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Abstract 

In order to rapidly and accurately evaluate the mechanical properties of a novel origami-inspired tube struc-
ture with multiple parameter inputs, this study developed a method of designing origami-inspired braces based 
on machine learning models. Four geometric parameters, i.e., cross-sectional side length, plate thickness, crease weak-
ening coefficient, and plane angles, were used to establish a mapping relationship with five mechanical parameters, 
including elastic stiffness, yield load, yield displacement, ultimate load, and ultimate displacement, all of which were 
calculated from load-displacement curves. Firstly, forward prediction models were trained and compared for single 
and multiple mechanical outputs. The parameter ranges were extended and refined to improve the predicted results 
by introducing the intrinsic mechanical relationships. Secondly, certain reverse prediction models were established 
to obtain the optimized design parameters. Finally, the design method of this study was verified in finite element 
methods. The design and analysis framework proposed in this study can be used to promote the application of other 
novel multi-parameter structures.
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1 Introduction
Buckling-restrained brace (BRB), a type of metal-
lic damper (Watanabe et  al., 1988), is characterized by 
its ability of inhibiting the low-order global buckling 
of inner cores under compression with the help of out-
side constraint components. A lot of experiments and 
numerical analyses have confirmed its energy dissipa-
tion and earthquake response reduction capabilities 
(Jiang et al., 2022; Wang et al., 2019; Zhuge et al., 2022). 
To achieve energy dissipation goals for different levels of 
seismic damage, two-stage yielding perforated buckling-
restraint brace (pBRB) assemblies have been proposed 

(Li et al., 2019; Sun et al., 2018), along with variations in 
core shape designs (Hu et al., 2022). In addition, geomet-
ric imperfections have been introduced to enhance the 
bending stiffness and load-carrying capacity of BRBs. For 
instance, Zhu et. al. (2017) proposed a Corrugated Web 
Connected BRB (CWCBRB), which consists of two all-
steel outer tubes connected by a single-sine or double-
sine corrugated web plate. While this novel BRB exhibits 
stable hysteresis behaviors and excellent energy dissipa-
tion capacities, its complex construction prevents it from 
being widely implemented in building structures. How-
ever, traditional brace structures also suffer from many 
drawbacks, such as complex manufacturing processes, 
uncertainty in buckling due to manufacturing errors, and 
wastage resulting from retrofitting design; as a result, 
their applications are often limited as well.

Over recent years, as origami technology shows a good 
promise in various fields, many origami-inspired applica-
tions have emerged, such as deployable structures (Cai 
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et al., 2018, 2019, 2023a, 2023b; Filipov et al., 2019; Zhang 
et  al., 2021), smart structures (Cehula & Průša, 2020), 
metamaterials (Bertoldi et  al., 2017; Chen et  al., 2018; 
Ouisse et  al., 2016), and self-folding robots (Shigemune 
et al., 2016). In the field of architecture, folded-plate roof 
structures, which also follow the concept of origami, have 
been studied in kinematic paths (Cehula & Průša, 2020) 
and alternative models (Hayakawa & Ohsaki, 2019). 
Besides, there are increasingly more applications of ori-
gami patterns in tubular structures (Liu et al., 2018, 2019; 
Ma & You, 2013; Ma et al., 2016; Song et al., 2012; Zhang 
et al., 2007). It is indicated that introducing origami pat-
terns into braces is another method to induce buckling 
and prevent overall instability. Based on a spatial four-bar 
mechanism, Song et. al. (2012) designed a tubular ori-
gami component composed of isosceles trapezoids. This 
component could deform along preset creases and offer 
better energy dissipation capacity than the corresponding 
non-crease components. Zhou et. al. (2023a) proposed 
and developed a novel energy-dissipating brace based on 
Miura-origami (OEDB), while illustrating the energy dis-
sipation mechanisms through experiments and finite ele-
ment analysis (Zhou et al., 2021, 2023b). Compared with 
traditional BRBs, this brace has no external restraining 
system, thus simplifying the constructional details. How-
ever, designing an origami brace is often a performance-
oriented trial process.

Repeated simulations or experiments always result 
in limited design space (Wang & Ma, 2021; Wang et al., 
2022, 2023; Yu et al., 2023). With the rapid development 
of machine learning (ML) in civil engineering, apply-
ing ML algorithms has become a forefront technique 
(Chen & Guan, 2023; Hamidia et  al., 2022a, 2022b; Li 
et  al., 2023; Vasileiadis et  al., 2023; Wu & Sarno, 2023). 
For instance, ML algorithms have been successfully 
adopted in architecture (Topuz & Çakici, 2023), sus-
tainability (Fatehi et  al., 2021; Wu et  al., 2019), histori-
cal and cultural structures (Alaçam et al., 2022; Güzelci, 
2022), smart building design (Maher et  al., 2007), space 
design (Karadag et  al., 2022; Uzun & Çolakoglu, 2019) 
and optical measurement (Zhu et  al., 2019, 2020). In a 
word, these studies underscore the widespread adop-
tion of machine learning techniques in addressing mul-
tifaceted challenges across various areas of architectural 
practice. Some research was dedicated to risk assessment 
of braced frames (Tamke et  al., 2018) as well as deflec-
tion estimation of diaphragm walls (Chalab et al., 2023). 
In terms of special design of origami-inspired braces, 
better methods are needed to enhance design space, 
reduce simulation analysis time and diminish resource 
consumption. Therefore, this study would try to identify 
certain models that can perform well in analyzing the 
mechanical performance of origami-inspired braces by 

comparing various machine-learning methods. Forward 
models for mechanical performance and reverse predic-
tion models for geometric parameters would be devel-
oped subsequently. And the models would be validated 
with finite element results finally.

2  Origami‑inspired braces
The classical Miura pattern was employed as the funda-
mental origami element in this study (Miura, 1985), with 
its geometrical definition illustrated in Fig. 1(a). A Miura 
unit cell consists of four equivalent parallelograms, which 
are defined by the lengths a and b, as well as the acute 
angle γ. Three solid lines represent the mountain creases, 
while one dotted line represents the valley crease. Addi-
tionally, to determine the spatial configuration, the 
folding angle θ is predetermined and calculated as the 
dihedral angle between two plates, as shown in Fig. 1(b). 
Parameters L, W and H represent the length of the ori-
gami unit, the width of the section, and the height of the 
section in the folding process, respectively.

A new rigid foldable tube was proposed by Tachi Tomo-
hiro based on the Miura folding method (Tachi, 2010). 
The basic Tachi unit is constructed by joining two parts: a 
Miura unit and its mirror. Notably, the Tachi unit is con-
sidered to be the basic element of OEDBs, as shown in 
Fig. 1(c). It is noteworthy that the geometry and topology 
of an origami tube can be determined by five basic vari-
ables, including the length a, the length b, the acute angle 
γ, the folding angle θ , and the number of unit cells (n). 
When the stiffness of creases can be ignored, the origami 
tubes would satisfy the condition of rigid folding, with 
only one degree of freedom left in the motion process. 
For the Tachi unit, the main deformation mode is the 
relative rotation of the adjacent quadrilateral plates at the 
creases, instead of the in-plane deformation under axial 
compression or tension. Given the difficulty with creases 
in achieving ideal hinge joints in actual production and 
application processes, the Tachi unit mainly relies on the 
deformation at the creases to dissipate energy. Figure 1(d) 
displays the brace based on Miura-origami, with the fold-
ing yield segment shown in the middle and end restraint 
segments on both ends.

