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Abstract
The estimation of voter shifts (stayers and switchers) between elections is an active 
area of research that, for decades, has attracted the interest of many scholars. The 
voter transitions are typically summarised in a row-standardised proportion (prob-
ability) matrix. This matrix is usually unknown, despite it being of interest to many 
agents, including party teams, the media and political scientists. When surveys are 
used to approximate this matrix, it is not uncommon for the estimated matrix to be 
inconsistent and even incomplete. The iterative proportional fitting algorithm solves 
inconsistency but cannot fix incompleteness. Hierarchical Bayesian models that 
combine aggregate and survey estimates can solve both problems, but are extremely 
complex and data-demanding. This paper details all the scenarios concerning the 
available information that can be reasonably considered and, within the linear pro-
gramming framework, develops specific models to reach consistency and complete-
ness. The models are, moreover, quite flexible as they allow analysts to have missing 
values and to introduce through weights their relative confidences in the different a 
priori transition proportions. The usefulness of the proposed models is illustrated 
with real data. Interested readers can easily use these new models with their data as 
they have been programmed in the function lp_apriori of the R-package lphom.

Keywords Voter transitions · Linear programming · Elections · Surveys · Polls · 
lphom

Introduction

The estimation of voter shifts (stayers and switchers) between elections is an active 
area of research that has attracted the interest of many scholars for decades, both 
during the XX century (e.g., Vangrevelinghe 1961; Hawkes 1969; Irwin and Meeter 
1969; McCarthy and Terence 1977; Upon 1978; Brown and Payne 1986; Tziafetas 
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1986; Thomsen 1987; Johnston and Pattie 1991 1993; Füle 1994) and the XXI cen-
tury (e.g., Wellhofer 2001; Antweiler 2007; Park 2008; Andreadis and Chadjipadelis 
2009; Forcina et  al. 2012; Park et  al. 2014; Russo 2014; Puig and Ginebra 2014 
2015; Klima et al. 2016 2019; Plescia and De Sio 2018; Klein 2019; Abou-Chadi 
and Stoetzer 2020; Pavía and Aybar 2020; Romero et al. 2020; Thurner et al. 2020; 
Pavía and Romero 2022a 2022c; Sandoval and Ojeda 2022; Thurner et  al. 2022; 
Vizcaino and Pavía 2022).

The voter transitions among the J election options available in an election E1 
held at time t and the K election options of another election E2, usually held at a 
posterior time t + 1 , are typically summarised in a J × K row-standardised propor-
tion (probability) matrix P =

[
pjk

]
 ; where pjk represents the proportions of electors 

in the entire electoral space who chose (are classified in) option k in E2 among those 
who chose (are classified in) option j in E1. This matrix is usually unknown. There-
fore, given their relevance to multiple agents (among others, party teams, the media 
and political scientists), it is routinely approximated using models and/or from polls 
(e.g., Klima et al. 2019; Abou-Chadi and Stoetzer 2020; Thurner et al. 2020).

When surveys are used to approximate this matrix, it is not uncommon for the 
estimated matrix to be inconsistent and even incomplete (e.g., Park et  al. 2014; 
Russo 2014; Abou-Chadi and Stoetzer 2020). Inconsistency means that discrep-
ancies emerge between actual results recorded in E2 and outcomes attained after 
applying the estimated probabilities to the results registered in E1. This is evidenced 
by examining the differences between estimated and real percentages. Incomplete-
ness is a consequence of the unavailability of estimates for some proportions, either 
as a consequence of small sample sizes or because they are impossible to derive 
even from surveys. When this happens, analysts are usually interested in correcting 
these flaws, achieving a new estimated matrix: consistent and complete.

Two routes have been mainly followed to solve this problem: adjusting initial 
transfer probabilities using the Iterative Proportional Fitting (IPF) algorithm (e.g., 
Park 2008; Pavía and Aybar 2020; Thurner et al. 2020) or combining aggregate and 
a priori (survey) estimates within a statistical hierarchical Bayesian model (Greiner 
and Quinn 2010; Klima et al. 2019; Thurner et al. 2022). The first approach is quite 
simple, but it can only solve the inconsistency problem and is not free of weak-
nesses. The main limitation of IPF is  its incapacity to move initial zero estimates, 
an issue that sometimes leads the algorithm to never converge (Thurner et al. 2020). 
In contrast, the second approach can solve both problems (inconsistency and incom-
pleteness), but it is significantly more complex and data-demanding. Furthermore, 
when the data are available, Bayesian skill-trained analysts are still needed to prop-
erly tune the models.

This paper develops, within a linear programming framework, a family of models 
to reach in a fairly simple way consistency and completeness. All that is required 
is a (maybe incomplete) transfer vote matrix of initial estimates and two vectors of 
(row and column) constraints; these vectors usually correspond to the actual results 
recorded in E1 and E2 elections. The new models, which solve the incompleteness 
problem and are as simple to use as IPF, cover all the scenarios concerning the avail-
able a priori information (in terms of a priori proportions and their confidence) that 
can be reasonably considered. Interested analysts can easily use these new models 
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with the help of the function lp_apriori of the R-package lphom (Pavía and Romero 
2022b).

