Skip to main content
Log in

Chromatographic separation and estimation of natural antimalarial flavonoids in biological matrices

  • Review Article
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

Malaria is a major life-threatening tropical disease affecting about half of the world’s population. Due to the increasing resistance of Plasmodium falciparum against the marketed drugs, the non-endemic areas of malaria are also at risk which demands for continuous and a compelling need to investigate the bioactive natural products for their pharmacological activity against malaria parasite and undoubtedly satisfactory outcomes are being observed with less adverse events in such endeavours. Flavonoids have emerged as the most important bio-therapeutic class possessing anti-malarial activity. Flavonoids have also been reported to reverse anti-malarial drug resistance, thus exerting dual therapeutic benefit. The pharmacological outcome of these bioactive constituents essentially depends on their circulating levels reaching the target site of action thus, necessitating the quantification in bio-matrices which is required for personalized therapy. Furthermore, the estimation of drug level in biological system is crucial for therapeutic drug monitoring. The development and validation of high-throughput bio-analytical methods for estimation of phytochemicals in biological fluids is a preliminary requirement for establishing such PK–PD relationship. The present review intends to shed an insightful focus on the available bio-analytical methods for assessment of natural anti-malarial flavonoids which will be of immense help in their further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ader, P., et al.: Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic. Biol. Med. 28, 1056–1067 (2000)

    Article  CAS  Google Scholar 

  • Al-Ishaq, R.K., et al.: Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules 9, 430 (2019)

    Article  CAS  Google Scholar 

  • Alayo, M., et al.: Larvicidal potential and mosquito repellent activity of Cassia mimosoides extracts. Southeast Asian J. Trop. Med. Public Health 46, 596 (2015)

    CAS  Google Scholar 

  • Bai, Y., et al.: Pharmacokinetic of 5 components after oral administration of Fructus Forsythiae by HPLC-MS/MS and the effects of harvest time and administration times. J. Chromatogr. B 993, 36–46 (2015)

    Article  CAS  Google Scholar 

  • Baranowska, I., et al.: UHPLC method for the simultaneous determination of β-blockers, isoflavones, and flavonoids in human urine. J. Chromatogr. Sci. 49, 764–773 (2011)

    Article  CAS  Google Scholar 

  • Batista, R., et al.: Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14, 3037–3072 (2009)

    Article  CAS  Google Scholar 

  • Bian, Y., et al.: Progress in the pretreatment and analysis of flavonoids: an update since 2013. Sep. Purif. Rev.: 1–27 (2020)

  • Biasutto, L., et al.: Determination of quercetin and resveratrol in whole blood—implications for bioavailability studies. Molecules 15, 6570–6579 (2010)

    Article  CAS  Google Scholar 

  • Brahmachari, G.: Naturally occurring flavanones: an overview. Nat. Prod. Commun. 3, 1934578X0800300820 (2008)

    Google Scholar 

  • Bringmann, G., et al.: 6-Hydroxyluteolin-7-O-(1″-α-rhamnoside) from Vriesea sanguinolenta Cogn. and Marchal (Bromeliaceae). Phytochemistry 53, 965–969 (2000)

    Article  CAS  Google Scholar 

  • Caboni, P., et al.: LC–MS–MS determination of rotenone, deguelin, and rotenolone in human serum. Chromatographia 68, 739–745 (2008)

    Article  CAS  Google Scholar 

  • Carabias-Martínez, R., et al.: Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A 1089, 1–17 (2005)

    Article  CAS  Google Scholar 

  • Chanphen, R., et al.: Antimalarial principles from Artemisia indica. J. Nat. Prod. 61, 1146–1147 (1998)

    Article  CAS  Google Scholar 

  • Chen, I.-L., et al.: Lymphatic absorption of quercetin and rutin in rat and their pharmacokinetics in systemic plasma. J. Agric. Food Chem. 58, 546–551 (2009)

    Article  CAS  Google Scholar 

  • Chen, T., et al.: Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J. Agric. Food Chem. 55, 273–277 (2007)

    Article  CAS  Google Scholar 

  • Chen, X., et al.: Pharmacokinetics of luteolin and tetra-acetyl-luteolin assayed by HPLC in rats after oral administration. Biomed. Chromatogr. 24, 826–832 (2010)

    CAS  Google Scholar 

  • Chen, Z., et al.: Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab. Dispos. Biol. Fate Chem. 39, 667–674 (2011)