The initial dataset was derived from finite element 
mechanical analysis models of uniaxial compression on 
origami-inspired brace units. Parameter η, represent-
ing the crease-weakening strength, indicates the ratio 
of plate thickness after crease weakening to the original 
parallelogram’s plate thickness. The model in this study 
considers four variables: the length a, the thickness t of 
the parallelogram plate, the angle γ between the lengths a 
and b, and the crease-weakening coefficient η.

The width of the crease is kept uniformly at 10  mm. 
When a typical unit is designed, its length L is 200 mm, 
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so the length b can be confirmed. A total of 360 compu-
tational models were designed by using the orthogonal 
combination of the data in Table 1. Specific data are pre-
sented in Appendix. The 360 data points are divided into 
two sets, with 300 ones used for training and 60 ones for 
testing.

The simulation analysis involves a specific component 
with the following dimensions: length (a) of 150  mm, 
thickness (t) of 10  mm, angle (γ) of 65°, and crease-
weakening coefficient (η) of 0.6. The simulation had the 
following findings: yield displacement of 9.7  mm, yield 
load of 97.65  kN, ultimate displacement of 50mm, and 
ultimate load of 120.85 kN. Figure 2 shows the load-dis-
placement curve of the specimen during tensile loading, 
where the red dotted lines represent the fitted curve of 

the original skeleton curve, purposed for calculating the 
required indicator parameters. According to the curve, 
the corresponding line is fitted and the elastic stiffness 
Ke is obtained. At point A, Pmax is the ultimate load and 
�max is the displacement corresponding to Pmax . The 
abscissa and ordinate values of point B are defined as the 
yield displacement �y and the yield load Py , respectively.

Fig. 1 Origami-inspired brace model

Table 1 Design parameters of the braces

Length a (mm) 100, 125, 150, 175, 200, 225

Thickness t (mm) 8, 10, 12, 14, 26

Angle γ (°) 55, 60, 65

Crease-weakening coefficient η 0.4, 0.6, 0.8, 1.0

Fig. 2 Tensile skeleton curve
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This study primarily explores the following five 
mechanical performance indicators of the model: elas-
tic stiffness, yield displacement, yield load, ultimate dis-
placement, and ultimate load. In the database, the elastic 
stiffness Ke exhibits a range from 0.815 to 126.106  kN/
mm, while the yield displacement �y shows variability in 
a range from 15.44 to 19.94 mm. Similarly, the yield load 
Py extends from 5.19 to 708.31 kN. The ultimate displace-
ment �max varies from 6.1 to 50 mm, accompanied by the 
corresponding variation in the ultimate load Pmax , rang-
ing from 14.2 to 924.69 kN.

Origami-inspired braces can remove the limitations 
faced by traditional buckling-restrained braces, because 
the former would induce predetermined deformation 
patterns through crease introduction, while the lat-
ter would rely on restraining sleeves to suppress low-
order core buckling and generate high-order buckling 
for energy dissipation. Traditionally, the design param-
eters are determined through low-cycle repeated load-
ing experiments and finite element analysis. However, 
in order to deliver a programmable design for origami-
inspired braces, this study established an efficient and 
comprehensive design approach by using machine learn-
ing models. This approach was utilized both for forward 
prediction of mechanical performance under given geo-
metric parameters and for reverse design of geometric 
parameters based on desired performance indicators.

3  Forward prediction of mechanical performance
3.1  Single performance prediction
Elastic stiffness was selected as the unique output param-
eter to compare the machine learning algorithms. Four 
models, namely a Kernel Ridge Regression (KRR) model, 
a Support Vector Regression (SVR) model, a Decision 
Tree (DT) model, and a Bayesian model, were compared 
and analyzed, with the results shown in Fig. 3.

The horizontal coordinate showcases the test data (the 
actual data), while the vertical coordinate showcases the 
predicted data. The results indicate that KRR and Bayes-
ian predictions vary relative to changes in the dependent 
variables data in the test set. there is a large deviation 
between the predicted results and the actual value. Using 
a linear model to predict nonlinear relationships, the 
Bayesian method introduced a certain level of error. The 
predictions by the DT model fluctuate around the actual 
results, without displaying significant differences. In 
addition, there is a marginal effect in the predictions: the 
farther away from the center of the test set, the greater 
the deviation.

The investigation of this study focused on predicting 
the elastic stiffness based on four independent variables. 
It was found that the DT model could provide relatively 
better performance. Subsequently, the DT model was 
used to train and predict the other four target variables. 
The results are listed in Table  2, which shows that the 

Fig. 3 Predicted results of the four models
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DT model also performs well in predicting load-related 
variables.

It is worth mentioning that the prediction problem 
in this study is a kind of regression problem in machine 
learning. When the model was scored, the coefficient of 
determination was actually calculated. The coefficient of 
determination, denoted as R2 , is a statistical measure to 
evaluate the goodness of fit of a regression model to the 
observed data. And it is defined by the formula below:

where n represents the number of data points, Yi repre-
sents the observed values of the target variable, Ŷi repre-
sents the corresponding predicted values from the model, 
and Yi represents the mean of the observed values. The 
value of R2 ranges from 0 to 1, with 1 indicating a perfect 
fit, meaning that the model can explain all the variance in 
the target variable, and 0 indicating a poor fit, meaning 
that the model fails to explain any variance.

Since the last 60 data points used in the test set are easy 
to produce the overfitting phenomenon, S-fold cross vali-
dation was used to avoid this shortcoming. In this study, 
the test set was generated by the way of randomization. 
The average scores obtained over ten runs for each target 
variable are presented in Table 3.

As seen in the scores, the KRR model provides a 
slightly better fit initially. However, the DT model took 
only 0.929 s for training time and rating time, while the 
KRR model took up to 711.898  s. Considering the huge 
time difference with similar prediction accuracy, this 
study continued to use the DT model.

(1)R
2
= 1−

n

i=1 (Yi − Yi)
2

n

i=1 (Yi − Yi)
2

3.2  Multi‑performance prediction
The above section has derived the optimal model by dis-
cussing the process of predicting the value of a depend-
ent variable from multiple independent variables. In fact, 
from a mechanical modeling perspective, there is an 
inherent connection among the output data. To predict 
multiple target variables from multiple feature variables, 
this section provides three approaches:

Method a: Use the same single-performance pre-
diction method for multiple times to predict each 
mechanical performance indicator separately.
Method b: Predict the value of one output variable, 
and subsequently integrate it into the feature set for 
model training. This iterative process is then repeated 
to predict the next output variable.
Method c: Directly implement a model capable of 
predicting multiple output variables simultaneously.

The choice of dataset selection methods follows a ran-
dom sampling approach, while the database undergoes 
training using DT model. The three methods mentioned 
above can be visually represented in Fig. 4.

3.2.1  Combination of multiple single‑variable predictions
Firstly, predictions are made for each target variable indi-
vidually based on multiple single performance predic-
tions. After increasing the training iterations on the given 
dataset, the average evaluation score for each variable is 
listed in Table 4.