The data

Without loss of generality, we assume that the aggregated electoral outcomes of a 
partition into I territorial units of the electoral space are known and that J and K are 
the total number of possible options/outcomes/situations in E1 and E2, respectively. 
In both cases, we consider abstention as a possible voting option as well as other 
situations, such as new entries or exits in the census. Although, in general, having 
the aggregate data of the entire electoral space (i.e., dealing with the case I = 1 ) is 
enough to solve the problem (see the examples in the supplementary material), hav-
ing electoral outcomes of more units can be useful in the process of approximating 
(net) figures for entries and exits, when these are not available.

To solve the problem, we need to handle two sources of data. Aggregate recorded/
estimated figures in each unit in both elections, X = [xij] and Y = [yik] , and a priori 
information, P0

=

[
p0
jk

]
.

On the one hand, for each of the i = 1,… , I territorial units we need the (availa-
ble) recorded/estimated statistics of voters/electors xij (for j = 1,… , Jx , with Jx ≤ J ) 
corresponding to the election options in E1 and, equally, we also need similar (avail-
able) figures yik (for k = 1,… ,Ky;Ky ≤ K ) corresponding to E2. Note Jx ≤ J and/
or Ky ≤ K because, sometimes, we will not have data on some collectives, such as 
census ins and outs.

On the other hand, we need a matrix P0
=

[
p0
jk

]
 of order J0 × K0 (where J0 ≤ J 

and K0 ≤ K ) of a priori transfers between elections 1 and 2. This matrix can come 
from a poll or from another source. In this matrix, p0

jk
 transfers are usually expressed 

in the form of row-standardised proportions, although a cross-classified matrix of 
counts, probably derived from a poll, is also allowed in our specifications. This 
matrix can contain missing values.

The basic unknowns are the quantities pjk . The goal is to derive a consistent and 
complete row-standardised matrix of proportions, P̂ , as close as possible to P0 . To 
do this, we consider eight different scenarios (some of them with several variants) 
relevant to the information available in X and Y . To the five scenarios defined in 
Romero et al. (2020)—simultaneous, raw, regular, full and gold—we add three addi-
tional scenarios: ordinary, enriched and semifull.

As in Romero et al. (2020), we consider that entries and exits of the census can 
each have two different sources. On the one hand, entries in each territorial unit i 
( Ei ) are the sum of two groups: young electors newly entitled to vote ( Ni ) and new 
residents (immigrants, Ii ) that have the right to vote. On the other hand, exits ( Xi) are 
also made up of two groups: voters registered in E1 who have died before E2 ( Di ) 
and people who have emigrated during the inter-election period ( Mi ). The scenar-
ios (and their variants) basically differ regarding the information available for these 
groups. In raw, regular, ordinary and enriched scenarios, the row-aggregations of 
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X and Y will typically differ and data about net entries and/or net exits should be 
derived from the available information to guarantee congruence.

In general, denoting the total censuses corresponding to unit i in both elections by 
C1i and C2i , the following accounting equalities can be expressed:

Hence, given that C1i and C2i are known, depending on the level of information 
available regarding the remaining components, we can estimate: bi = Ei − Xi , whose 
absolute value corresponds to either total net entries, if bi > 0 , or to total net exits, if 
bi < 0 ; ci = Ni − Di , whose modulus corresponds to either net entries different from 
immigrants, if ci > 0 , or net exits different from emigrants, if ci < 0 ; or di = Ii −Mi , 
which without sign corresponds to either net entries different from new voters by 
age, if di > 0 , or net exits different from deaths, if di < 0 . The aggregation by units 
of these quantities allows estimates of the sizes of these collectives in the entire pop-
ulation to be achieved. In general, we recommend working with small units to avoid 
(in absolute values) underestimations of bi ’s and ci ’s and with large units to avoid 
overestimations of di’s. In any case, since, as a rule, (i) these groups tend to be mar-
ginal, (ii) the focus is not usually on their electoral behaviour and (iii) it is usually 
simple to obtain accurate estimates of Yi and Mi from demographic statistics (see, 
e.g., Pavía and Veres-Ferrer 2016a, b), it is advisable to work with large units. This 
also has the advantage of reducing the costs of data wrangling (Klima et al. 2016).

The scenarios

In this section, we describe the characteristics of the different scenarios and detail 
how the data should be arranged in each one of them. In all the cases, we assume that 
the rows of P0 and the columns of X are sorted in the same order for min(J0, Jx) and 
that this also happens between the columns of P0 and columns of Y for min(K0,Ky) . 
These arrangements are transferred to P̂.

So as keep the complex discussion of scenarios simple and in order not to include 
P
0 in the discussion, we assume without loss of generality that (i) the matrix P0 has 

been derived from a poll (i.e., no information is enclosed in P0 about exits and there-
fore K0 ≤ Ky ) and (ii) minor voting options are grouped in X , Y and P0 in an others 
option. Although no hypothesis is stated regarding the relationship between J0 and 
Jx , in general J0 ≥ Jx when information about the electoral behaviour of new voters 
is available.