    Article  CAS  Google Scholar 

  • Chen, Z., et al.: Pharmacokinetic study of luteolin, apigenin, chrysoeriol and diosmetin after oral administration of Flos Chrysanthemi extract in rats. Fitoterapia 83, 1616–1622 (2012)

    Article  CAS  Google Scholar 

  • Chu, K., et al.: Uptake and distribution of catechins in fetal organs following in utero exposure in rats. Hum. Reprod. 22, 280–287 (2007)

    Article  CAS  Google Scholar 

  • Cushnie, T.T., Lamb, A.J.: Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005)

    Article  CAS  Google Scholar 

  • Dai, B., et al.: Simultaneous determination of six flavonoids from Paulownia tomentosa flower extract in rat plasma by LC–MS/MS and its application to a pharmacokinetic study. J. Chromatogr. B 978, 54–61 (2015)

    Article  CAS  Google Scholar 

  • Daigle, D., Conkerton, E.: Analysis of flavonoids by HPLC: an update. J. Liq. Chromatogr. 11, 309–325 (1988)

    Article  CAS  Google Scholar 

  • Duan, K., et al.: LC–MS/MS determination and pharmacokinetic study of five flavone components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. J. Ethnopharmacol. 135, 201–208 (2011)

    Article  CAS  Google Scholar 

  • Fan, L.-H., et al.: Determination of acacetin in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study. J. Chromatogr. B 986, 18–22 (2015)

    Article  CAS  Google Scholar 

  • Feng, D., et al.: Oral pharmacokinetic comparison of different genistein tablets in beagle dogs. J. Chromatogr. Sci. 51, 335–340 (2013)

    Article  CAS  Google Scholar 

  • Fu, T., et al.: Simultaneous determination of the major active components of tea polyphenols in rat plasma by a simple and specific HPLC assay. J. Chromatogr. B 875, 363–367 (2008)

    Article  CAS  Google Scholar 

  • Gerdin, B., Svensjö, E.: Inhibitory effect of the flavonoid O-(beta-hydroxyethyl)-rutoside on increased microvascular permeability induced by various agents in rat skin. Int. J. Microcirc. Clin. Exp. 2, 39–46 (1983)

    CAS  Google Scholar 

  • Grotewold, E.: The science of flavonoids. Springer, New York (2006)

    Book  Google Scholar 

  • Guan, H., et al.: Interactions of pharmacokinetic profile of different parts from Ginkgo biloba extract in rats. J. Ethnopharmacol. 155(1), 758–768 (2014)

  • Guan, H., et al.: Comparative intestinal bacteria-associated pharmacokinetics of 16 components of Shengjiang Xiexin decoction between normal rats and rats with irinotecan hydrochloride (CPT-11)-induced gastrointestinal toxicity in vitro using salting-out sample preparation and LC-MS/MS. RSC Adv. 7, 43621–43635 (2017)

    Article  CAS  Google Scholar 

  • Hand, C.C., Meshnick, S.R.: Is chloroquine making a comeback? J. Infect. Dis. 203, 11–12 (2011)

    Article  CAS  Google Scholar 

  • He, J., et al.: A sensitive LC–MS/MS method for simultaneous determination of six flavonoids in rat plasma: application to a pharmacokinetic study of total flavonoids from mulberry leaves. J. Pharm. Biomed. Anal. 84, 189–195 (2013)

    Article  CAS  Google Scholar 

  • Hritcu, L., et al.: Antidepressant flavonoids and their relationship with oxidative stress. Oxid. Med. Cell. Longev. (2017). https://doi.org/10.1155/2017/5762172

    Article  Google Scholar 

  • Huck, C.W., Bonn, G.K.: Evaluation of detection methods for the reversed-phase HPLC determination of 3′, 4′, 5′-trimethoxyflavone in different phytopharmaceutical products and in human serum. Phytochem. Anal. 12, 104–109 (2001)

    Article  CAS  Google Scholar 

  • James, K.D., et al.: Dietary pretreatment with green tea polyphenol,(−)-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent oral bolus doses of (−)-epigallocatechin-3-gallate. Food Chem. Toxicol. 76, 103–108 (2015)

    Article  CAS  Google Scholar 

  • Jenett-Siems, K., et al.: Sipandinolide: a butenolide including a novel type of carbon skeleton from Siparuna andina. Planta Med. 66, 384–385 (2000)

