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Abstract

novel multi-parameter structures.

In order to rapidly and accurately evaluate the mechanical properties of a novel origami-inspired tube struc-

ture with multiple parameter inputs, this study developed a method of designing origami-inspired braces based

on machine learning models. Four geometric parameters, i.e., cross-sectional side length, plate thickness, crease weak-
ening coefficient, and plane angles, were used to establish a mapping relationship with five mechanical parameters,
including elastic stiffness, yield load, yield displacement, ultimate load, and ultimate displacement, all of which were
calculated from load-displacement curves. Firstly, forward prediction models were trained and compared for single
and multiple mechanical outputs. The parameter ranges were extended and refined to improve the predicted results
by introducing the intrinsic mechanical relationships. Secondly, certain reverse prediction models were established

to obtain the optimized design parameters. Finally, the design method of this study was verified in finite element
methods. The design and analysis framework proposed in this study can be used to promote the application of other

Keywords Origami-inspired braces, Machine learning, Forward prediction, Reverse design

1 Introduction

Buckling-restrained brace (BRB), a type of metal-
lic damper (Watanabe et al., 1988), is characterized by
its ability of inhibiting the low-order global buckling
of inner cores under compression with the help of out-
side constraint components. A lot of experiments and
numerical analyses have confirmed its energy dissipa-
tion and earthquake response reduction capabilities
(Jiang et al., 2022; Wang et al., 2019; Zhuge et al., 2022).
To achieve energy dissipation goals for different levels of
seismic damage, two-stage yielding perforated buckling-
restraint brace (pBRB) assemblies have been proposed
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(Li et al.,, 2019; Sun et al., 2018), along with variations in
core shape designs (Hu et al., 2022). In addition, geomet-
ric imperfections have been introduced to enhance the
bending stiffness and load-carrying capacity of BRBs. For
instance, Zhu et. al. (2017) proposed a Corrugated Web
Connected BRB (CWCBRB), which consists of two all-
steel outer tubes connected by a single-sine or double-
sine corrugated web plate. While this novel BRB exhibits
stable hysteresis behaviors and excellent energy dissipa-
tion capacities, its complex construction prevents it from
being widely implemented in building structures. How-
ever, traditional brace structures also suffer from many
drawbacks, such as complex manufacturing processes,
uncertainty in buckling due to manufacturing errors, and
wastage resulting from retrofitting design; as a result,
their applications are often limited as well.

Over recent years, as origami technology shows a good
promise in various fields, many origami-inspired applica-
tions have emerged, such as deployable structures (Cai
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et al,, 2018, 2019, 2023a, 2023b; Filipov et al., 2019; Zhang
et al,, 2021), smart structures (Cehula & Prisa, 2020),
metamaterials (Bertoldi et al., 2017; Chen et al., 2018;
Ouisse et al.,, 2016), and self-folding robots (Shigemune
et al., 2016). In the field of architecture, folded-plate roof
structures, which also follow the concept of origami, have
been studied in kinematic paths (Cehula & Prasa, 2020)
and alternative models (Hayakawa & Ohsaki, 2019).
Besides, there are increasingly more applications of ori-
gami patterns in tubular structures (Liu et al., 2018, 2019;
Ma & You, 2013; Ma et al., 2016; Song et al., 2012; Zhang
et al,, 2007). It is indicated that introducing origami pat-
terns into braces is another method to induce buckling
and prevent overall instability. Based on a spatial four-bar
mechanism, Song et. al. (2012) designed a tubular ori-
gami component composed of isosceles trapezoids. This
component could deform along preset creases and offer
better energy dissipation capacity than the corresponding
non-crease components. Zhou et. al. (2023a) proposed
and developed a novel energy-dissipating brace based on
Miura-origami (OEDB), while illustrating the energy dis-
sipation mechanisms through experiments and finite ele-
ment analysis (Zhou et al., 2021, 2023b). Compared with
traditional BRBs, this brace has no external restraining
system, thus simplifying the constructional details. How-
ever, designing an origami brace is often a performance-
oriented trial process.

Repeated simulations or experiments always result
in limited design space (Wang & Ma, 2021; Wang et al.,
2022, 2023; Yu et al,, 2023). With the rapid development
of machine learning (ML) in civil engineering, apply-
ing ML algorithms has become a forefront technique
(Chen & Guan, 2023; Hamidia et al.,, 2022a, 2022b; Li
et al., 2023; Vasileiadis et al., 2023; Wu & Sarno, 2023).
For instance, ML algorithms have been successfully
adopted in architecture (Topuz & Cakici, 2023), sus-
tainability (Fatehi et al.,, 2021; Wu et al., 2019), histori-
cal and cultural structures (Alacam et al., 2022; Glizelci,
2022), smart building design (Maher et al., 2007), space
design (Karadag et al., 2022; Uzun & Colakoglu, 2019)
and optical measurement (Zhu et al., 2019, 2020). In a
word, these studies underscore the widespread adop-
tion of machine learning techniques in addressing mul-
tifaceted challenges across various areas of architectural
practice. Some research was dedicated to risk assessment
of braced frames (Tamke et al., 2018) as well as deflec-
tion estimation of diaphragm walls (Chalab et al., 2023).
In terms of special design of origami-inspired braces,
better methods are needed to enhance design space,
reduce simulation analysis time and diminish resource
consumption. Therefore, this study would try to identify
certain models that can perform well in analyzing the
mechanical performance of origami-inspired braces by
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comparing various machine-learning methods. Forward
models for mechanical performance and reverse predic-
tion models for geometric parameters would be devel-
oped subsequently. And the models would be validated
with finite element results finally.

2 Origami-inspired braces

The classical Miura pattern was employed as the funda-
mental origami element in this study (Miura, 1985), with
its geometrical definition illustrated in Fig. 1(a). A Miura
unit cell consists of four equivalent parallelograms, which
are defined by the lengths a and b, as well as the acute
angle y. Three solid lines represent the mountain creases,
while one dotted line represents the valley crease. Addi-
tionally, to determine the spatial configuration, the
folding angle 0 is predetermined and calculated as the
dihedral angle between two plates, as shown in Fig. 1(b).
Parameters L, W and H represent the length of the ori-
gami unit, the width of the section, and the height of the
section in the folding process, respectively.