The final average evaluation score for the models is 
0.847. The training speed on the data is relatively fast, 
and the scores can be roughly divided at three levels: 0.9, 
0.8 and 0.7. Additionally, the data are distributed quite 
evenly, which is beneficial for the modeling process. 
These characteristics contribute to a well-performing 
model with a reasonable average evaluation score.

3.2.2  Iterative combination of single‑variable predictions
The approach described above involves an iterative pre-
diction process, where four independent variables are 

Table 2 Prediction scores of the DT model for each target 
variables

Mechanical 
parameters

Elastic 
stiffness

Yield 
displacement

Yield 
load

Ultimate 
displacement

Ultimate 
load

Scores 0.987 0.767 0.926 0.748 0.972

Table 3 Average evaluation scores for the models

Mechanical performance 
parameter

DT model score Bayesian model score KRR model score SVR model score

Elastic stiffness 0.978 0.757 0.975 0.229

Yield displacement 0.747 0.719 0.748 0.745

Yield load 0.929 0.724 0.929 0.927

Ultimate displacement 0.592 0.585 0.634 0.525

Ultimate load 0.924 0.766 0.928 0.921

Average score 0.824 0.705 0.831 0.677



Page 6 of 21Cai et al. AI in Civil Engineering             (2024) 3:3 

Fig. 4 Mathematical models of the three methods
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used to fit and train a model for a specific mechanical 
parameter. The predicted parameter is then used as an 
input variable for the subsequent model, which is further 
trained to predict another single target variable. This pro-
cess continues iteratively until all the mechanical perfor-
mance parameters have been predicted.

This iterative approach is valuable, because it takes 
into account significant relationships among different 
mechanical performance parameters. By starting with 
combining the performance indicators with strong rela-
tionships, this approach can provide more representative 
and meaningful conclusions.

(1) Relationship between the yield displacement and 
the yield load

 There is a significant nonlinear relationship between 
the yield load and the yield displacement. The 
model achieves relatively high accuracy in yield load 
predictions, but its accuracy in yield displacement 
predictions still needs to improve. To enhance the 
correlation between these two variables in the train-
ing, three different approaches can be explored.

Method 1: A model is trained to predict the yield 
displacement directly.
Method 2: The actual yield load is used as an input 
variable for predicting the yield displacement.
Method 3: The predicted yield load is used as an 
input variable for predicting the yield displacement.

 The model scores acquired after ten training 
iterations are shown in Fig.  5. It can be noted that 
as the amount of training iterations increases, the 
data become more stable. What’s more, the scores 
for the last two methods are generally higher than 
those of the first method, which predicts the yield 
displacement directly. The method based on predic-
tions tends to deliver higher scores than those based 
on the actual data. This means that for any given 
model, the predicted data on the training set are 
more consistent with the training and predictions 
of the model than the actual data. A assumption is 
proposed that the relationship between the yield 
load and the yield displacement is beneficial to pre-
diction, while the error of the actual yield load may 
adversely affect the results.

 The analyses above reveal that the iterative pre-
diction combination approach can enhance the 
accuracy considerably. In addition, this study has 
explored the relationships among other mechanical 
performance parameters, such as the relationship 
between the ultimate load and the ultimate displace-

Table 4 Average evaluation scores for single-variable 
predictions

Mechanical 
parameter

Elastic 
stiffness

Yield 
displacement

Yield 
load

Ultimate 
displacement

Ultimate 
load

Score 0.956 0.811 0.998 0.722 0.935

Fig. 5 Predicted yield displacement results based on the three methods
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ment, the relationship between the ultimate load and 
the yield load, and the relationship between the yield 
displacement and the ultimate displacement. How-
ever, the predictive results for these relationships are 
not ideal; and in some cases, the scores appear lower.

(2) To predict target variables based on multivariate 
design of independent variables

 The above design process mainly involves iterative 
predictions with two related variables. In practical 
models, however, multiple variables shall be consid-
ered to explore their relationships. Attempts were 
made in this study to predict the yield displacement 
based on the predicted elastic stiffness and the yield 
load.

 Experimental results indicate that to fit the experi-
mental data in combination with the predictions 
did not lead to an improvement, but may even 
result in a slight decline. The scores of twenty sets 
of model-training data are visualized in Fig. 6.

 The training results mentioned above manifest 
that the most effective analysis method is to ana-
lyze experimental data individually. And the best 
approach is to focus on the relationship between 
design parameters and mechanical parameters, 
without delving into the interdependencies among 
the mechanical parameters. In other words, the 

approach of combining multiple single-variable 
predictions multiple times appears to be the most 
suitable.

3.2.3  Generalized overall model
In fact, multivariate output is also a model’s generaliza-
tion capability. To achieve predictions from multiple 
input features for multiple target variables, a model 
accomplishing such functionality can be directly con-
structed. In this case, a Decision Tree model is used for 
constructing a multi-output model. The results of ten 
sets of model training are visualized in Fig. 7.

The deep_max parameter is a hyperparameter in the 
DT model. The larger the parameter, the better the model 
performs on the training data. When deep_max is adap-
tive, the scores are very close to 1. When this parameter 
is set to 2, the scores would be very low. The compari-
son of the above scores clearly indicates that the models 
with higher training depths have stronger generalization 
capabilities, resulting in more meaningful accuracy in 
prediction. There is a noticeable change when the train-
ing depth is shifted from 2 to 5 layers, but the training 
time exhibits an exponential growth from 0.08 s to 0.64 s.

3.2.4  Comparison
The comparison of the three approaches reveals that 
direct prediction of single variables is most adoptable. 

Fig. 6 Comparison of prediction scores for each method
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The iterative prediction of single variables performed 
better than direct prediction of single variables only 
in individual cases. The generalized overall model can 
produce more accurate predictions, but in the case of a 
large database, the training cost involved would increase 
rapidly.

4  The forward prediction model based 
on an augmented dataset

In this section, the original dataset is expanded within 
a certain range, and the boundary range of the braces’ 
force performance is analyzed based on the given design 
parameter range.

4.1  The expanded dataset
For the convenience of data analysis and representation 
of analytical methods, this section will investigate the 
relationship between parameters η and γ, while keeping 
length a and thickness t constant.

Expanding the existing dataset is crucial now for 
improving the model’s generalization ability, especially 
given the limited available data. Additionally, it’s worth 
noting that the dataset exhibits a continuous nature, par-
ticularly in the context of mechanical properties. This 
continuity is essential, as it underscores the importance 
of obtaining a more comprehensive dataset to capture 

the underlying regularities both in the input and out-
put sets. In this study, two scenarios were analyzed: (1) 
Side length a = 150  mm, and plate thickness t = 12  mm; 
and (2) a = 180 mm, and t = 13 mm. Then, the other two 
parameters were expanded in terms of their range and 
granularity. Initially, the range of crease-weakening coef-
ficient η was extended from the original data set [0.4, 1] 
to a new set [0.2, 1], and the range of angle γ was from set 
[55°, 65°] to [50°, 70°]. Additionally, the granularity of data 
selection was increased: the step size for selecting crease-
weakening coefficient η was reduced from 5 to 0.2, thus 
increasing the data selection granularity by a factor of 25. 
The step size for selecting angle γ was reduced from 0.2 
to 0.02, thus increasing the data selection granularity by 
a factor of 10.