    Article  CAS  Google Scholar 

  • Kammalla, A.K., et al.: Comparative pharmacokinetic interactions of quercetin and rutin in rats after oral administration of European patented formulation containing Hipphophae rhamnoides and co-administration of quercetin and rutin. Eur. J. Drug Metab. Pharmacokinet. 40, 277–284 (2015)

    Article  CAS  Google Scholar 

  • Kaur, K., et al.: Antimalarials from nature. Bioorg. Med. Chem. Lett. 17, 3229–3256 (2009)

    Article  CAS  Google Scholar 

  • Khaomek, P., et al.: In vitro antimalarial activity of prenylated flavonoids from Erythrina fusca. J. Nat. Med. 62, 217–220 (2008)

    Article  CAS  Google Scholar 

  • Kim, S.-B., et al.: Development and validation of a highly sensitive LC–MS/MS method for the determination of acacetin in human plasma and its application to a protein binding study. Arch. Pharm. Res.: 1–8 (2015)

  • Kraft, C., et al.: Antiplasmodial activity of isoflavones from Andira inermis. J. Ethnopharmacol. 73, 131–135 (2000)

    Article  CAS  Google Scholar 

  • Kraft, C., et al.: In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother. Res. 17, 123–128 (2003)

    Article  CAS  Google Scholar 

  • Kumar, S., Pandey, A.K.: Chemistry and biological activities of flavonoids: an overview. Sci. World J. (2013). https://doi.org/10.1155/2013/162750

    Article  Google Scholar 

  • Kunert, O., et al.: Antiplasmodial and leishmanicidal activity of biflavonoids from Indian Selaginella bryopteris. Phytochem. Lett. 1, 171–174 (2008)

    Article  CAS  Google Scholar 

  • Lan, K., et al.: Towards polypharmacokinetics: pharmacokinetics of multicomponent drugs and herbal medicines using a metabolomics approach. Evid.-Based Complement. Altern. Med. (2013). https://doi.org/10.1155/2013/819147

    Article  Google Scholar 

  • Li, L., et al.: Simultaneous determination of luteolin and apigenin in dog plasma by RP-HPLC. J. Pharm. Biomed. Anal. 37, 615–620 (2005)

    Article  CAS  Google Scholar 

  • Li, Q., et al.: A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5′-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats. J. Chromatogr. A 1395, 116–128 (2015)

    Article  CAS  Google Scholar 

  • Lim, S.S., et al.: In vitro antimalarial activity of flavonoids and chalcones. Bull. Korean Chem. Soc. 28, 2495 (2007)

    Article  CAS  Google Scholar 

  • Limmatvapirat, C., et al.: Antitubercular and antiplasmodial constituents of Abrus precatorius. Planta Med. 70, 276–278 (2004)

    Article  CAS  Google Scholar 

  • Lin, L.-C., et al.: Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. J. Agric. Food Chem. 63, 7700–7706 (2015)

    Article  CAS  Google Scholar 

  • Liu, W., et al.: A novel benzo [d] imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem. Pharmacol. 85, 1504–1512 (2013)

    Article  CAS  Google Scholar 

  • Lu, L., et al.: Abelmoschi Corolla non-flavonoid components altered the pharmacokinetic profile of its flavonoids in rat. J. Ethnopharmacol. 148, 804–811 (2013)

    Article  CAS  Google Scholar 

  • Mahomoodally, M.F.: Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. Evid. Based Complement. Altern. Med. 2013, 617459 (2013)

    Article  Google Scholar 

  • Maione-Silva, L., et al.: Development and validation of a simple and rapid liquid chromatography method for the determination of genistein in skin permeation studies. Biol. Pharm. Bull. 35, 1986–1990 (2012)

    Article  CAS  Google Scholar 

  • Manach, C.: The use of HPLC with coulometric array detection in the analysis of flavonoids in complex matrixes. The Royal Society of Chemistry, Cambridge (2003)

    Google Scholar 

  • Manach, C., et al.: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. Title 81, 230S-242S (2005)

    Article  CAS  Google Scholar 

  • Misaka, S., et al.: Development of rapid and simultaneous quantitative method for green tea catechins on the bioanalytical study using UPLC/ESI-MS. Biomed. Chrom. 27, 1–6 (2013)

    Article  CAS  Google Scholar 

  • Mohanty, S., et al.: Flavonoids rich fraction of Citrus limetta fruit peels reduces proinflammatory cytokine production and attenuates malaria pathogenesis. Curr. Pharm. Biotechnol. 16, 544–552 (2015)