Simultaneous scenario

This is the simplest scenario. In this case the same electors are entitled to vote in E1 
and E2, usually because both elections are held at the same time (Pavía and Romero 
2022c). In this scenario the sum by rows X and Y must coincide and special con-
straints about the coefficients of the matrix (such as the ones stated in Eqs. (6)–(15) 
introduced in Sect. 5) do not apply. Here J = Jx and K = Ky and the figures Ni , Ii , Di 

C1i + Ei − Xi = C2i ⟺ C1i +
(
Ni + Ii

)
− (Di +Mi) = C2i
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and Mi are null by definition, so bi = ci = di = 0 . This defines a basic scenario (type 
I), which can be solved with the basic model defined by Eqs. (1)–(5); a model with 
no specific proportions’ constraints.

Raw scenario

This scenario accounts for the most common situation. A situation with two elec-
tions elapsed over some time and where only the raw election data recorded in the 
I territorial units in which the area under study is divided are available. In this sce-
nario, net exits (deaths and emigrants) and net entries (new young voters and immi-
grants) are estimated using the bi ’s coefficients. We can have four variants, depend-
ing on the values of the bi’s. If bi = 0 ∀i , this case collapses to a simultaneous 
scenario. If bi ≥ 0 ∀i , with at least a bi strictly positive, J = Jx + 1 and K = Ky and 
the resulting problem can be also solved using the basic model. If bi ≤ 0 ∀i , with at 
least a bi strictly negative, J = Jx and K = Ky + 1 . In this case, it seems reasonable 
to follow Romero et al. (2020) and to assume that exits (mainly as a consequence of 
mortality) impact uniformly in all the political options: p1,K = p2,K = ⋯ = pJ,K . We 
call this kind of scenario type II. If the uniform hypothesis is not assumed, the sce-
nario collapses to a type I scenario. Finally, if strictly positive and negative bi ’s are 
obtained, then J = Jx + 1 and K = Ky + 1 . In this case, the Jth option of E1 will cor-

respond to (net) new entries and the Kth option of E2 to (net) exits. Since new entries 
cannot be exits, the logical constraint pJ,K = 0 applies. This gives rise to two new 
types of scenarios. If the uniform hypothesis is assumed ( p1,K = p2,K = ⋯ = pJ−1,K)

,the type III scenario appears, otherwise this gives a type IV scenario.

Regular scenario

Initially, this scenario looks similar to the raw scenarios; it only differs in the infor-
mation provided regarding E1, which is enlarged. In this case, the data contained in 
the last column of X refers to, without loss of generality, new young electors who 
have the right to vote for the first time (formally there is no differentiation in the dis-
cussion as to whether this refers to immigrants or new young electors). Here, again, 
new variants arise depending on the information we can derive for net entries (dif-
ferent from new young electors) and net exits. Without net entries and net exits, we 
are formally in a type I scenario, with J = Jx and K = Ky . With net exits but not net 
entries, we have J = Jx and K = Ky + 1 and we are in either a type III scenario if 
the uniform hypothesis is assumed or in a type IV scenario if that hypothesis is not 
assumed. With net entries but not net exits, J = Jx + 1 and K = Ky and we again are 
in a type I scenario. Finally, if we have both net entries and exits, we need to impose 
by logic the constraints pJ−1,K = pJ,K = 0 . In this last case, where J = Jx + 1 and 
K = Ky + 1 , we can consider two variants depending on whether or not the uniform 
hypothesis (that this time corresponds to p1,K = p2,K = ⋯ = pJ−2,K ) is imposed. 
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The last case defines two new basic types of scenarios. If the uniform hypothesis is 
imposed, we are in a type V scenario and if it is not imposed, in a type VI scenario.

Ordinary scenario

This scenario is also an extension of a raw scenario but this time with more informa-
tion available regarding E2. In this case, the data contained in the last column of Y 
refer to, without loss of generality, exits of the census due to death (formally there is 
no differentiation in the discussion if it refers to emigrants). As usual, new variants 
arise depending on the information we can derive for net entries and net exits (dif-
ferent from deaths). Without net entries and net exits, J = Jx and K = Ky and we are 
formally in either a type II scenario if the uniform hypothesis about exits is imposed 
or in a type I scenario without this hypothesis. With net entries but not net exits, 
J = Jx + 1 and K = Ky and we are in either a type III scenario with the uniform 
hypothesis or in a type IV without it. With net exits but not net entries, we have J = Jx 
and K = Ky + 1 and we are in either a type I scenario if the uniform hypothesis is not 
assumed or in a new type scenario if it is assumed; we call this scenario type VII. In 
type VII scenarios, we have two possible types of exits (death and emigration) and 
the uniform hypothesis applies for both of them: p1,K−1 = p2,K−1 = ⋯ = pJ,K−1 and 
p1,K = p2,K = ⋯ = pJ,K . Finally, if we have both net entries and exits, the constraints 
pJ,K−1 = pJ,K = 0 need to be imposed, J = Jx + 1 , K = Ky + 1 , and two new basic 
types of scenarios, depending on whether or not the uniform hypothesis (that this 
time crystallizes into p1,K−1 = p2,K−1 = ⋯ = pJ−1,K−1 and p1,K = p2,K = ⋯ = pJ−1,K ) 
is assumed. If this hypothesis is assumed, we are in a type VIII scenario and if it is 
not assumed, in a type IX scenario.