A new rigid foldable tube was proposed by Tachi Tomo-
hiro based on the Miura folding method (Tachi, 2010).
The basic Tachi unit is constructed by joining two parts: a
Miura unit and its mirror. Notably, the Tachi unit is con-
sidered to be the basic element of OEDBs, as shown in
Fig. 1(c). It is noteworthy that the geometry and topology
of an origami tube can be determined by five basic vari-
ables, including the length a4, the length b, the acute angle
7, the folding angle 6, and the number of unit cells (n).
When the stiffness of creases can be ignored, the origami
tubes would satisfy the condition of rigid folding, with
only one degree of freedom left in the motion process.
For the Tachi unit, the main deformation mode is the
relative rotation of the adjacent quadrilateral plates at the
creases, instead of the in-plane deformation under axial
compression or tension. Given the difficulty with creases
in achieving ideal hinge joints in actual production and
application processes, the Tachi unit mainly relies on the
deformation at the creases to dissipate energy. Figure 1(d)
displays the brace based on Miura-origami, with the fold-
ing yield segment shown in the middle and end restraint
segments on both ends.

The initial dataset was derived from finite element
mechanical analysis models of uniaxial compression on
origami-inspired brace units. Parameter 7, represent-
ing the crease-weakening strength, indicates the ratio
of plate thickness after crease weakening to the original
parallelogram’s plate thickness. The model in this study
considers four variables: the length 4, the thickness ¢ of
the parallelogram plate, the angle y between the lengths a
and b, and the crease-weakening coefficient 7.

The width of the crease is kept uniformly at 10 mm.
When a typical unit is designed, its length L is 200 mm,
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(a) Miura origami unit planar state
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(c) Typical origami-inspired brace
unit
Fig. 1 Origami-inspired brace model

Table 1 Design parameters of the braces

Length a (mm) 100, 125,150, 175, 200, 225

Thickness t (mm) 8,10,12,14,26
Angley (°) 55,60, 65
Crease-weakening coefficient n 04,06,08,1.0

so the length b can be confirmed. A total of 360 compu-
tational models were designed by using the orthogonal
combination of the data in Table 1. Specific data are pre-
sented in Appendix. The 360 data points are divided into
two sets, with 300 ones used for training and 60 ones for
testing.

The simulation analysis involves a specific component
with the following dimensions: length (4) of 150 mm,
thickness (f) of 10 mm, angle (y) of 65°, and crease-
weakening coefficient () of 0.6. The simulation had the
following findings: yield displacement of 9.7 mm, yield
load of 97.65 kN, ultimate displacement of 50mm, and
ultimate load of 120.85 kN. Figure 2 shows the load-dis-
placement curve of the specimen during tensile loading,
where the red dotted lines represent the fitted curve of
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(b) Miura origami unit folding state
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Fig. 2 Tensile skeleton curve

the original skeleton curve, purposed for calculating the
required indicator parameters. According to the curve,
the corresponding line is fitted and the elastic stiffness
K, is obtained. At point A, Ppy is the ultimate load and
Amax is the displacement corresponding to Ppax. The
abscissa and ordinate values of point B are defined as the
yield displacement Ay and the yield load Py, respectively.
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This study primarily explores the following five
mechanical performance indicators of the model: elas-
tic stiffness, yield displacement, yield load, ultimate dis-
placement, and ultimate load. In the database, the elastic
stiffness K, exhibits a range from 0.815 to 126.106 kN/
mm, while the yield displacement Ay shows variability in
a range from 15.44 to 19.94 mm. Similarly, the yield load
Py extends from 5.19 to 708.31 kN. The ultimate displace-
ment Apmax varies from 6.1 to 50 mm, accompanied by the
corresponding variation in the ultimate load Pmay, rang-
ing from 14.2 to 924.69 kN.

Origami-inspired braces can remove the limitations
faced by traditional buckling-restrained braces, because
the former would induce predetermined deformation
patterns through crease introduction, while the lat-
ter would rely on restraining sleeves to suppress low-
order core buckling and generate high-order buckling
for energy dissipation. Traditionally, the design param-
eters are determined through low-cycle repeated load-
ing experiments and finite element analysis. However,
in order to deliver a programmable design for origami-
inspired braces, this study established an efficient and
comprehensive design approach by using machine learn-
ing models. This approach was utilized both for forward
prediction of mechanical performance under given geo-
metric parameters and for reverse design of geometric
parameters based on desired performance indicators.
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3 Forward prediction of mechanical performance
3.1 Single performance prediction

Elastic stiffness was selected as the unique output param-
eter to compare the machine learning algorithms. Four
models, namely a Kernel Ridge Regression (KRR) model,
a Support Vector Regression (SVR) model, a Decision
Tree (DT) model, and a Bayesian model, were compared
and analyzed, with the results shown in Fig. 3.

The horizontal coordinate showcases the test data (the
actual data), while the vertical coordinate showcases the
predicted data. The results indicate that KRR and Bayes-
ian predictions vary relative to changes in the dependent
variables data in the test set. there is a large deviation
between the predicted results and the actual value. Using
a linear model to predict nonlinear relationships, the
Bayesian method introduced a certain level of error. The
predictions by the DT model fluctuate around the actual
results, without displaying significant differences. In
addition, there is a marginal effect in the predictions: the
farther away from the center of the test set, the greater
the deviation.

The investigation of this study focused on predicting
the elastic stiffness based on four independent variables.
It was found that the DT model could provide relatively
better performance. Subsequently, the DT model was
used to train and predict the other four target variables.
The results are listed in Table 2, which shows that the
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Fig. 3 Predicted results of the four models
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Table 2 Prediction scores of the DT model for each target
variables

Yield Ultimate Ultimate
load displacement load

Mechanical Elastic Yield
parameters stiffness displacement

Scores 0.987 0.767 0926 0.748 0972

DT model also performs well in predicting load-related
variables.

It is worth mentioning that the prediction problem
in this study is a kind of regression problem in machine
learning. When the model was scored, the coefficient of
determination was actually calculated. The coefficient of
determination, denoted as R?, is a statistical measure to
evaluate the goodness of fit of a regression model to the
observed data. And it is defined by the formula below:

~.2
DY D)

R*=1 —
Y (Y=Y

(1)

where #n represents the number of data points, Y; repre-

sents the observed values of the target variable, }?L repre-
sents the corresponding predicted values from the model,
and Y; represents the mean of the observed values. The
value of R? ranges from 0 to 1, with 1 indicating a perfect
fit, meaning that the model can explain all the variance in
the target variable, and 0 indicating a poor fit, meaning
that the model fails to explain any variance.