    Article  CAS  Google Scholar 

  • Mori, A., et al.: Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 26, 2231–2234 (1987)

    Article  CAS  Google Scholar 

  • Muiva, L.M., et al.: Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata. Phytochem. Lett. 2, 99–102 (2009)

    Article  CAS  Google Scholar 

  • Naddaf, N., Haddad, S.: Apigenin effect against Leishmania tropica amastigotes in vitro. J. Parasit. Dis. 44, 574–578 (2020)

    Article  Google Scholar 

  • Nakagawa, K., Miyazawa, T.: Chemiluminescence–high-performance liquid chromatographic determination of tea catechin, (−)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal. Biochem. 248, 41–49 (1997)

    Article  CAS  Google Scholar 

  • Nogueira, C.R., Lopes, L.M.: Antiplasmodial natural products. Molecules 16, 2146–2190 (2011)

    Article  CAS  Google Scholar 

  • Ntie-Kang, F., et al.: The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar. J. 13(10), 1186 (2014)

    Google Scholar 

  • Ohemeng, K., et al.: DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorg. Med. Chem. Lett. 3, 225–230 (1993)

    Article  CAS  Google Scholar 

  • Pal, D., Verma, P.: Flavonoids: a powerful and abundant source of antioxidants. Int. J. Pharm. Pharm. Sci. 5, 95–98 (2013)

    CAS  Google Scholar 

  • Paulke, A., et al.: Isoquercitrin provides better bioavailability than quercetin: comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin. Die Pharmazie Int. J. Pharm. Sci. 67, 991–996 (2012)

    CAS  Google Scholar 

  • Pietta, P.-G.: Flavonoids as antioxidants. J. Nat. Prod. 63, 1035–1042 (2000)

    Article  CAS  Google Scholar 

  • Preedy, V.R.: Isoflavones: Chemistry, Analysis, Function and Effects. RSC Publishing, Cambridge (2012)

    Book  Google Scholar 

  • Qiu, F., et al.: HPLC-ESI-MS/MS analysis and pharmacokinetics of luteoloside, a potential anticarcinogenic component isolated from Lonicera japonica, in beagle dogs. Biomed. Chromatogr. 27, 311–317 (2013)

    CAS  Google Scholar 

  • Reinboth, M., et al.: Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br. J. Nutr. 104, 198–203 (2010)

    Article  CAS  Google Scholar 

  • Rudrapal, M., Chetia, D.: Plant flavonoids as potential source of future antimalarial leads. Syst. Rev. Pharm. 8, 13 (2017)

    Article  CAS  Google Scholar 

  • Shanmugam, R., et al.: Bioanalytical method development and validation for herbal quercetin in nano formulation by RPUFLC in rabbit plasma. J. Bioequiv. Bioavailab. 5, 191–196 (2013)

    Google Scholar 

  • Sheet, W.F.: World Malaria Report 2015. World Health Organization, Geneva (2016)

    Google Scholar 

  • Soleas, G., et al.: Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection. J. Chromatogr. B Biomed. Sci. Appl. 757, 161–172 (2001)

    Article  CAS  Google Scholar 

  • Stefova, M., et al.: Encyclopedia of Chromatography. Taylor & Francis , Boca Raton (2003)

    Google Scholar 

  • Sun, D., et al.: Simultaneous determination of four flavonoids and one phenolic acid in rat plasma by LC–MS/MS and its application to a pharmacokinetic study after oral administration of the Herba Desmodii Styracifolii extract. J. Chromatogr. B 932, 66–73 (2013)

    Article  CAS  Google Scholar 

  • Supko, J., Phillips, L.: High-performance liquid chromatographic assay for genistein in biological fluids. J. Chromatogr. B Biomed. Sci. Appl. 666, 157–167 (1995)

    Article  CAS  Google Scholar 

  • Tekel, J., et al.: Development of a simple method for the determination of genistein, daidzein, biochanin A, and formononetin (biochanin B) in human urine. J. Agric. Food Chem. 47, 3489–3494 (1999)

    Article  CAS  Google Scholar 

  • Teng, W.-C., et al.: Medicinal Plants and Malaria: Applications, Trends, and Prospects. CRC Press , Boca Raton (2016)

    Book  Google Scholar 

  • Trampuz, A., et al.: Clinical review: severe malaria. Crit. Care-Lond. 7, 315–323 (2003)

    Article  Google Scholar 

  • Udeani, G.O., et al.: Pharmacokinetics of deguelin, a cancer chemopreventive agent in rats. Cancer Chemother. Pharmacol. 47, 263–268 (2001)