Enriched scenario

This scenario extends raw scenarios in the two directions analysed in regular and 
ordinary scenarios. Here, we have without loss of generality data of new young elec-
tors by age in the last column of X and of deaths in the last column of Y . Again, 
different variants arise depending on whether net additional entries (due to immi-
gration) and/or net additional exits (due to emigration) are estimated. Without net 
entries nor net exits, we are in a type III scenario if uniform hypothesis is assumed 
and in a type IV scenario without it. With net entries but not net exits, the scenar-
ios that emerge are type V and type VI with and without the uniform hypothesis, 
respectively. With net exits but not net entries, the types of scenarios that arise 
are of types VIII and IX with and without the uniform hypothesis, respectively. 
Finally, with both net entries and net exits, two new basic scenarios emerge. In this 
case, it is necessary to include by logic pJ−1,K−1 = pJ−1,K = p

J,K−1
= pJ,K = 0 and 

also p1,K−1 = p2,K−1 = ⋯ = pJ−2,K−1 and p1,K = p2,K = ⋯ = pJ−2,K if the uniform 
hypothesis is assumed. We call the scenario with all the above constraints type X, 
and type XI the corresponding scenario only containing the logic constraints.
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Semifull scenario

In this scenario, the analyst has both aggregate information about total entries 
(young electors and new immigrants) and total exits (deaths and emigrants) of the 
census list. Total entries and exits are assumed to be in the last columns of X and Y , 
respectively. Here, the sum by rows of X and Y must agree and there are only two 
variants. If the uniform hypothesis is assumed we are in a type III scenario and in a 
type IV, otherwise.

Full scenario

In this scenario, the analyst has detailed information about totals of new young elec-
tors that have the right to vote for the first time (penultimate column of X ), and of 
new immigrants that have the right to vote (last column of X ) and aggregate infor-
mation about total exits (due to death or emigration) of the census lists (last column 
of Y ). Here, again, the sum by rows of X and Y must agree and there are only two 
variants. If the uniform hypothesis is assumed we are in a type V scenario and, if 
not, in a type VI.

Gold scenario

This scenario is similar to a full scenario but here total exits are separated out 
between exits due to emigration and due to death (penultimate and ultimate columns 
of Y ). Again, the sum by rows of X and Y must agree and there are only two vari-
ants, depending on whether or not the uniform hypothesis is assumed. We are in a 
type X scenario under this hypothesis and in a type XI otherwise.

Schematic representation of scenarios

The above discussion is quite dense. We have considered eight different scenarios 
regarding the information available for X and Y and, after considering different vari-
ants, this gives us thirty-five possibilities that collapse in eleven basic structures for 
the estimated transfer matrix. Table 1 schematically summarises the cases discussed.

The model

Whatever the scenario and linked constraints, our model reaches its solutions after 
solving a linear programming model whose objective is to minimize a weighted sum 
of the absolute value discrepancies between the pairs pjk and p0

jk
 . The model imposes 

the consistency property (Eqs. (1)–(3)) to the solution and does not necessarily deal 
with all the discrepancies, defined in Eq. (4), symmetrically. They are weighted in 
the objective function (see Eq. (5)). Because the level of confidence for all the a pri-
ori proportions, p0

jk
 , is not usually the same, we inform the model about this using 
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Table 1  Summary of the scenarios included in the lp_apriori function

Scenarios Associated original scenarios, after 
variants

Constraints Matrix structure

Type I Simultaneous
Raw, no entries, no exits
Raw, entries, no exits
Raw, no entries, exits, no uniform
Regular, no entries, no exits
Regular, entries, no exits
Ordinary, no entries, no exits, no 

uniform
Ordinary, no entries, exits, no 

uniform

– ⎡
⎢
⎢
⎢
⎣

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

⎤
⎥
⎥
⎥
⎦

Type II Raw, exits, no entries, uniform
Ordinary, no entries, no exits, 

uniform

p1,K = p2,K = ⋯ = pJ,K ⎡
⎢
⎢
⎢
⎣

? ?

? ?

? ∗

? ∗

? ?

? ?

? ∗

? ∗

⎤
⎥
⎥
⎥
⎦

Type III Raw, exits, entries, uniform
Regular, no entries, exits, uniform
Ordinary, entries, no exits, uniform
Enriched, no entries, no exits, 

uniform
Semifull, uniform

p1,K = p2,K = ⋯ = pJ−1,K
pJ,K = 0

⎡
⎢
⎢
⎢
⎣

? ?

? ?

? ∗

? ∗

? ?

? ?

? ∗

? 0

⎤
⎥
⎥
⎥
⎦

Type IV Raw, entries, exits, no uniform
Regular, no entries, exits, no uniform
Ordinary, entries, no exits, no 

uniform
Enriched, no entries, no exits, no 

uniform
Semifull, no uniform

pJ,K = 0 ⎡
⎢
⎢
⎢
⎣

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? 0

⎤
⎥
⎥
⎥
⎦

Type V Regular, entries, exits, uniform
Enriched, entries, no exits, uniform
Full, uniform

p1,K = p2,K = ⋯ = pJ−2,K
pJ−1,K= pJ,K = 0

⎡
⎢
⎢
⎢
⎢
⎣

? ?

? ?

? ∗

? ∗

? ?

?

?

?

?

? ∗

?

?