The expanded parameter dataset was used as an inde-
pendent variable set for testing, and the experimental 
data were used as the training dataset for the DT model, 
in order to predict the key parameters of the origami 
brace’s mechanical performance.

4.2  Prediction of mechanical performance under different 
parameters

The above data analysis sets were imported into MAT-
LAB for further analysis. A three-dimensional model 
was designed in high-order linear fitting methods. The 

Fig. 7 Comparison of prediction scores for different deep_max parameters
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model’s accuracy was adjusted by modifying differ-
ent parameters. When the model reached a good level 
of accuracy without excessive complexity, it was repre-
sented in contour heat maps, with color variations indi-
cating the magnitude of the third-dimensional data.

When the parallelogram section side’s length a is 
150  mm and the plate thickness t is 12  mm, the corre-
sponding actual data points from the original dataset 
could also be identified. In this context, the original data 
are presented in a rhombus shape on the corresponding 
contour heat map.

Figure 8 depicts the impact of crease-weakening coef-
ficient η and angle γ on the elastic stiffness. As observed 
from the figure, an increase in η and γ leads to higher 

elastic stiffness. When η and γ are relatively small, the 
growth rate will become slower. Compared to Fig.  8(a), 
the changes shown in Fig.  8(b) are not pronounced, 
meaning that lower elastic stiffness will come with a 
higher maximum value.

Figure  9 illustrates the impact of crease-weakening 
coefficient η and angle γ on the yield displacement. As 
showed in Fig. 9(a), when the angle γ increases, the yield 
displacement will show a trend of decreasing first and 
increasing later, with the peak value appearing approxi-
mately at the angle of 67°. When the angle remains 
constant, the yield displacement will not change very sig-
nificantly with variations in the crease-weakening coeffi-
cient η.

Fig. 8 Investigating the impact of η and γ on elastic stiffness

Fig. 9 Investigating the impact of η and γ on yield displacement
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Figure 9(a) and (b) exhibit completely different charac-
teristics. Figure 9(b) indicates that as the angle increases 
and the crease-weakening coefficient decreases, the yield 
displacement would gradually decrease. Additionally, the 
yield displacement is generally larger in Fig. 9(b).

The impacts of crease-weakening coefficient η and 
angle γ on the elastic stiffness and the yield load are 
similar. As presented in Fig. 10(a), the yield load’s behav-
ior aligns well with the actual mechanical loading pat-
tern. However, there’s a slight dip in the yield load when 
crease-weakening coefficient η reaches extremely high 
values and angle γ is relatively low.

Figure  10(a) and (b) display similar trends. However, 
the data variation appears to be more structured and 

hierarchical in Fig.  10(b). The data transitions appear 
more pronounced.

Contrary to the case with the yield displacement, 
changes of angle γ show almost no effect on the ultimate 
load, while the increase of crease-weakening coefficient η 
leads to a decrease in the ultimate displacement. The law 
shown in Fig. 11(a) is similar to that in Fig. 11(b); how-
ever, with changes of angle γ, there is a slight fluctuation 
in the size of the limit displacement.

As evident in Fig.  12(a), a clear hierarchical relation-
ship exists with changes of the ultimate load, but there 
are errors within a certain range. The parts that do not 
conform to the change law are mainly concentrated in 
the areas beyond the actual original dataset, such as the 

Fig. 10 Investigating the impact of η and γ on yield load

Fig. 11 Investigating the impact of η and γ on ultimate displacement
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areas with crease-weakening coefficient η below 0.4 and 
the included angle γ below 55°.

Compared with Fig.  12(a), the hierarchical relation-
ship is more obvious in Fig. 12(b), and there is an identity 
with the changes of crease-weakening coefficient η and 
angle γ. In other words, the ultimate load would increase 
with the increase of crease-weakening coefficient η, while 
decreasing with the increase of angle γ. In general, the 
change of the ultimate load is basically consistent with 
the stress law of the origami-inspired braces.

4.3  Analysis of the performance limits
In order to optimize the structural performance, a 
parameter set was identified within the specified inde-
pendent variable ranges, so as to maximize the elastic 
stiffness, the yield load and the ultimate load, while mini-
mizing the yield and ultimate displacement.

To some extent, the initial data analysis reveals that the 
structural performance demonstrates some synergy: the 
optimal states for all performance indicators coincide 
with each other. In other words, as the elastic stiffness 
increases, it will lead to a higher yield and ultimate load, 
while minimizing the yield and ultimate displacement. 
These changes are exactly what the structural design 
expects.

In this section, a Decision Tree model and an expanded 
dataset are utilized to obtain a robust model, aiming to 
find out the optimal structural performance within the 
specified range. The testing scheme covers a range of 
design parameters, with a cross-sectional side length 
between 170  mm and 180 mm, an angle between 60.2° 
and 64.2°, plate thickness between 8.4 mm and 10.4 mm, 
and a weakening factor between 0.62 and 0.82. After 

training the model with this extended and densely-grid-
ded dataset, the predicted results were obtained. The 
results for the specific parameter values and mechanical 
properties are listed in Table 5.

5  Validation of the reverse prediction model 
and finite element analysis

The previous section determined the mechanical per-
formance limits of the origami-inspired braces within 
specified parameter ranges. This section will establish a 
reverse prediction model to design the geometric param-
eters of the origami-inspired braces based on the given 
mechanical performance. Subsequently, the finite ele-
ment analysis (FEA) will be conducted to validate two 
sets of geometric parameters designed by using the 
reverse prediction model.

5.1  Reverse prediction model
Based on the expanded dataset, a reverse prediction 
model was developed with the DT model by reversing the 
roles of input and output variables in Table  5. Two sets 
of data were chosen for validation: one with a descending 

Fig. 12 Investigating the impact of η and γ on ultimate load

Table 5 Design parameters and predicted mechanical 
properties of the model

Design parameters Predicted mechanical properties

Length a (mm) 170.00 Elastic stiffness (N/mm) 28,579.00

Thickness t (mm) 9.20 Yield displacement (mm) 7.12

Angle γ (°) 62.60 Yield load (kN) 161.35

Crease-weakening 
coefficient η

0.72 Ultimate Displacement (mm) 47.65

Ultimate load (kN) 230.12
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portion, where the ultimate displacement is less than 
50  mm; and the other without any descending portion, 
but with an ultimate displacement of 50 mm. The reverse 
prediction model was trained to predict the correspond-
ing parameter designs. The score of the reverse training 
model was roughly 0.932. The final selected data is shown 
in Table 6.

5.2  Finite element verification

(1) Model design

 The designed brace component has a total length of 
3000 mm and is composed of fifteen identical typi-
cal elements, each of which has a length L of 200 
mm. To reduce the impact of eccentricity on the 
component, 1/4 of the typical elements near the 
braces are replaced with straight pipes, as shown in 
Fig.  13. The cross-sectional material is Q235 steel, 
and a bilinear material model is used. The model 
elements are all S4R elements.

(2) Simulation results
 To enhance clarity, the displacement display is mag-

nified by a factor of 10. Figure 14 illustrates the vari-
ation in displacement during loading. The findings 
reveal that the structural deformation primarily 
involves axial compression, displaying a relatively 
uniform deformation process. Notably, the dis-
placement is more pronounced near the load end, 
as highlighted in red, while the deformation near 
the fixed end, as depicted in blue, is comparatively 
minimal.