    Article  CAS  Google Scholar 

  • Vogel, G.: New map illustrates risk from the ‘other’ malaria. Science 329, 618–618 (2010)

    Article  CAS  Google Scholar 

  • Wang, F., et al.: Determination of quercetin and kaempferol in human urine after orally administrated tablet of ginkgo biloba extract by HPLC. J. Pharm. Biomed. Anal. 33, 317–321 (2003)

    Article  CAS  Google Scholar 

  • Wang, X., et al.: Pharmacokinetic interaction between the flavonoid luteolin and γ-hydroxybutyrate in rats: potential involvement of monocarboxylate transporters. AAPS J. 10, 47–55 (2008)

    Article  CAS  Google Scholar 

  • Weaver, C.M., et al.: Flavonoid intake and bone health. J. Nutr. Gerontol. Geriatr. 31, 239–253 (2012)

    Article  Google Scholar 

  • Wieling, J.: LC–MS–MS experiences with internal standards. Chromatographia 55, S107–S113 (2002)

    Article  CAS  Google Scholar 

  • Willcox, M.: Improved traditional phytomedicines in current use for the clinical treatment of malaria. Planta Med. 77, 662–671 (2011)

    Article  CAS  Google Scholar 

  • Wittemer, S., et al.: Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine 12, 28–38 (2005)

    Article  CAS  Google Scholar 

  • Wittemer, S.M., Veit, M.: Validated method for the determination of six metabolites derived from artichoke leaf extract in human plasma by high-performance liquid chromatography–coulometric-array detection. J. Chromatogr. B. 793, 367–375 (2003)

    Article  CAS  Google Scholar 

  • Wittig, J., et al.: Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 753, 237–243 (2001)

    Article  CAS  Google Scholar 

  • Yang, Z., et al.: Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC–MS/MS method: application to an oral bioavailability study of genistein in mice. J. Pharm. Biomed. Anal. 53, 81–89 (2010)

    Article  CAS  Google Scholar 

  • Yao, X., et al.: A UPLC-MS/MS method for qualification of quercetin-3-O-β-D-glucopyranoside-(4® 1)-α-L-rhamnoside in rat plasma and application to pharmacokinetic studies. Molecules 18, 3050–3059 (2013)

    Article  CAS  Google Scholar 

  • Ye, G., et al.: Determination of calycosin-7-O-β-d-glucopyranoside in rat plasma and urine by HPLC. Biomed. Chromatogr. 21, 762–767 (2007)

    Article  CAS  Google Scholar 

  • Yin, R., et al.: UFLC–MS/MS method for simultaneous determination of luteolin-7-O-gentiobioside, luteolin-7-O-β-d-glucoside and luteolin-7-O-β-d-glucuronide in beagle dog plasma and its application to a pharmacokinetic study after administration of traditional Chinese medicinal preparation: Kudiezi injection. J. Pharm. Biomed. Anal. 72, 127–133 (2013)

    Article  CAS  Google Scholar 

  • Zeng, H.-J., et al.: Pharmacokinetic study of six flavones in rat plasma and tissues after oral administration of ‘JiangYaBiFeng’ using SPE-HPLC–DAD. J. Pharm. Biomed. Anal. 56, 815–819 (2011)

    Article  CAS  Google Scholar 

  • Zhang, A., et al.: Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD-UV using wavelength switching detection. Molecules 18(11), 14241–14257 (2013)

    Article  CAS  Google Scholar 

  • Zhang, Z., et al.: LC–MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 158, 66–75 (2014)

    Article  CAS  Google Scholar 

  • Zhao, W.O., et al.: LC-ESI-MS/MS analysis and pharmacokinetics of heterophyllin B, a cyclic octapeptide from Pseudostellaria heterophylla in rat plasma. Biomed. Chromatogr. 29, 1693–1699 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, CDRI for his constant encouragement and support. We also acknowledge CSIR, India, for providing the research fellowship and Department of Science and Technology (DST) for providing funding under Project GAP0235. CDRI communication number for this article is 10291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Wahajuddin.

Ethics declarations

Conflict of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, S., Malik, M.Y., Sultana, N. et al. Chromatographic separation and estimation of natural antimalarial flavonoids in biological matrices. Proc.Indian Natl. Sci. Acad. 87, 446–468 (2021). https://doi.org/10.1007/s43538-021-00050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-021-00050-5

Keywords

Navigation