0

0

⎤
⎥
⎥
⎥
⎥
⎦

Type VI Regular, entries, exits, no uniform
Enriched, entries, no exits, no 

uniform
Full, no uniform

pJ−1,K= pJ,K = 0 ⎡
⎢
⎢
⎢
⎢
⎣

? ?

? ?

? ?

? ?

? ?

?

?

?

?

? ?

?

?

0

0

⎤
⎥
⎥
⎥
⎥
⎦

Type VII Ordinary, no entries, exits, uniform p1,K−1 = p2,K−1 = ⋯ = pJ,K−1
p1,K = p2,K = ⋯ = pJ,K

⎡
⎢
⎢
⎢
⎣

? ?

? ?

− ∗

− ∗

? ?

? ?

− ∗

− ∗

⎤
⎥
⎥
⎥
⎦

Type VIII Ordinary, entries, exits, uniform
Enriched, no entries, exits, uniform

p1,K−1 = p2,K−1 = ⋯ = pJ−1,K−1
p1,K = p2,K = ⋯ = pJ−1,K
pJ,K−1= pJ,K = 0

⎡
⎢
⎢
⎢
⎣

? ?

? ?

− ∗

− ∗

? ?

? ?

− ∗

0 0

⎤
⎥
⎥
⎥
⎦

Type IX Ordinary, entries, exits, no uniform
Enriched, no entries, exits, no 

uniform

pJ,K−1= pJ,K = 0 ⎡
⎢
⎢
⎢
⎣

? ?

? ?

? ?

? ?

? ?

? ?

? ?

0 0

⎤
⎥
⎥
⎥
⎦
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weights, 𝜔jk > 0 . In particular, the basic model is defined by the system of 
Eqs. (1)–(5).

where x
⋅j =

∑I

i=1
xij and y

⋅k =
∑I

i=1
yik.

Although for simplicity in the above mathematical representation of the problem it 
has been stated that Eqs. (4) and (5) range for all the values of j and k , in practice they 
are just delimited for the pair of indexes (j, k) for which p0

jk
 and �jk are defined.

In addition to the above equations, depending on the type of scenario we are in, 
the system will also include (except in type I scenarios) some of constraints defined in 
Eqs. (6)–(15). The interested reader can find in Table 1 the relationships between the 
scenarios and their associated additional constraints.

(1)pjk ≥ 0 for j = 1,… , J k = 1,… ,K

(2)
K∑

k=1

pjk = 1 for j = 1,… , J

(3)
J∑

j=1

pjkx⋅j = y
⋅k for k = 1,… ,K

(4)
(
p0
jk
− pjk

)
= e+

jk
− e−

jk
for j = 1,… , J k = 1,… ,K

(5)minimize Z =

J∑

j=1

K∑

k=1

�jk(e
+

jk
+ e−

jk
)

(6)p1,K = p2,K = ⋯ = pJ,K

Source: Own elaboration

Table 1  (continued)

Scenarios Associated original scenarios, after 
variants

Constraints Matrix structure

Type X Enriched, entries, exits, uniform
Gold, uniform

p1,K−1 = p2,K−1 = ⋯ = pJ−2,K−1
p1,K = p2,K = ⋯ = pJ−2,K
pJ−1,K−1= pJ−1,K = 0

pJ,K−1= pJ,K = 0

⎡
⎢
⎢
⎢
⎢
⎣

? ?

? ?

− ∗

− ∗

? ?

?

?

?

?

− ∗

0

0

0

0

⎤
⎥
⎥
⎥
⎥
⎦

Type XI Enriched, entries, exits, no uniform
Gold, no uniform

pJ−1,K−1= pJ−1,K = 0

pJ,K−1= pJ,K = 0
⎡
⎢
⎢
⎢
⎢
⎣

? ?

? ?

? ?

? ?

? ?

?

?

?

?

? ?

0

0

0

0

⎤
⎥
⎥
⎥
⎥
⎦
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The weights

The weight 𝜔jk > 0 is the penalty that we assign to the discrepancy ||
|
p0
jk
− pjk

||
|
 , either 

e+
jk

 or e−
jk

 , in Eq. (5). This coefficient measures the (relative) degree of confidence we 
have in the a priori value p0

jk
 . Everything else being constant, the greater this weight 

the closer the estimated pjk and the p0
jk

 proportions will be. This means that setting 
the weight �jk to an arbitrarily large number will be, in many practical situations, 
equivalent to including in the model an additional restriction, the constraint pjk = p0

jk
.

Although the weights can be exogenously stated by the user and introduced in 
the model through a matrix of weights, W = [�jk] , the lp_apriori function also has 
programmed functionalities derived from the contextual information. In addition to 
the possibility of introducing personal weights through a matrix, lp_apriori includes 
seven more ways of computing the weights, denoted by "constant", "x", "xy", 
"expected", "counts", "sqrt" and "sd".