 The chart of stress evolution clouds during the 
compression process of the support is illustrated in 
Fig. 15. The results indicate that the stress initially 
intensifies at the fold and subsequently diffuses 
gradually towards the center of the planar quadri-
lateral plate.

(3) Comparison of the mechanical performance 
parameters

 The load-displacement curve for Data Group 1 cor-
responding to the origami brace loading process 
was extracted, as shown in Fig. 16(a). During the 50 
mm displacement loading process, the load consist-
ently showed a monotonic increase, without any 
descending segments. As for the load-displacement 
curve for Data Group 2, as shown in Fig. 16(b), the 
load would first increase and then decrease with 
the increase of compression displacement. The 
model of the load-displacement curve is consist-
ent with the design results. In addition, the errors 
of mechanical property parameters meet the design 
requirements, as presented in Table 7.

 It’s evident that the reverse prediction of the yield 
load and the ultimate displacement has yielded 
good results, and the maximum error is only 5.47%. 
In contrast, the error in the prediction of the elas-
tic stiffness and ultimate load fluctuates from 7.26% 
to 16.73%. Among the above prediction targets, the 
absolute error fluctuation of the yield displacement 
is the smallest. In summary, the prediction model of 
this study delivers good results, but only two sup-
porting data points are provided.

6  Conclusion
This study mainly explored the forward prediction of the 
mechanical performance of origami braces as well as the 
reverse prediction of their geometric parameters based 
on machine learning models, followed by finite element 
validation. Several machine learning methods were com-
pared to analyze the mechanical performance of origami 
braces. The results show that the Decision Tree model 
has high accuracy and low training time.

Multiple approaches were taken to build multiple-input 
and multiple-output prediction models, including single 
performance prediction, multi-performance prediction, 

Table 6 Reverse design data groups

Group a (mm) γ (°) t (mm) η Ke (N/mm) Δy (mm) Py (kN) Δmax (mm) Pmax (kN)

1 188 57.6 11.2 0.52 17,296 7.52 95.45 50 121.76

2 114 55 9.2 0.92 6779 12.23 53.05 19.1 81.4

Fig. 13 Schematic of the tubular components
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and generalized overall model. It is found that the most 
reasonable approach is to use multiple predictions of 
single variables. Taking into account the relationships 
between dependent variables for iterative combinations 
could lead to a decrease in accuracy. The generalized 
holistic model can achieve a certain level of accuracy, but 
the cost will grow exponentially in terms of training time.

Additionally, more fine-grained predictions and anal-
yses were made by expanding the dataset within rea-
sonable ranges of feature variables. Then an optimal set 
of parameters was determined. Finally, two groups of 
data were chosen to establish reverse prediction mod-
els, which were validated with finite element analysis 
results.

Fig. 14 Deformation process of the origami-inspired braces
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Fig. 15 Stress evolution process of the origami-inspired braces

Fig. 16 The load-displacement curve
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This study constructed certain design models for geo-
metric parameters and mechanical performance of 
origami braces. However, the lack of static test data of 
origami braces is its limitation. In the future research, 
predictions will be verified in static tests.