Since the last 60 data points used in the test set are easy
to produce the overfitting phenomenon, S-fold cross vali-
dation was used to avoid this shortcoming. In this study,
the test set was generated by the way of randomization.
The average scores obtained over ten runs for each target
variable are presented in Table 3.

As seen in the scores, the KRR model provides a
slightly better fit initially. However, the DT model took
only 0.929 s for training time and rating time, while the
KRR model took up to 711.898 s. Considering the huge
time difference with similar prediction accuracy, this
study continued to use the DT model.

Table 3 Average evaluation scores for the models
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3.2 Multi-performance prediction

The above section has derived the optimal model by dis-
cussing the process of predicting the value of a depend-
ent variable from multiple independent variables. In fact,
from a mechanical modeling perspective, there is an
inherent connection among the output data. To predict
multiple target variables from multiple feature variables,
this section provides three approaches:

Method a: Use the same single-performance pre-
diction method for multiple times to predict each
mechanical performance indicator separately.
Method b: Predict the value of one output variable,
and subsequently integrate it into the feature set for
model training. This iterative process is then repeated
to predict the next output variable.

Method c: Directly implement a model capable of
predicting multiple output variables simultaneously.

The choice of dataset selection methods follows a ran-
dom sampling approach, while the database undergoes
training using DT model. The three methods mentioned
above can be visually represented in Fig. 4.

3.2.1 Combination of multiple single-variable predictions
Firstly, predictions are made for each target variable indi-
vidually based on multiple single performance predic-
tions. After increasing the training iterations on the given
dataset, the average evaluation score for each variable is
listed in Table 4.

The final average evaluation score for the models is
0.847. The training speed on the data is relatively fast,
and the scores can be roughly divided at three levels: 0.9,
0.8 and 0.7. Additionally, the data are distributed quite
evenly, which is beneficial for the modeling process.
These characteristics contribute to a well-performing
model with a reasonable average evaluation score.

3.2.2 Iterative combination of single-variable predictions
The approach described above involves an iterative pre-
diction process, where four independent variables are

Mechanical performance DT model score

Bayesian model score

KRR model score SVR model score

parameter

Elastic stiffness 0978 0.757 0.975 0.229
Yield displacement 0.747 0.719 0.748 0.745
Vield load 0929 0.724 0929 0927
Ultimate displacement 0.592 0.585 0.634 0.525
Ultimate load 0.924 0.766 0.928 0.921
Average score 0.824 0.705 0.831 0.677
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Table 4 Average evaluation scores for  single-variable
predictions

Mechanical Elastic Yield Yield Ultimate Ultimate

parameter  stiffness displacement load displacement load

Score 0.956 0.811 0.998 0.722 0.935

used to fit and train a model for a specific mechanical
parameter. The predicted parameter is then used as an
input variable for the subsequent model, which is further
trained to predict another single target variable. This pro-
cess continues iteratively until all the mechanical perfor-
mance parameters have been predicted.

This iterative approach is valuable, because it takes
into account significant relationships among different
mechanical performance parameters. By starting with
combining the performance indicators with strong rela-
tionships, this approach can provide more representative
and meaningful conclusions.

(1) Relationship between the yield displacement and
the yield load

There is a significant nonlinear relationship between
the yield load and the yield displacement. The
model achieves relatively high accuracy in yield load
predictions, but its accuracy in yield displacement
predictions still needs to improve. To enhance the
correlation between these two variables in the train-
ing, three different approaches can be explored.
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Method 1: A model is trained to predict the yield
displacement directly.

Method 2: The actual yield load is used as an input
variable for predicting the yield displacement.
Method 3: The predicted yield load is used as an
input variable for predicting the yield displacement.

The model scores acquired after ten training
iterations are shown in Fig. 5. It can be noted that
as the amount of training iterations increases, the
data become more stable. What’s more, the scores
for the last two methods are generally higher than
those of the first method, which predicts the yield
displacement directly. The method based on predic-
tions tends to deliver higher scores than those based
on the actual data. This means that for any given
model, the predicted data on the training set are
more consistent with the training and predictions
of the model than the actual data. A assumption is
proposed that the relationship between the yield
load and the yield displacement is beneficial to pre-
diction, while the error of the actual yield load may
adversely affect the results.

The analyses above reveal that the iterative pre-
diction combination approach can enhance the
accuracy considerably. In addition, this study has
explored the relationships among other mechanical
performance parameters, such as the relationship
between the ultimate load and the ultimate displace-
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Fig.5 Predicted yield displacement results based on the three methods
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ment, the relationship between the ultimate load and
the yield load, and the relationship between the yield
displacement and the ultimate displacement. How-
ever, the predictive results for these relationships are
not ideal; and in some cases, the scores appear lower.

(2) To predict target variables based on multivariate
design of independent variables

The above design process mainly involves iterative
predictions with two related variables. In practical
models, however, multiple variables shall be consid-
ered to explore their relationships. Attempts were
made in this study to predict the yield displacement
based on the predicted elastic stiffness and the yield
load.

Experimental results indicate that to fit the experi-
mental data in combination with the predictions
did not lead to an improvement, but may even
result in a slight decline. The scores of twenty sets
of model-training data are visualized in Fig. 6.

The training results mentioned above manifest
that the most effective analysis method is to ana-
lyze experimental data individually. And the best
approach is to focus on the relationship between
design parameters and mechanical parameters,
without delving into the interdependencies among
the mechanical parameters. In other words, the
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approach of combining multiple single-variable
predictions multiple times appears to be the most
suitable.

3.2.3 Generalized overall model

In fact, multivariate output is also a model’s generaliza-
tion capability. To achieve predictions from multiple
input features for multiple target variables, a model
accomplishing such functionality can be directly con-
structed. In this case, a Decision Tree model is used for
constructing a multi-output model. The results of ten
sets of model training are visualized in Fig. 7.

The deep_max parameter is a hyperparameter in the
DT model. The larger the parameter, the better the model
performs on the training data. When deep_max is adap-
tive, the scores are very close to 1. When this parameter
is set to 2, the scores would be very low. The compari-
son of the above scores clearly indicates that the models
with higher training depths have stronger generalization
capabilities, resulting in more meaningful accuracy in
prediction. There is a noticeable change when the train-
ing depth is shifted from 2 to 5 layers, but the training
time exhibits an exponential growth from 0.08 s to 0.64 s.