When weights are set to "constant", the same credibility is attached to all the a 
priori proportions and, by default, all the weights are set equal to 1. In practice, how-
ever, analysts tend to have more information from proportions related to the largest 
groups. For example, a survey is more likely to interview people who belong to the 
groups whose election options are more frequent. The "x", "xy" and "expected" 
strategies to compute the weights exploit this fact by implementing different 

(7)p1,K−1 = p2,K−1 = ⋯ = pJ,K−1

(8)p1,K = p2,K = ⋯ = pJ−1,K

(9)p1,K−1 = p2,K−1 = ⋯ = pJ−1,K−1

(10)p1,K−1 = p2,K−1 = ⋯ = pJ−2,K−1

(11)p1,K = p2,K = ⋯ = pJ−2,K

(12)pJ−1,K−1 = 0

(13)pJ−1,K = 0

(14)pJ,K−1 = 0

(15)pJ,K = 0
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approaches. In particular, the "x", "xy" and "expected" weights are calculated as 
proportional to, respectively, �jk ∝ x

⋅j , �jk ∝ x
⋅jy⋅k and �jk ∝ x

⋅jp
0

jk
.

The a priori information is typically introduced to lp_apriori through a row-stand-
ardised matrix of proportions, but it could also be informed via a matrix, [njk] , of 
counts. When this happens, lp_apriori internally transforms the a priori data into a 
row-standardised matrix of proportions, but the issue here is that we can also use 
this information to define the weights. In this case, weights are defined observing 
the (underlying) sampling properties of the counts. The "counts" and "sqrt" weights 
are computed respectively proportional to njk +

1

2
 and 

√
njk + 0.5 , with the definition 

of "sd" weights being slightly more complex. They are �jk ∝

√
njk+0.5

p0
jk
(1−p0

jk
)
 if p0

jk
≠ 0 

and �jk ∝
√
2 if njk = p0

jk
= 0.

Assessing the models with real data

This section assesses, using real data, whether the adjustment corrects the biases 
introduced by polls when estimating vote transfer matrices and to what extent. The 
impact on the bias reduction of the sample sizes and the different weight structures 
considered in the previous section are also analysed. To do this, a realistic random 
sample of each of the 565 elections available in the R-package ei.Datasets (Pavía 
2022) is simulated and their corresponding sample-estimated and model-adjusted 
transition matrices compared to the actual ones.

The main difficulty when assessing methods to estimate vote transfer matrices 
between elections lies in the fact that, due to the secret ballot, actual cross-distri-
butions of votes are as a rule unknown. In simultaneous elections, however, when 
the same electors cast their votes in the same ballot for several elections, actual 
vote transfer matrices can be collected. The ei.Datasets database gathers the 565 
real crosstabs of votes corresponding to the party-to-candidate cross-distributions 
recorded in the 492 electorates of the New Zealand general elections held between 
2002 and 2020 and in the 73 constituencies of the 2007 Scottish Parliament election. 
Hence, the ei.Datasets crosstabs are exploited to answer the previous questions.

A random sample of size n (with n = 250, 500 or 1000 ) is simulated from each 
election, assuming that polls suffer from both non-response bias and response error. 
Given that the average size of the populations in ei.Datasets is ~ 33,192 voters, sam-
ple sizes of this order seem reasonable. Indeed, the minimum sample size recom-
mended in NZ for electorate/regional polls is 250 (Research Association New Zea-
land 2020), 500 being the standard sample size. Likewise, it is reasonable to assume 
that polls are going to be impacted both by differential response rates (non-response 
bias), which depend on voters’ preferences and characteristics, and nonresponse 
error, due to social desirability issues or inaccurate recall voting. Actually, there is 
a large stream of literature documenting this impact occurring in real-world surveys 
all around the globe (see, e.g., Groves et  al. 2002; Pavía et  al. 2016; Cavari and 
Freedman 2022). The simulated samples are summarised in two-way contingency 
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tables with parties in rows and candidates in columns and small parties and can-
didates (those who gain less than a 3% of the votes in the election) grouped under 
the “others” option. The row-standardised versions of these tables correspond to the 
sample-estimated transition matrices.

The estimated transition matrices are now adjusted to match the actual 
observed distributions of votes recorded in each election. The adjustments are 
made with the help of the lp_apriori function of the lphom package, testing as 
weights the seven precomputed possibilities available to them in the function: 
"constant", "x", "xy", "expected", "counts", "sqrt" and "sd". At the end of this 
process, we have eight estimated vote transition matrices for each election: the 
one that comes directly from the poll and the seven attained after adjusting this. 
These matrices are compared with actual transitions using three distance statis-
tics: EI , EPW  and MAN , given by Eqs. (16)–(18). The interested reader can rep-
licate all the computations and find more in-depth information by reviewing the 
R reproducible code available in the supplementary material (see the Data avail-
ability statement).

where vjk and v̂jk stand for the actual and estimated/adjusted number of voters, 
respectively, voting simultaneously for party j and candidate k ; and pjk and p̂jk rep-
resent the actual and estimated/adjusted proportions of voters who, respectively, 
vote for candidate k among those who vote for party j.

While EI measures distances between transfer matrices of votes, EPW and MAN 
deal with row-standardised transition matrices. EI accounts for the percentage of 
wrongly assigned votes in the estimated matrix: the minimum percentage of votes 
that should be moved among the cells of the table to reach a perfect fit. MAN meas-
ures the mean of the differences between the actual and the estimated proportion 
transitions, and EPW a similar distance to MAN , but with the individual differences 
weighted by the number of votes corresponding to the transfer between party j and 
candidate k . The smaller the numbers of these statistics, the closer the estimated/
adjusted and the actual matrices.