Appendix
Raw‑data

a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

100 55 8 0.4 815 15.44 5.19 50 14.2

100 55 8 0.6 1814 11.18 18.75 20.8 24.53

100 55 8 0.8 2730 9.97 17.19 16 32.15

100 55 8 1 3413 9.67 21.47 15.1 39.19

100 55 10 0.4 1503 13 9.53 43.7 21.92

100 55 10 0.6 3254 9.25 20.33 17.7 35.85

100 55 10 0.8 4801 8.25 29.84 13.9 46.35

100 55 10 1 5925 8.02 36.83 13.1 56.02

100 55 12 0.4 2465 11.18 15.45 36.8 31.16

100 55 12 0.6 5204 7.92 31.81 15.8 48.89

100 55 12 0.8 7541 7.09 45.77 12.75 62.66

100 55 12 1 9203 7.01 56.01 11.95 75.12

100 55 14 0.4 3730 9.8 22.96 31.05 41.79

100 55 14 0.6 7686 6.98 45.65 14.5 63.57

100 55 14 0.8 10,956 6.37 64.5 11.9 80.93

100 55 14 1 13,239 6.28 78.22 11.15 96.43

100 55 16 0.4 5318 8.75 32 27.1 53.75

100 55 16 0.6 10,710 6.31 61.49 13.65 79.86

100 55 16 0.8 15,036 5.79 85.19 11.35 101.11

100 55 16 1 18,008 5.75 102.71 10.6 119.73

100 60 8 0.4 1729 10.48 10.81 50 19.85

100 60 8 0.6 3991 9.25 24.5 28.4 42.04

100 60 8 0.8 6150 8.21 38.16 14.5 62.19

100 60 8 1 7799 8.37 48.87 12.55 78.24

100 60 10 0.4 3204 8.89 19.26 50 31.36

100 60 10 0.6 7207 7.56 42.77 20 63.9

100 60 10 0.8 10,875 6.8 65.86 11.55 89.52

100 60 10 1 13,587 6.94 84.03 10.2 112.15

100 60 12 0.4 5277 7.81 30.59 50 45.57

100 60 12 0.6 11,576 6.4 66.2 15.1 88.81

100 60 12 0.8 17,126 6 101 9.9 121.3

a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

100 60 12 1 21,119 6.24 128.35 9 148.66

100 60 14 0.4 8011 7.05 44.68 50 62.27

100 60 14 0.6 17,140 5.59 93.54 12.6 116.44

100 60 14 0.8 24,888 5.34 140.61 8.8 155.38

100 60 14 1 30,327 5.51 176.01 8.1 189.42

100 60 16 0.4 11,450 6.44 60.99 46.15 81.18

100 60 16 0.6 23,898 5.03 125.01 11.05 146.72

100 60 16 0.8 34,091 4.85 182.69 8.1 192.75

100 60 16 1 41,093 5.11 226.64 7.55 233.2

100 65 8 0.4 3539 7.28 20.11 50 27.31

100 65 8 0.6 8201 6.67 45.54 30.9 59.41

100 65 8 0.8 12,666 6.48 73.08 14.85 96.3

100 65 8 1 16,088 6.13 96.04 9.95 119.59

100 65 10 0.4 6513 6.2 34.56 50 43.31

100 65 10 0.6 14,638 5.68 75.72 22.95 91.75

100 65 10 0.8 22,033 5.09 119.95 9.4 135.12

100 65 10 1 27,485 5.32 157.72 8.15 170.72

100 65 12 0.4 10,649 5.47 52.38 50 63.21

100 65 12 0.6 23,208 4.79 112.52 13.75 128.24

100 65 12 0.8 34,097 4.53 174.45 8 182.34

100 65 12 1 41,869 4.72 220.53 7.35 225.86

100 65 14 0.4 16,035 4.96 73.6 50 87.05

100 65 14 0.6 33,881 4.24 155.24 10.9 169.68

100 65 14 0.8 48,662 4.14 231.67 7.15 234

100 65 14 1 58,918 4.37 288.77 6.5 288.86

100 65 16 0.4 22,718 4.56 97.99 43.65 113.32

100 65 16 0.6 46,552 3.86 202.6 9.35 214.34

100 65 16 0.8 65,460 3.81 289.29 6.55 289.44

100 65 16 1 78,261 4.07 352.39 6.1 353.27

125 55 8 0.4 931 15.11 5.93 50 15.99

125 55 8 0.6 2066 14.56 13.15 50 35.09

125 55 8 0.8 3080 14.52 19.59 30.45 55.17

125 55 8 1 3816 14.54 24.25 24.25 70.23

125 55 10 0.4 1733 12.82 11.03 50 25.27

125 55 10 0.6 3768 12.58 23.85 50 55.22

125 55 10 0.8 5532 11.64 35.11 22.6 80.44

125 55 10 1 6779 12.23 43.05 19.1 100.4

125 55 12 0.4 2871 11.23 18.05 50 36.79

125 55 12 0.6 6127 10.8 38.18 38.2 77.48

125 55 12 0.8 8870 10.02 55.97 18.65 108.64

Table 7 Results of finite element analysis for the origami-inspired braces

Group a (mm) γ (°) t (mm) η Ke (N/mm) Δy (mm) Py (kN) Δmax (mm) Pmax (kN)

1 188 57.6 11.2 0.52 14,695 8.12 90.23 50 111.38

Error 15.04% − 7.98% 5.47% 0.00% 8.53%

2 114 55 9.2 0.92 4896 10.89 51.14 18.39 67.78

Error 7.26% 10.96% 3.60% 3.72% 16.73%
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a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