3.2.4 Comparison
The comparison of the three approaches reveals that
direct prediction of single variables is most adoptable.
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Fig. 6 Comparison of prediction scores for each method
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The iterative prediction of single variables performed
better than direct prediction of single variables only
in individual cases. The generalized overall model can
produce more accurate predictions, but in the case of a
large database, the training cost involved would increase
rapidly.

4 The forward prediction model based

on an augmented dataset
In this section, the original dataset is expanded within
a certain range, and the boundary range of the braces’
force performance is analyzed based on the given design
parameter range.

4.1 The expanded dataset

For the convenience of data analysis and representation
of analytical methods, this section will investigate the
relationship between parameters # and y, while keeping
length a and thickness ¢ constant.

Expanding the existing dataset is crucial now for
improving the model’s generalization ability, especially
given the limited available data. Additionally, it's worth
noting that the dataset exhibits a continuous nature, par-
ticularly in the context of mechanical properties. This
continuity is essential, as it underscores the importance
of obtaining a more comprehensive dataset to capture

the underlying regularities both in the input and out-
put sets. In this study, two scenarios were analyzed: (1)
Side length 4=150 mm, and plate thickness =12 mm;
and (2) =180 mm, and =13 mm. Then, the other two
parameters were expanded in terms of their range and
granularity. Initially, the range of crease-weakening coef-
ficient # was extended from the original data set [0.4, 1]
to a new set [0.2, 1], and the range of angle y was from set
[55°, 65°] to [50°, 70°]. Additionally, the granularity of data
selection was increased: the step size for selecting crease-
weakening coefficient # was reduced from 5 to 0.2, thus
increasing the data selection granularity by a factor of 25.
The step size for selecting angle y was reduced from 0.2
to 0.02, thus increasing the data selection granularity by
a factor of 10.

The expanded parameter dataset was used as an inde-
pendent variable set for testing, and the experimental
data were used as the training dataset for the DT model,
in order to predict the key parameters of the origami
brace’s mechanical performance.

4.2 Prediction of mechanical performance under different
parameters

The above data analysis sets were imported into MAT-

LAB for further analysis. A three-dimensional model

was designed in high-order linear fitting methods. The
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model’s accuracy was adjusted by modifying differ-
ent parameters. When the model reached a good level
of accuracy without excessive complexity, it was repre-
sented in contour heat maps, with color variations indi-
cating the magnitude of the third-dimensional data.

When the parallelogram section side’s length a is
150 mm and the plate thickness ¢ is 12 mm, the corre-
sponding actual data points from the original dataset
could also be identified. In this context, the original data
are presented in a rhombus shape on the corresponding
contour heat map.

Figure 8 depicts the impact of crease-weakening coef-
ficient # and angle y on the elastic stiffness. As observed
from the figure, an increase in # and y leads to higher

0.9
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Fig. 8 Investigating the impact of n and y on elastic stiffness
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Fig. 9 Investigating the impact of n and y on yield displacement
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elastic stiffness. When # and y are relatively small, the
growth rate will become slower. Compared to Fig. 8(a),
the changes shown in Fig. 8(b) are not pronounced,
meaning that lower elastic stiffness will come with a
higher maximum value.

Figure 9 illustrates the impact of crease-weakening
coefficient # and angle y on the yield displacement. As
showed in Fig. 9(a), when the angle y increases, the yield
displacement will show a trend of decreasing first and
increasing later, with the peak value appearing approxi-
mately at the angle of 67°. When the angle remains
constant, the yield displacement will not change very sig-
nificantly with variations in the crease-weakening coeffi-
cient 7.
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Figure 9(a) and (b) exhibit completely different charac-
teristics. Figure 9(b) indicates that as the angle increases
and the crease-weakening coefficient decreases, the yield
displacement would gradually decrease. Additionally, the
yield displacement is generally larger in Fig. 9(b).

The impacts of crease-weakening coefficient # and
angle y on the elastic stiffness and the yield load are
similar. As presented in Fig. 10(a), the yield load’s behav-
ior aligns well with the actual mechanical loading pat-
tern. However, there’s a slight dip in the yield load when
crease-weakening coefficient y reaches extremely high
values and angle y is relatively low.

Figure 10(a) and (b) display similar trends. However,
the data variation appears to be more structured and

300

50 55 60 65
v

(a)a=150mm, =12mm
Fig. 10 Investigating the impact of n and y on yield load

50 55 60 65
v

(a)a=150mm, /=12mm
Fig. 11 Investigating the impact of n and y on ultimate displacement
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hierarchical in Fig. 10(b). The data transitions appear
more pronounced.

Contrary to the case with the yield displacement,
changes of angle y show almost no effect on the ultimate
load, while the increase of crease-weakening coefficient #
leads to a decrease in the ultimate displacement. The law
shown in Fig. 11(a) is similar to that in Fig. 11(b); how-
ever, with changes of angle y, there is a slight fluctuation
in the size of the limit displacement.

As evident in Fig. 12(a), a clear hierarchical relation-
ship exists with changes of the ultimate load, but there
are errors within a certain range. The parts that do not
conform to the change law are mainly concentrated in
the areas beyond the actual original dataset, such as the
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Fig. 12 Investigating the impact of n and y on ultimate load

areas with crease-weakening coefficient 5 below 0.4 and
the included angle y below 55°.

Compared with Fig. 12(a), the hierarchical relation-
ship is more obvious in Fig. 12(b), and there is an identity
with the changes of crease-weakening coefficient # and
angle y. In other words, the ultimate load would increase
with the increase of crease-weakening coefficient #, while
decreasing with the increase of angle y. In general, the
change of the ultimate load is basically consistent with
the stress law of the origami-inspired braces.

4.3 Analysis of the performance limits

In order to optimize the structural performance, a
parameter set was identified within the specified inde-
pendent variable ranges, so as to maximize the elastic
stiffness, the yield load and the ultimate load, while mini-
mizing the yield and ultimate displacement.

To some extent, the initial data analysis reveals that the
structural performance demonstrates some synergy: the
optimal states for all performance indicators coincide
with each other. In other words, as the elastic stiffness
increases, it will lead to a higher yield and ultimate load,
while minimizing the yield and ultimate displacement.
These changes are exactly what the structural design
expects.