Before presenting and analysing the results of the full simulation exercise, the 
whole process described above is first illustrated through an example. Consider the 
electorate of Maungakiekie in the 2020 NZ general election, the actual outcomes 
of which are presented in Table 2. Note that looking at the second panel of Table 2 

(16)EI = 100 ⋅

0.5
∑J

j=1

∑K

k=1

���
vjk − v̂jk

���
∑J

j=1

∑K

k=1
vjk

(17)EPW = 100 ⋅

∑J

j=1

∑K

k=1
vjk

���
pjk − p̂jk

���
∑J

j=1

∑K

k=1
vjk

(18)MAN = 100 ⋅

∑J

j=1

∑K

k=1

���
pjk − p̂jk

���
JK
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Table 2  Actual Outcomes recorded in Maungakiekie during the 2020 NZ general election

The central cells of the upper and lower panels of the table contain the actual transfer matrix of votes and 
the corresponding row-standardised transition matrix recorded in the election, respectively. The actual 
distributions of votes gained by the parties in votes and percentages are displayed in the last column of 
the upper and lower panels, respectively. The equivalent distributions for candidates are presented in the 
last rows of each panel

Parties Candidates

Fer. (ACT) Men.(GP) Lee (NP) Rad. (LP) Others

Actual transfer matrix of votes
 ACT New Zealand (ACT)   532     17    1974        88     39    2650
 Green Party (GP)    10 1084      397    1871     20    3382
 Labour Party (LP)   220 1230    3395 13,325   560 18,730
 National Party (NP)   347     59    8836      155   224    9621
 Others parties   116   276      995      793   694    2874

1225 2666 15,597 16,232 1537
Actual row-standardised vote transition matrix
 ACT New Zealand (ACT) 20.08   0.64 74.49   3.32   1.47   7.11
 Green Party (GP)   0.30 32.05 11.74 55.32   0.59   9.08
 Labour Party (LP)   1.17   6.57 18.13 71.14   2.99 50.27
 National Party (NP)   3.61   0.61 91.84   1.61   2.33 25.82
 Others parties   4.04   9.60 34.62 27.59 24.15   7.71

  3.29   7.16 41.86 43.57   4.13

Table 3  Simulated sample of size 500 in Maungakiekie for the 2020 NZ general election

The central cells of the upper and lower panels of the table contain, respectively, the transfer matrix of 
votes and the corresponding row-standardised transition matrix obtained after simulated a realistic poll of 
size 500. The raw sample party and candidate distributions in percentage are displayed, respectively, in 
last column and last row of the upper and lower panels, while the corresponding transfer matrix distribu-
tions corresponding are presented in the last column and row of the lower panel

Candidates

Parties Fer. (ACT) Men.(GP) Lee (NP) Rad. (LP) Others

Transfer matrix of votes of a simulated sample of size 500
 ACT New Zealand (ACT)   8   3   28   2   2   8.60
 Green Party (GP)   5 23   10 14   0 10.40
 Labour Party (LP) 6 20   54 95   5 36.00
 National Party (NP)   20   4 136   1   6 33.40
 Others parties   5 10   22   8 13 11.60

  8.80 12.00   50.00 24.00   5.20
Row-standardised vote transition matrix linked to the sample of the upper panel
 ACT New Zealand (ACT) 18.60   6.98 65.12   4.65   4.65   6.98
 Green Party (GP)   9.62 44.23 19.23 26.92   0.00   9.87
 Labour Party (LP)   3.33 11.11 30.00 52.78   2.78 47.16
 National Party (NP) 11.98   2.40 81.44   0.60   3.59 26.06
 Others parties   8.62 17.24 37.93 13.79 22.41 10.22

  7.63 12.05 45.41 30.53   4.38
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there is evidence of strategic voting in this election and of a large number of switch-
ers; an issue that emphasizes the importance of knowing the transition matrix 
(Abou-Chadi and Stoetzer 2020). For instance, 55.32% of the electors who voted 
for the Green Party also chose to vote in the ballot for the Labour Party candidate 
(Priyanca Radhakrishnan) and 74.49% of ACT voters chose to vote for the National 
Party candidate (Denise Lee).

Let us consider a random sample of size 500 selected from this electorate, as 
summarised in Table 3. By comparing the distributions in the last column and in 
the last row of the upper panel of Table 3 with the equivalent distributions in the 
lower panels of Table 2, it can be seen that, although the sample captures the general 
trends of the election, its raw estimates miss the actual results by a large amount. 
This sample shows a relevant level of bias.

Furthermore, although the estimates of the marginal distributions can be 
improved using post-stratification, that is, when the sample party-to candidate (can-
didate-to-party) transition matrix is used to approximate the candidate (party) distri-
butions conditional on the actual party (candidate) distributions (as can be done in 
non-simultaneous elections), significant bias still remains in the marginal estimates. 
This can be confirmed comparing the distributions in the last column and the last 
row of the lower panel of Table 3 with the equivalent distributions in the lower pan-
els of Table 2.

If the focus is on the transition matrix, as in our case, we see that its estimation 
can be improved by adjusting it, i.e., by making it consistent with the actual out-
comes. This is evident since the transition matrix in Table 4, obtained after adjusting 
the data in Table 3 using lp_apriori with weights = "x", is closer to the actual transi-
tion matrix (displayed in the lower panel of Table 2) than the equivalent sampling 
transition matrix (see the lower panel of Table 3). For instance, in this example the 
MAN distance is reduced from 6.83 to 5.08.