125 55 12 1 10,769 10.54 68.25 16.15 134.38

125 55 14 0.4 4388 10.05 27.04 50 50.59

125 55 14 0.6 9199 9.36 56.27 29.65 102.66

125 55 14 0.8 13,147 8.88 82.1 16.35 140.85

125 55 14 1 15,832 9.43 100.09 14.2 172.46

125 55 16 0.4 6320 9.14 38.09 50 66.72

125 55 16 0.6 13,024 8.33 78.15 24.75 130.73

125 55 16 0.8 18,389 7.96 113.44 14.6 175.87

125 55 16 1 21,978 8.46 138.33 12.85 213.31

125 60 8 0.4 1944 10.36 12.14 50 22.03

125 60 8 0.6 4436 9.89 27.31 50 49.33

125 60 8 0.8 6748 10.88 42.11 39.3 82.71

125 60 8 1 8470 11 53.31 23.75 114.78

125 60 10 0.4 3619 8.75 21.73 50 34.89

125 60 10 0.6 8084 8.51 48.27 50 78.32

125 60 10 0.8 12,073 8.59 73.85 21.4 122.81

125 60 10 1 14,950 8.82 93.45 15.95 161.25

125 60 12 0.4 5991 7.64 34.67 50 50.94

125 60 12 0.6 13,110 7.56 75.38 43.85 111.75

125 60 12 0.8 19,250 7.31 115.41 16.45 170.37

125 60 12 1 23,559 7.65 145.41 13.3 219.14

125 60 14 0.4 9144 6.83 50.77 50 70.28

125 60 14 0.6 19,601 6.73 107.61 34.95 150.43

125 60 14 0.8 28,328 6.51 165.14 13.95 223.79

125 60 14 1 34,313 6.9 208.86 11.6 281.97

125 60 16 0.4 13,144 6.21 69.52 50 93.03

125 60 16 0.6 27,605 6.09 145.39 28.05 193.63

125 60 16 0.8 39,298 5.84 221.43 12.2 281.46

125 60 16 1 47,152 6.33 282.36 10.4 351.17

125 65 8 0.4 3953 7.2 22.44 50 30.33

125 65 8 0.6 9030 6.95 50.49 50 68.4

125 65 8 0.8 13,752 7.43 80.14 26.5 113.52

125 65 8 1 17,285 7.64 104.33 16.8 158.35

125 65 10 0.4 7295 6.12 38.66 50 48.29

125 65 10 0.6 16,226 6.07 84.78 50 108.58

125 65 10 0.8 24,145 6.33 134.35 19 172.91

125 65 10 1 29,846 6.53 175.62 13.15 235.25

125 65 12 0.4 11,971 5.38 58.71 50 70.89

125 65 12 0.6 25,923 5.44 126.93 42.1 156.08

125 65 12 0.8 37,764 5.58 200.31 15.2 242.64

125 65 12 1 46,025 5.82 263.25 10.95 320.53

125 65 14 0.4 18,099 4.84 82.41 50 98.31

125 65 14 0.6 38,167 4.93 176.11 32.8 209.98

125 65 14 0.8 54,514 4.9 278.17 11.15 317.38

125 65 14 1 65,618 5.19 363.16 9.1 407.23

125 65 16 0.4 25,763 4.44 109.83 50 130.75

125 65 16 0.6 52,920 4.55 231.88 26.35 269.82

125 65 16 0.8 74,204 4.51 364.24 9.85 398.34

125 65 16 1 88,331 4.88 474.15 8.25 503.14

150 55 8 0.4 1031 15 6.57 50 17.45

a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

150 55 8 0.6 2266 14.7 14.43 50 38.44

150 55 8 0.8 3343 16.69 21.27 50 65.77

150 55 8 1 4106 17.45 26.11 36 89.75

150 55 10 0.4 1927 12.67 12.28 50 27.61

150 55 10 0.6 4162 12.55 26.42 50 61.02

150 55 10 0.8 6052 14.09 38.49 40.5 100.64

150 55 10 1 7359 14.35 46.79 27.1 131.73

150 55 12 0.4 3205 11.06 20.16 50 40.21

150 55 12 0.6 6812 11.08 42.59 50 89.2

150 55 12 0.8 9782 11.88 61.97 30.15 140.11

150 55 12 1 11,792 12.37 74.92 22.15 179.49

150 55 14 0.4 4919 9.86 30.29 50 55.33

150 55 14 0.6 10,293 9.98 63.27 50 123.03

150 55 14 0.8 14,611 10.31 91.85 24.2 184.41

150 55 14 1 17,481 10.93 110.9 18.95 232.44

150 55 16 0.4 7112 8.94 42.78 50 73.03

150 55 16 0.6 14,664 9.2 88.65 50 161.78

150 55 16 0.8 20,594 9.19 128.21 20.7 233.51

150 55 16 1 24,471 9.95 154.89 16.9 291.76

150 60 8 0.4 2147 10.29 13.42 50 24.14

150 60 8 0.6 4856 9.95 29.99 50 54.18

150 60 8 0.8 7321 11.29 45.79 50 94.12

150 60 8 1 9127 12.31 57.53 32.65 132.71

150 60 10 0.4 4005 8.68 24.04 50 38.26

150 60 10 0.6 8885 8.53 53.3 50 86.37

150 60 10 0.8 13,167 9.81 81 43.6 145.46

150 60 10 1 16,206 10.34 101.63 24.65 200.39

150 60 12 0.4 6646 7.56 38.46 50 55.92

150 60 12 0.6 14,468 7.56 83.73 50 126.65

150 60 12 0.8 21,109 8.57 127.59 33.35 205.24

150 60 12 1 25,697 8.74 159.61 18.05 272.93

150 60 14 0.4 10,167 6.74 56.43 50 77.23

150 60 14 0.6 21,728 6.85 120.2 50 175.19

150 60 14 0.8 31,245 7.47 184.66 22.75 271.18

150 60 14 1 37,668 7.84 231.34 15.5 357.41

150 60 16 0.4 14,650 6.12 77.43 50 102.29

150 60 16 0.6 30,743 6.35 163.21 50 231.47

150 60 16 0.8 43,605 6.75 249.83 19 346.19

150 60 16 1 52,112 7.19 315.93 13.75 449.07

150 65 8 0.4 4363 7.13 24.72 50 33.3

150 65 8 0.6 9868 6.96 55.38 50 75.35

150 65 8 0.8 14,904 7.85 87.3 39.75 128.96

150 65 8 1 18,618 8.22 112.72 20.85 181.13

150 65 10 0.4 8062 6.06 42.67 50 53.09

150 65 10 0.6 17,791 6.04 93.6 50 120.85

150 65 10 0.8 26,296 6.77 147.86 28.95 198.82

150 65 10 1 32,333 7.03 191.5 15.8 271.85

150 65 12 0.4 13,250 5.32 64.75 50 78.01

150 65 12 0.6 28,536 5.43 140.41 50 178.09

150 65 12 0.8 41,357 6 222.61 21.85 280.79
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a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

150 65 12 1 50,179 6.24 289.61 13 375.35

150 65 14 0.4 20,072 4.78 90.88 50 108.3

150 65 14 0.6 42,203 5 195.33 50 246.78

150 65 14 0.8 60,070 5.43 310.03 17.4 373.25

150 65 14 1 71,977 5.71 404.12 11.4 484.73

150 65 16 0.4 28,636 4.38 121.1 50 144.17

150 65 16 0.6 58,804 4.7 257.99 46.6 322.19

150 65 16 0.8 82,223 4.94 408.06 13.55 468.34

150 65 16 1 97,609 5.31 533.16 10.3 606.92

175 55 8 0.4 1139 14.84 7.26 50 19.05

175 55 8 0.6 2481 14.74 15.8 50 42.13

175 55 8 0.8 3627 16.93 23.09 50 72.44

175 55 8 1 4430 19.56 28.18 50 106.35

175 55 10 0.4 2133 12.53 13.59 50 30.13

175 55 10 0.6 4571 12.57 29.03 50 66.93

175 55 10 0.8 6596 14.65 41.98 50 114.88

175 55 10 1 7977 16.82 50.75 42.05 162.01

175 55 12 0.4 3555 10.92 22.35 50 43.9

175 55 12 0.6 7507 11.07 47.01 50 97.88

175 55 12 0.8 10,706 13.04 67.92 50 167.35

175 55 12 1 12,841 14.26 81.68 32.2 224.25

175 55 14 0.4 5465 9.71 33.57 50 60.44

175 55 14 0.6 11,381 9.93 70.16 50 135.22

175 55 14 0.8 16,059 11.79 101.24 44.35 224.16

175 55 14 1 19,123 12.54 121.49 26.55 293.78

175 55 16 0.4 7917 8.79 47.52 50 79.81

175 55 16 0.6 16,270 9.09 98.61 50 179.09

175 55 16 0.8 22,730 10.55 142.07 35.9 285.91

175 55 16 1 26,891 11.25 170.64 22.8 369.79

175 60 8 0.4 2394 10.12 14.93 50 26.44

175 60 8 0.6 5364 9.91 33.17 50 59.54

175 60 8 0.8 8023 11.33 50.22 50 104.35

175 60 8 1 9950 13.27 62.76 44.55 151.55

175 60 10 0.4 4464 8.54 26.72 50 41.92

175 60 10 0.6 9821 8.49 58.98 50 95.02

175 60 10 0.8 14,450 9.89 89.17 50 165.82

175 60 10 1 17,697 11.14 111.19 31.5 230.05

175 60 12 0.4 7409 7.43 42.75 50 61.29

175 60 12 0.6 16,014 7.51 92.78 50 139.6

175 60 12 0.8 23,215 8.96 140.62 50 239.15

175 60 12 1 28,133 9.71 175.24 24.85 321.45

175 60 14 0.4 11,340 6.63 62.68 50 84.68

175 60 14 0.6 24,092 6.79 133.78 50 193.64

175 60 14 0.8 34,450 8.05 204.08 40.1 322.88

175 60 14 1 41,364 8.69 255.04 20.85 428.87

175 60 16 0.4 16,352 6.01 85.96 50 112.22

175 60 16 0.6 34,157 6.25 181.82 50 257.5

175 60 16 0.8 48,219 7.34 278.48 32.9 414.16

175 60 16 1 57,421 7.9 350.06 17.8 541.44

175 65 8 0.4 4783 7.08 27.07 50 36.48

a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

175 65 8 0.6 10,745 6.97 60.45 50 82.64

175 65 8 0.8 16,156 8.01 94.82 50 145.92

175 65 8 1 20,121 8.9 122.07 28.1 205.03

175 65 10 0.4 8838 6.03 46.74 50 58.21

175 65 10 0.6 19,402 6.05 102.56 50 132.84

175 65 10 0.8 28,579 7.12 161.35 47.65 230.12

175 65 10 1 35,054 7.6 208.54 20.15 310.96

175 65 12 0.4 14,528 5.29 70.85 50 85.59

175 65 12 0.6 31,180 5.42 154 50 196.39

175 65 12 0.8 45,086 6.35 244.4 36.25 327.04

175 65 12 1 54,601 6.77 317.4 16.6 434.88

175 65 14 0.4 22,022 4.75 99.46 50 118.91

175 65 14 0.6 46,223 4.96 214.48 50 273.95

175 65 14 0.8 65,716 5.79 341.78 28.45 436.76

175 65 14 1 78,717 6.29 448.06 15.3 582.22

175 65 16 0.4 31,445 4.35 132.62 50 158.41

175 65 16 0.6 64,581 4.63 283.93 50 365.93

175 65 16 0.8 90,391 5.37 452.84 23.8 562.08

175 65 16 1 107,232 5.84 593.54 13.5 733.48

200 55 8 0.4 1242 14.72 7.92 50 20.5

200 55 8 0.6 2691 14.76 17.14 50 45.44

200 55 8 0.8 3910 17.11 24.89 50 78.33

200 55 8 1 4751 19.73 30.23 50 115.01

200 55 10 0.4 2330 12.4 14.85 50 32.45

200 55 10 0.6 4971 12.56 31.59 50 72.23

200 55 10 0.8 7133 14.79 45.4 50 124.51

200 55 10 1 8587 17.59 54.65 50 180.89

200 55 12 0.4 3890 10.78 24.46 50 47.31

200 55 12 0.6 8184 11.04 51.37 50 105.72

200 55 12 0.8 11,612 13.12 73.71 50 182.17

200 55 12 1 13,869 15.39 88.23 41.15 254.46

200 55 14 0.4 5989 9.58 36.74 50 65.16

200 55 14 0.6 12,436 9.9 76.8 50 146.14

200 55 14 0.8 17,467 11.9 110.3 50 251.57

200 55 14 1 20,718 13.52 131.68 33.25 337.23

200 55 16 0.4 8688 8.66 52.06 50 86.08

200 55 16 0.6 17,816 9.04 108.23 50 193.73

200 55 16 0.8 24,786 11.09 155.32 50 329.01

200 55 16 1 29,220 12.12 185.5 28.2 429.6

200 60 8 0.4 2583 10.09 16.12 50 28.53

200 60 8 0.6 5763 9.95 35.68 50 64.21

200 60 8 0.8 8585 11.44 53.78 50 112.55

200 60 8 1 10,610 13.63 66.92 50 165

200 60 10 0.4 4824 8.51 28.88 50 45.3

200 60 10 0.6 10,581 8.51 63.63 50 102.56

200 60 10 0.8 15,521 9.95 95.94 50 179.75

200 60 10 1 18,955 11.66 119.02 37.85 252.82

200 60 12 0.4 8017 7.4 46.26 50 66.3

200 60 12 0.6 17,296 7.52 100.45 50 150.76

200 60 12 0.8 25,016 8.92 151.9 50 263.25
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a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