In this section, a Decision Tree model and an expanded
dataset are utilized to obtain a robust model, aiming to
find out the optimal structural performance within the
specified range. The testing scheme covers a range of
design parameters, with a cross-sectional side length
between 170 mm and 180 mm, an angle between 60.2°
and 64.2°, plate thickness between 8.4 mm and 10.4 mm,
and a weakening factor between 0.62 and 0.82. After
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Table 5 Design  parameters and mechanical

properties of the model

predicted

Design parameters Predicted mechanical properties

Length @ (mm) 170.00  Elastic stiffness (N/mm) 28,579.00
Thickness t (mm) 9.20  Yield displacement (mm) 7.2
Angley (°) 62.60  Vield load (kN) 161.35
Crease-weakening 0.72  Ultimate Displacement (mm)  47.65
coefficient n

Ultimate load (kN) 230.12

training the model with this extended and densely-grid-
ded dataset, the predicted results were obtained. The
results for the specific parameter values and mechanical
properties are listed in Table 5.

5 Validation of the reverse prediction model
and finite element analysis

The previous section determined the mechanical per-
formance limits of the origami-inspired braces within
specified parameter ranges. This section will establish a
reverse prediction model to design the geometric param-
eters of the origami-inspired braces based on the given
mechanical performance. Subsequently, the finite ele-
ment analysis (FEA) will be conducted to validate two
sets of geometric parameters designed by using the
reverse prediction model.

5.1 Reverse prediction model

Based on the expanded dataset, a reverse prediction
model was developed with the DT model by reversing the
roles of input and output variables in Table 5. Two sets
of data were chosen for validation: one with a descending
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Table 6 Reverse design data groups
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Group a (mm) y(°) t (mm) n K. (N/mm) Ay (mm) Py (kN) Apax (Mm) Ppnax (KN)
1 188 57.6 1.2 0.52 17,296 7.52 9545 50 121.76

2 114 55 9.2 0.92 6779 12.23 53.05 19.1 814
portion, where the ultimate displacement is less than (3) Comparison of the mechanical performance

50 mm; and the other without any descending portion,
but with an ultimate displacement of 50 mm. The reverse
prediction model was trained to predict the correspond-
ing parameter designs. The score of the reverse training
model was roughly 0.932. The final selected data is shown
in Table 6.

5.2 Finite element verification
(1) Model design

The designed brace component has a total length of
3000 mm and is composed of fifteen identical typi-
cal elements, each of which has a length L of 200
mm. To reduce the impact of eccentricity on the
component, 1/4 of the typical elements near the
braces are replaced with straight pipes, as shown in
Fig. 13. The cross-sectional material is Q235 steel,
and a bilinear material model is used. The model
elements are all S4R elements.

(2) Simulation results
To enhance clarity, the displacement display is mag-
nified by a factor of 10. Figure 14 illustrates the vari-
ation in displacement during loading. The findings
reveal that the structural deformation primarily
involves axial compression, displaying a relatively
uniform deformation process. Notably, the dis-
placement is more pronounced near the load end,
as highlighted in red, while the deformation near
the fixed end, as depicted in blue, is comparatively
minimal.
The chart of stress evolution clouds during the
compression process of the support is illustrated in
Fig. 15. The results indicate that the stress initially
intensifies at the fold and subsequently diffuses
gradually towards the center of the planar quadri-
lateral plate.

parameters

The load-displacement curve for Data Group 1 cor-
responding to the origami brace loading process
was extracted, as shown in Fig. 16(a). During the 50
mm displacement loading process, the load consist-
ently showed a monotonic increase, without any
descending segments. As for the load-displacement
curve for Data Group 2, as shown in Fig. 16(b), the
load would first increase and then decrease with
the increase of compression displacement. The
model of the load-displacement curve is consist-
ent with the design results. In addition, the errors
of mechanical property parameters meet the design
requirements, as presented in Table 7.

It's evident that the reverse prediction of the yield
load and the ultimate displacement has yielded
good results, and the maximum error is only 5.47%.
In contrast, the error in the prediction of the elas-
tic stiffness and ultimate load fluctuates from 7.26%
to 16.73%. Among the above prediction targets, the
absolute error fluctuation of the yield displacement
is the smallest. In summary, the prediction model of
this study delivers good results, but only two sup-
porting data points are provided.

6 Conclusion
This study mainly explored the forward prediction of the
mechanical performance of origami braces as well as the
reverse prediction of their geometric parameters based
on machine learning models, followed by finite element
validation. Several machine learning methods were com-
pared to analyze the mechanical performance of origami
braces. The results show that the Decision Tree model
has high accuracy and low training time.

Multiple approaches were taken to build multiple-input
and multiple-output prediction models, including single
performance prediction, multi-performance prediction,

Fig. 13 Schematic of the tubular components
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Fig. 14 Deformation process of the origami-inspired braces

and generalized overall model. It is found that the most
reasonable approach is to use multiple predictions of
single variables. Taking into account the relationships
between dependent variables for iterative combinations
could lead to a decrease in accuracy. The generalized
holistic model can achieve a certain level of accuracy, but
the cost will grow exponentially in terms of training time.
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Additionally, more fine-grained predictions and anal-
yses were made by expanding the dataset within rea-
sonable ranges of feature variables. Then an optimal set
of parameters was determined. Finally, two groups of
data were chosen to establish reverse prediction mod-
els, which were validated with finite element analysis
results.
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Fig. 15 Stress evolution process of the origami-inspired braces
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Table 7 Results of finite element analysis for the origami-inspired braces

Group a(mm) y(©) t (mm) n K. (N/mm) Ay (mm) Py (kN) A .x (Mm) Pnax (KN)
1 188 57.6 1.2 0.52 14,695 8.12 90.23 50 111.38
Error 15.04% —7.98% 547% 0.00% 8.53%
2 114 55 9.2 0.92 4896 10.89 51.14 18.39 67.78
Error 7.26% 10.96% 3.60% 3.72% 16.73%
Thlls study constructed certain d.eSIgn models for geo- ve t nOKN A, Py(kN) Bppe  Prax
metric parameters and mechanical performance of (mm) (mm) mm)  (mm) (mm)  (kN)

origami braces. However, the lack of static test data of
origami braces is its limitation. In the future research,
predictions will be verified in static tests.