The above example, which corresponds to one of the scenarios that can be repli-
cated using the code of the supplementary material (see the Data availability state-
ment), is quite representative of the full set of scenarios, since 90.44%, 93.81% and 

Table 4  Adjusted matrix with "x" weights corresponding to the sample in Table 3

The percentage party and candidate distribution corresponding to the adjusted transfer matrix of votes 
are displayed in last column and row of the table, respectively

Transfer matrix of votes of a simulated sample of size 500

Parties Candidates

Fer. (ACT) Men. (GP) Lee (NP) Rad. (LP) Others

ACT New Zealand (ACT) 18.60     6.98 65.13   4.64   4.64   7.11
Green Party (GP)   0.00   44.23 19.22 36.35   0.00   9.08
Labour Party (LP)   0.00     1.38 22.94 73.42   2.26 50.27
National Party (NP)   5.03     2.39 81.44   7.55   3.60 25.82
Others parties   8.63   17.26 37.93 13.78 22.41   7.71

  3.29     7.16 41.86 43.57   4.13
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88.50% of the matrix adjustments made with weights = "x" are closer (as measured 
with EI , EPW and MAN , respectively) to the actual matrix than the sample matrix. 
Indeed, as can be seen in Table  5, where the averages of the distance statistics 
recorded for the 565 elections is shown grouped by weights used in lp_aprioi and 
sample size, the adjustment of the raw sample matrix leads as a rule to more accu-
rate matrix estimates.

On average, the results show that adjusting with weights = "x" generates the most 
accurate solutions, whereas adjusting with weights = "expected" worsens the sam-
pling estimates. As weights = "expected" gives more credibility to the sampling esti-
mates with the largest expected number of votes, v0

jk
= x

⋅jp
0

jk
 , this weighting exacer-

bates the sampling bias. Despite this result with weights = "expected", adjusting 
leads to more accurate solutions on average for five out of the seven weightings 
("constant", "x", "xy", "sqrt" and "sd"). The solutions achieved using weights "x" 
and "sd" are the most accurate. These results, moreover, are consistent by sample 
size: the same conclusions are reached regardless of the sample size. The impact of 
the sample size is seen in an improvement in the poll estimates, as expected, and 
also the adjustments. Indeed, as the sample size grows, both the sample and adjusted 
estimates improve in the same proportion.

Conclusions

This paper describes a family of models to adjust initial estimates of row-standard-
ised voter transition probabilities to reach consistency and completeness in thirty-
five different situations. All of them can be solved with the function lp_apriori avail-
able in the R-package lphom (Pavía and Romero 2022b). This package provides 
several algorithms based on linear programming for estimating, under the homoge-
neity hypothesis, general J × K ecological contingency tables and, in particular, vote 
transition matrices.

Table 5  Average of EI, EPW and MAN distances for the simulated samples by sample size

The smaller the numbers of these statistics, the closer the estimated/adjusted and the actual matrices

Weights Sample size: 250 Sample size: 500 Sample size: 1000

EI EPW MAN EI EPW MAN EI EPW MAN

constant   9.75 5.49 6.80   8.71 4.98 5.87   7.99 4.61 5.35
x   9.66 5.38 6.75   8.59 4.87 5.78   7.84 4.50 5.24
xy 11.43 6.90 7.75 10.06 6.08 6.77   9.43 5.70 6.29
expected 14.79 8.94 9.04 14.08 8.48 8.39 13.47 8.08 7.98
counts 13.33 7.65 7.95 12.66 7.24 7.25 12.39 7.07 6.95
sqrt 10.77 5.65 7.02   9.81 5.06 6.13   9.12 4.63 5.65
sd   9.89 5.40 6.80   8.91 4.88 5.90   8.17 4.43 5.38
Sample 12.59 8.57 7.45 11.42 8.00 6.49 10.62 7.56 5.94



 SN Soc Sci (2023) 3:7575 Page 16 of 18

Although the lp_apriori function has been included in the lphom package, it 
should be noted that the solutions programmed in lp_apriori are conceptually differ-
ent from the rest of the procedures available in the package. While the models in lp_
apriori have been conceived to adjust (initial) estimates by modifying the available 
estimates as little as possible, making them consistent and complete, the rest of the 
algorithms of the package have been devised to generate estimates from aggregate 
data by employing the homogeneity hypothesis. They all, however, share the same 
mathematical approach to solving the problem (linear programming) and the aim of 
estimating a transfer matrix of votes.

The suggested models are not only valuable in their own right, as the previous 
section shows, but they also open the way to solving one of the limitations of the 
lphom-family algorithms. According to Greiner (2007, p. 120), “… a good [eco-
logical inference] method should be flexible enough to incorporate information from 
surveys or exit polls” and while this issue has been recently addressed within the 
Bayesian ecological inference framework (Greiner and Quinn 2010; Klima et  al. 
2019) it still remains to be solved within the linear programming ecological infer-
ence approach; a matter which deserves prompt attention since its methods are much 
easier to apply. The new models introduced in this paper will make it possible to 
develop new methods capable of integrating a priori information and aggregate 
results within the linear programming framework.
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