200 60 12 1 30,244 10.16 188.52 29.2 355.73

200 60 14 0.4 12,284 6.59 67.93 50 91.66

200 60 14 0.6 26,077 6.79 145.46 50 209.22

200 60 14 0.8 37,231 8.22 221.36 50 361.82

200 60 14 1 44,617 9.22 275.85 25.85 479.9

200 60 16 0.4 17,731 5.98 93.23 50 121.55

200 60 16 0.6 37,050 6.24 197.91 50 278.36

200 60 16 0.8 52,257 7.6 303.55 43.45 466.33

200 60 16 1 62,131 8.37 379.89 21.75 611.4

200 65 8 0.4 5141 7.12 29.12 50 39.61

200 65 8 0.6 11,524 7.02 65.07 50 89.22

200 65 8 0.8 17,327 8.07 101.96 50 157.88

200 65 8 1 21,574 9.23 130.93 33.55 224.25

200 65 10 0.4 9490 6.06 50.54 50 63.18

200 65 10 0.6 20,825 6.09 110.73 50 143.43

200 65 10 0.8 30,711 7.14 174.18 50 253.06

200 65 10 1 37,688 7.99 224.64 24.9 342.91

200 65 12 0.4 15,597 5.32 76.49 50 92.91

200 65 12 0.6 33,510 5.45 166.7 50 212.1

200 65 12 0.8 48,562 6.56 264.78 50 368.65

200 65 12 1 58,877 7.12 343.48 19.95 482.2

200 65 14 0.4 23,644 4.78 107.38 50 129.07

200 65 14 0.6 49,757 4.99 232.69 50 295.89

200 65 14 0.8 70,965 6 371.66 40.1 495.29

200 65 14 1 85,141 6.6 485.87 18.55 648.15

200 65 16 0.4 33,775 4.38 143.3 50 171.95

200 65 16 0.6 69,648 4.65 308.53 50 395.48

200 65 16 0.8 97,875 5.54 493.6 30.45 626.82

200 65 16 1 116,347 6.11 648.57 16.15 822.73

225 55 8 0.4 1355 14.55 8.64 50 22.08

225 55 8 0.6 2917 14.72 18.58 50 49.09

225 55 8 0.8 4215 17.2 26.83 50 84.84

225 55 8 1 5103 19.94 32.47 50 125.18

225 55 10 0.4 2545 12.25 16.22 50 34.96

225 55 10 0.6 5399 12.52 34.3 50 78.06

225 55 10 0.8 7707 14.85 49.05 50 134.97

225 55 10 1 9245 17.74 58.84 50 197.88

225 55 12 0.4 4251 10.65 26.69 50 50.99

225 55 12 0.6 8901 10.98 55.91 50 114.3

225 55 12 0.8 12,572 13.16 79.81 50 197.7

225 55 12 1 14,967 16.07 95.24 50 286.53

225 55 14 0.4 6549 9.45 40.09 50 70.25

225 55 14 0.6 13,545 9.84 83.7 50 158.07

225 55 14 0.8 18,948 11.91 119.72 50 273.47

225 55 14 1 22,407 14.44 142.46 43.05 382.7

225 55 16 0.4 9507 8.53 56.84 50 92.84

225 55 16 0.6 19,433 8.97 118.1 50 209.59

225 55 16 0.8 26,939 10.95 169.11 50 362.31

225 55 16 1 31,669 12.98 201.15 35.85 489.23

225 60 8 0.4 2824 9.95 17.57 50 30.84

a 
(mm)

γ (°) t 
(mm)

η Ke (N/
mm)

Δy 
(mm)

Py (kN) Δmax 
(mm)

Pmax 
(kN)

225 60 8 0.6 6259 9.9 38.74 50 69.51

225 60 8 0.8 9276 11.46 58.12 50 122.19

225 60 8 1 11,421 13.69 72.05 50 181.36

225 60 10 0.4 5273 8.39 31.48 50 49.01

225 60 10 0.6 11,502 8.47 69.14 50 111.1

225 60 10 0.8 16,796 9.95 103.93 50 195.5

225 60 10 1 20,445 12.09 128.48 46.4 281.5

225 60 12 0.4 8762 7.3 50.44 50 71.75

225 60 12 0.6 18,817 7.47 109.24 50 163.44

225 60 12 0.8 27,114 8.89 164.77 50 287.41

225 60 12 1 32,688 10.59 204 35.8 397.03

225 60 14 0.4 13,427 6.51 74.02 50 99.25

225 60 14 0.6 28,401 6.74 158.53 50 226.99

225 60 14 0.8 40,422 8.12 240.65 50 397.99

225 60 14 1 48,322 9.7 299.06 33.7 540.56

225 60 16 0.4 19,386 11.88 119.01 50 131.68

225 60 16 0.6 40,398 12.74 262.55 50 302.19

225 60 16 0.8 56,835 15.41 446.91 50 526.01

225 60 16 1 67,432 15.18 640.73 24.8 675.81

225 65 8 0.4 5652 6.98 31.86 50 43.07

225 65 8 0.6 12,545 6.95 70.73 50 96.82

225 65 8 0.8 18,714 8.05 110.17 50 171.92

225 65 8 1 23,169 9.58 140.9 42.5 248.46

225 65 10 0.4 10,425 5.95 54.91 50 68.74

225 65 10 0.6 22,679 6.04 120.27 50 155.78

225 65 10 0.8 33,215 7.11 188.83 50 276.47

225 65 10 1 40,555 8.35 242.86 31.75 381.68

225 65 12 0.4 17,126 5.23 82.98 50 101.12

225 65 12 0.6 36,524 5.4 180.9 50 230.58

225 65 12 0.8 52,612 6.46 287.27 50 407.81

225 65 12 1 63,500 7.47 372.81 25.35 537.32

225 65 14 0.4 25,960 4.7 116.49 50 140.56

225 65 14 0.6 54,769 4.95 255.07 50 325.91

225 65 14 0.8 77,033 6.02 403.55 50 564.01

225 65 14 1 92,050 6.91 526.95 23.75 727.03

225 65 16 0.4 37,089 4.3 155.39 50 187.36

225 65 16 0.6 76,099 4.59 334.26 50 430.69

225 65 16 0.8 106,464 5.65 536.8 40.05 711.39

225 65 16 1 126,106 6.4 708.31 20.2 924.69
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