100 60 12 1 21,119 624 12835 9 148.66
100 60 14 04 8011 705 4468 50 62.27

100 60 14 06 17140 559 9354 126 116.44
100 60 14 08 24883 534 14061 88 15538
100 60 14 1 30,327 551 176.01 8.1 189.42

Appendix

100 60 16 04 11450 644 6099 4615 81.18
Raw-data

100 60 16 06 23898 503 12501 1105 14672
a ve) t n KN D, Py(kN) Brge  Proax 100 60 16 08 34091 485 18269 81 19275
(mm) (mm) mm) (mm) (mm) (kN) 100 60 16 1 41,093 511 22664 755 2332

100 65 8 04 3539 728 2011 50 2731
100 55 8 04 815 1544 519 50 142

100 65 8 06 8201 667 4554 309 5941
100 55 8 06 1814 1118 1875 208 2453

100 65 8 08 12666 648 7308 1485 963
100 55 8 08 2730 997 1719 16 3215

100 65 8 1 16088 613  96.04 995 119.59
100 65 10 04 6513 6.2 3456 50 4331
100 65 10 06 14638 568 7572 2295 9175
100 65 10 08 22033 509 11995 94 135.12
100 65 10 1 27485 532 15772 815 170.72
100 65 12 04 10649 547 5238 50 63.21
100 65 12 06 23208 479 11252 1375 12824
100 65 12 08 34097 453 17445 8 182.34
100 65 12 1 41,869 472 22053 735 225.86
100 65 14 04 16035 49 736 50 87.05
100 65 14 06 33881 424 15524 109 169.68
100 65 14 08 48662 414 23167 7.5 234
100 65 14 1 58918 437 28877 65 288.86
100 65 16 04 22718 456 9799 4365 11332
100 65 16 06 46552 386 2026 935 214.34
100 65 16 08 65460 3.81 289.29 655 289.44
100 65 16 1 78261 407 35239 6.1 353.27
125 55 8 04 931 1511 593 50 15.99
125 55 8 0.6 2066 1456 1315 50 35.09
125 55 8 0.8 3080 1452 1959 3045 55.17
125 55 8 1 3816 1454 2425 2425 7023
125 55 10 04 1733 1282 11.03 50 25.27
125 55 10 06 3768 1258 2385 50 55.22
125 55 10 0.8 5532 1164 3511 226 8044
125 55 10 1 6779 1223 4305 19.1 1004
125 55 12 04 2871 1123 1805 50 36.79
125 55 12 0.6 6127 108 3818 382 7748
125 55 12 08 8870 1002 5597 1865 10864

100 55 8 1 3413 967 2147 151 39.19
100 55 10 04 1503 13 9.53 437 2192
100 55 10 0.6 3254 925 2033 177 3585
100 55 10 08 4801 825 2984 139 4635
100 55 10 1 5925 802 3683 131 56.02
100 55 12 04 2465 1118 1545 368  31.16
100 55 12 0.6 5204 792 3181 158 48389
100 55 12 0.8 7541 709 4577 1275 6266
100 55 12 1 9203 7.01 56.01 11.95 7512
100 55 14 04 3730 98 2296 3105 4179
100 55 14 0.6 7686 698 4565 145 6357
100 55 14 08 10956 637 645 11.9 8093
100 55 14 1 13239 628 7822 1115 9643
100 55 16 04 5318 875 32 27.1 5375
100 55 16 06 10,710 631 6149 1365 7986
100 55 16 08 15036 579 8519 1135 101.11
100 55 16 1 18,008 575 10271 106 119.73
100 60 8 04 1729 1048 1081 50 19.85
100 60 8 06 3991 925 245 284 4204
100 60 8 0.8 6150 8.21 38.16 145 62.19
100 60 8 1 7799 837 4887 1255 7824
100 60 10 04 3204 889 1926 50 3136
100 60 10 0.6 7207 756 4277 20 63.9
100 60 10 08 10875 68 6586 1155 8952
100 60 10 1 13587 694 8403 102 11215
100 60 12 04 5277 781 3059 50 45.57
100 60 12 06 11576 64 66.2 15.1 88.81
100 60 12 08 17126 6 101 9.9 1213
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a ye) t n KN/ A P, (kN) A a ye) t n KN/ A P, (kN) A P

(mm) (mm) mm)  (mm) (mm)  (kN) (mm) (mm) mm)  (mm) (mm)  (kN)
125 55 12 1 10769 1054 6825 1615 13438 150 55 8 06 2266 147 1443 50 3844
125 55 14 04 4388 1005 2704 50 5059 150 55 8 08 3343 1669 2127 50 6577
125 55 14 06 9199 936 5627 2965 10266 150 55 8 1 4106 1745 2611 36 8975
125 55 14 08 13147 888 821 1635 14085 150 55 10 04 1927 1267 1228 50 2761
125 55 14 1 15832 943 10009 142 17246 150 55 10 06 4162 1255 2642 50 6102
125 55 16 04 6320 914 3809 50 6672 150 55 10 08 6052 1409 3849 405 10064
125 55 16 06 13024 833 7815 2475 13073 150 55 10 1 7359 1435 4679 271 13173
125 55 16 08 18380 796 11344 146 17587 150 55 12 04 3205 1106 2016 50 4021
125 55 16 1 21978 846 13833 1285 2133 150 55 12 06 6812 1108 4259 50 892
125 60 8 04 1944 1036 1214 50 2203 150 55 12 08 9782 1188 6197 3015 14011
125 60 8 06 4436 989 2731 50 4933 150 55 12 1 11792 1237 7492 2215 17949
125 60 8 08 6748 1088 4211 393 8271 150 55 14 04 4919 986 3029 50 5533
125 60 8 1 8470 11 5331 2375 11478 150 55 14 06 10293 998 6327 50 12303
125 60 10 04 3619 875 2173 50 3489 150 55 14 08 14611 1031 9185 242 18441
125 60 10 06 8084 851 4827 50 7832 150 55 14 1 17481 1093 1109 1895 23244
125 60 10 08 12073 859 7385 214 12281 150 55 16 04 7112 894 4278 50 7303
125 60 10 1 14950 882 9345 1595 16125 150 55 16 06 14664 92 8865 50 16178
125 60 12 04 5091 764 3467 50 5094 150 55 16 08 20594 919 12821 207 23351
125 60 12 06 13110 756 7538 4385 11175 150 55 16 1 24471 995 15489 169 29176
125 60 12 08 19250 731 11541 1645 17037 150 60 8 04 2147 1029 1342 50 2414
125 60 12 1 23550 765 14541 133 21914 150 60 8 06 486 995 2999 50 5418
125 60 14 04 9144 683 5077 50 7028 150 60 8 08 7321 1129 4579 50 9412
125 60 14 06 19601 673 10761 3495 15043 150 60 8 1 9127 1231 5753 3265 1327
125 60 14 08 28328 651 16514 1395 22379 150 60 10 04 4005 868 2404 50 3826
125 60 14 1 34313 69 20886 116 28197 150 60 10 06 8885 853 533 50 8637
125 60 16 04 13144 621 6952 50 9303 150 60 10 08 13167 981 81 436 14546
125 60 16 06 27605 609 14539 2805 19363 150 60 10 1 16206 1034 10163 2465 20039
125 60 16 08 39298 584 22143 122 28146 150 60 12 04 6646 756 3846 50 5592
125 60 16 1 47052 633 28236 104 35117 150 60 12 06 14468 756 8373 50 12665
125 65 8 04 3953 72 2244 50 3033 150 60 12 08 21,009 857 12759 3335 20524
125 65 8 06 9030 695 5049 50 684 150 60 12 1 25697 874 15961 1805 27293
125 65 8 08 13752 743 8014 265 11352 150 60 14 04 10167 674 5643 50 773
125 65 8 1 17285 764 10433 168 15835 150 60 14 06 21728 685 1202 50 17519
125 65 10 04 7295 612 3866 50 4829 150 60 14 08 31245 747 18466 2275 27118
125 65 10 06 16226 607 8478 50 10858 150 60 14 1 37668 784 23134 155 35741
125 65 10 08 24145 633 13435 19 17291 150 60 16 04 14650 612 7743 50 10229
125 65 10 1 29846 653 17562 1315 23525 150 60 16 06 30743 635 16321 50 23147
125 65 12 04 11971 538 5871 50 7089 150 60 16 08 43605 675 24983 19 34619
125 65 12 06 25923 544 12693 421 15608 150 60 16 1 52112 719 31593 1375 44907
125 65 12 08 37764 558 20031 152 24264 150 65 8 04 4363 713 2472 50 333
125 65 12 1 46025 582 26325 1095 32053 150 65 8 06 988 696 5538 50 7535
125 65 14 04 18099 484 8241 50 9831 150 65 8 08 14904 785 873 3975 12896
125 65 14 06 38167 493 17611 328 20998 150 65 8 1 18618 822 11272 2085 18113
125 65 14 08 54514 49 27817 1115 31738 150 65 10 04 8062 606 4267 50 5309
125 65 14 1 65618 519 36316 O1  407.3 150 65 10 06 17791 604 936 50 12085
125 65 16 04 25763 444 10983 50 13075 150 65 10 08 2629 677 14786 2895 19882
125 65 16 06 52920 455 23188 2635 26982 150 65 10 1 32333 703 1915 158 27185
125 65 16 08 74204 451 36424 085 39834 150 65 12 04 13250 532 6475 50 7801
125 65 16 1 88331 488 47415 825 50314 150 65 12 06 28536 543 14041 50 17809

