragmentation of the research commu-
nity in terms of providing valid answers to the cause and best practise of modelling 
of the stated properties as well as the essential functioning of the financial markets 
themselves. Authors implement many different approaches, models and latest tech-
nologies to provide progressive as well as valid views of financial markets. Simul-
taneously, we carefully note that only one paper of our sample elucidated the model 
performance in hindsight of the generation of maximised alpha returns, which are 
seen as favourable by practitioners (Amini et al. 2013; Aït-Sahalia et al. 2015).

This leads to the question, which trends and applications are feasible tools for 
practical implementations. From a practitioner’s point of view financial and risk 
modelling needs to comply with regulatory demands (e.g., Gong and Xu 2018), 
being  technical implementable as well as fast executable (e.g., Duan and Dwivedi 
2019), while still being able to create before mentioned alpha returns in a maximisa-
tion procedure (Amini et al. 2013). Thus, for instance, we see important trends in the 
application of intelligent algorithms in AI concepts in combination with combined 
modelling attempts (e.g., combinations of different model families with respective 
stylised facts and properties). Moreover, enormous potential losses in insufficiently 
explored crossed-fields and newly provided technological advances can be pointed 
out. We illustrate those topics as the current frontier of research. Nevertheless, we 
need to follow the conclusions of former papers, such as Narayan and Smyth (2015), 
Linnenluecke et al. (2017), Ghandar et al. (2016), as well as Doering et al. (2019), 
namely, that there is clear support for the combination of forecast models in the lit-
erature, but it is not obvious which scheme performs best. Overall, combinations 
perform better than single model implementations, despite the unclearness, which 
method is the best. For our sample and, henceforth, for our study, we also need to 
conclude, that there is no “single best” approach. Several questions remain to be 
answered such as the reasoning behind the slight superiority of nonlinear models. 
Therefore, we leave the question of the exact determination of the functioning of the 
underlying working mechanic of financial markets, the impacts of the stated styl-
ised facts and properties (e.g., nonlinear dynamics) on portfolios or banking regula-
tions and the future implementation, optimisation and comparable cross validation 
of financial and risk models to future research.
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