150 55 8 04 1031 15 6.57 50 17.45 150 65 12 08 41357 6 22261 2185 280.79
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a ye) t n KN/ A P, (kN) A a ye) t n KN/ A P, (kN) A P

(mm) (mm) mm)  (mm) (mm)  (kN) (mm) (mm) mm)  (mm) (mm)  (kN)
150 65 12 1 50179 624 28961 13 37535 175 65 8 06 10745 697 6045 50 8264
150 65 14 04 20072 478 9088 50 1083 175 65 8 08 16156 801 9482 50 14592
150 65 14 06 42203 5 19533 50 24678 175 65 8 1 20121 89 12207 281 20503
150 65 14 08 60070 543 31003 174 37325 175 65 10 04 8838 603 4674 50 5821
150 65 14 1 71977 571 40412 114 48473 175 65 10 06 19402 605 10256 50 13284
150 65 16 04 28636 438 1211 50 14417 175 65 10 08 28579 712 16135 4765 23012
150 65 16 06 58804 47 25799 466 32219 175 65 10 1 35054 76 20854 2015 31096
150 65 16 08 82223 494 40806 1355 46834 175 65 12 04 14528 529 7085 50 8559
150 65 16 1 97609 531 53316 103 60692 175 65 12 06 31,080 542 154 50 19639
175 55 8 04 1130 1484 726 50 1905 175 65 12 08 45086 635 2444 3625 327.04
175 55 8 06 2481 1474 158 50 4213 175 65 12 1 54601 677 3174 166 43488
175 55 8 08 3627 1693 2309 50 7244 175 65 14 04 22002 475 9946 50 11891
175 55 8 1 4430 1956 2818 50 10635 175 65 14 06 46223 496 21448 50 27395
175 55 10 04 2133 1253 1359 50  30.13 175 65 14 08 65716 579 34178 2845 43676
175 55 10 06 4571 1257 2903 50 6693 175 65 14 1 78717 629 44806 153 58222
175 55 10 08 6596 1465 4198 50 11488 175 65 16 04 31445 435 13262 50 15841
175 55 10 1 7977 1682 5075 4205 16201 175 65 16 06 64581 463 28393 50 36593
175 55 12 04 3555 1092 2235 50 439 175 65 16 08 90391 537 45284 238 56208
175 55 12 06 7507 1107 4701 50  97.88 175 65 16 1 107232 584 59354 135 73348
175 55 12 08 10706 1304 6792 50 16735 200 55 8 04 1242 1472 792 50 205

175 55 12 1 12841 1426 8168 322 22425 200 55 8 06 2691 1476 1704 50 4544
175 55 14 04 5465 971 3357 50 6044 200 55 8 08 3910 1711 2489 50 7833
175 55 14 06 11381 993 7016 50 13522 200 55 8 1 4751 1973 3023 50 11501
175 55 14 08 16059 1179 10124 4435 22416 200 55 10 04 2330 124 1485 50 3245
175 55 14 1 19123 1254 12149 2655 29378 200 55 10 06 4971 1256 3159 50 7223
175 55 16 04 7917 879 4752 50 7981 200 55 10 08 7133 1479 454 50 12451
175 55 16 06 16270 909 9861 50 17909 200 55 10 1 8587 1759 5465 50 18089
175 55 16 08 22730 1055 14207 359 28501 200 55 12 04 3800 1078 2446 50 4731
175 55 16 1 26891 1125 17064 228 36979 200 55 12 06 818 1104 5137 50 10572
175 60 8 04 2394 1012 1493 50 2644 200 55 12 08 11612 1312 7371 50 18217
175 60 8 06 534 991 3317 50 5954 200 55 12 1 13869 1539 8823 4115 25446
175 60 8 08 8023 1133 5022 50 10435 200 55 14 04 5989 958 3674 50 6516
175 60 8 1 9950 1327 6276 4455 15155 200 55 14 06 12436 99 768 50 14614
175 60 10 04 4464 854 2672 50 4192 200 55 14 08 17467 119 1103 50 25157
175 60 10 06 9821 849 5898 50 9502 200 55 14 1 20718 1352 13168 3325 33723
175 60 10 08 14450 989 8917 50 16582 200 55 16 04 8688 866 5206 50 8608
175 60 10 1 17697 1114 11119 315 23005 200 55 16 06 17816 904 10823 50 19373
175 60 12 04 7400 743 4275 50 6129 200 55 16 08 24786 1109 15532 50 32901
175 60 12 06 16014 751 9278 50 1396 200 55 16 1 29220 1212 1855 282 4296
175 60 12 08 23215 896 14062 50 23915 200 60 8 04 2583 1009 1612 50 2853
175 60 12 1 28133 971 17524 2485 32145 200 60 8 06 5763 995 3568 50 6421
175 60 14 04 11340 663 6268 50 8468 200 60 8 08 8585 1144 5378 50 11255
175 60 14 06 24092 679 13378 50 19364 200 60 8 1 10610 1363 6692 50 165

175 60 14 08 34450 805 20408 401 32288 200 60 10 04 4824 851 2888 50 453

175 60 14 1 41364 860 25504 2085 42887 200 60 10 06 10581 851 6363 50 10256
175 60 16 04 16352 601 8596 50 11222 200 60 10 08 15521 995 9594 50 17975
175 60 16 06 34157 625 18182 50 2575 200 60 10 1 18955 1166 11902 37.85 25282
175 60 16 08 48219 734 27848 320 41416 200 60 12 04 8017 74 4626 50 663

175 60 16 1 57421 79 35006 178 54144 200 60 12 06 17296 752 10045 50 15076

175 65 8 04 4783 708 2707 50 36.48 200 60 12 08 25016 892 1519 50 263.25
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a y(@©) t n K.(N/ A Py(kN) An.y  Prax a y@©) t n K.(N/ A Py(kN) A Prax

(mm) (mm) mm)  (mm) (mm)  (kN) (mm) (mm) mm)  (mm) (mm)  (kN)
200 60 12 1 30244 1016 18852 292 35573 25 60 8 06 6259 99 3874 50 6951
200 60 14 04 12284 659 6793 50 9166 25 60 8 08 9276 1146 5812 50 12219
200 60 14 06 26077 679 14546 50 20922 25 60 8 1 11421 1369 7205 50 18136
200 60 14 08 37231 822 22136 50 36182 25 60 10 04 5273 839 3148 50 4901
200 60 14 1 44617 922 27585 2585 4799 25 60 10 06 11502 847 6914 50 1111
200 60 16 04 17731 598 9323 50 12155 25 60 10 08 1679 995 10393 50 1955
200 60 16 06 37050 624 19791 50 27836 225 60 10 1 20445 1200 12848 464 2815
200 60 16 08 52257 76 30355 4345 46633 25 60 12 04 8762 73 5044 50 7175
200 60 16 1 62131 837 37989 2175 6114 25 60 12 06 18817 747 10924 50 16344
200 65 8 04 5141 712 2912 50 3961 25 60 12 08 27114 889 16477 50 28741
200 65 8 06 11524 702 6507 50 8922 25 60 12 1 32688 1059 204 358  397.03
200 65 8 08 17327 807 1019 50 15788 25 60 14 04 13427 651 7402 50 9925
200 65 8 1 21574 923 13093 3355 22425 25 60 14 06 28401 674 15853 50 22699
200 65 10 04 9490 606 5054 50 6318 25 60 14 08 40422 812 24065 50  397.99
200 65 10 06 20825 609 11073 50 14343 25 60 14 1 48322 97 29906 337 54056
200 65 10 08 30711 704 17418 50 25306 225 60 16 04 19386 1188 11901 50 13168
200 65 10 1 37688 799 22464 249 3420 25 60 16 06 40398 1274 26255 50 30219
200 65 12 04 15597 532 7649 50 9291 25 60 16 08 56835 1541 44691 50 52601
200 65 12 06 33510 545 1667 50 2121 25 60 16 1 67432 1518 64073 248 67581
200 65 12 08 48562 656 26478 50 36865 25 65 8 04 5652 698 3186 50 4307
200 65 12 1 58877 702 34348 1995 4822 25 65 8 06 12545 695 7073 50 9682
200 65 14 04 23644 478 10738 50 12907 25 65 8 08 18714 805 11017 50 17192
200 65 14 06 49757 499 23269 50 20580 225 65 8 1 23160 958 1409 425 24846
200 65 14 08 70965 6 37166 400 49529 225 65 10 04 10425 595 5491 50 6874
200 65 14 1 85141 66 48587 1855 648.15 25 65 10 06 22679 604 12027 50 15578
200 65 16 04 33775 438 1433 50 17195 25 65 10 08 33215 701 18883 50 27647
200 65 16 06 69648 465 30853 50 39548 25 65 10 1 40555 835 24286 3175 38168
200 65 16 08 97875 554 4936 3045 62682 225 65 12 04 17026 523 8298 50 10112
200 65 16 1 116347 611 64857 1615 82273 25 65 12 06 36524 54 1809 50 23058
25 55 8 04 1355 1455 864 50 2208 25 65 12 08 52612 646 28727 50 40781
25 55 8 06 2917 1472 1858 50 4909 25 65 12 1 63500 747 37281 2535 53732
25 55 8 08 4215 172 2683 50 8484 25 65 14 04 25960 47 11649 50 14056
25 55 8 1 5103 1994 3247 50 12518 225 65 14 06 54769 495 25507 50 32591
25 55 10 04 2545 1225 1622 50 3496 25 65 14 08 77033 602 40355 50 56401
25 55 10 06 5399 1252 343 50 7806 25 65 14 1 92050 691 52695 2375 72703
25 55 10 08 7707 1485 4905 50 13497 25 65 16 04 37089 43 15539 50 18736
25 55 10 1 9245 1774 5884 50 197.88 25 65 16 06 76099 459 33426 50 43069
25 55 12 04 4251 1065 2660 50 5099 25 65 16 08 106464 565 5368 4005 71139
25 55 12 06 801 1098 5591 50 1143 25 65 16 1 126106 64 70831 202 92469
25 55 12 08 12572 1316 7981 50 1977

225 55 12 1 14967 1607 9524 50 286.53
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