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Abstract 

Computer programming-based numerical programs are firmly established in geotechnical engineering, with rapid 
growth of finite element modeling and machine learning techniques gaining much attention both in practice 
and academia. This study is intended to expedite the dissemination of advanced computer applications in terms 
of finite element simulation and machine learning models by investigating the dynamic response of geomaterials 
subjected to vibratory loads. Several trial models were built to perform the experimental investigations with a vibra-
tory shaker, signal generator, several accelerometers, a data collection system, and other ancillary devices. The 
implicit integration techniques in commercialized software were adopted for numerical simulations. After data 
collection from numerical simulation, models were chosen, trained, and assessed to produce predictions that were 
then used in this study. Several technologies, including the ensemble boosted tree, squared exponential Gaussian 
Process Regression (GPR), Matern 5/2 GPR, exponential GPR, and decision tree architectures (fine and medium), were 
used to forecast the displacement of confined geomaterial. The displacement-depth ratio was found rising to 80% 
in the frequency range of 5 to 25 Hz, suggesting a considerable change in the behavior of the geomaterial. The 
Matern 5/2 GPR model showed better accuracy with an  R2 value of 0.99, indicating an outstanding predictive ability. 
The Matern 5/2 GPR and boosted tree models could help better understand the links between displacement and its 
distribution along the direction of load application. The outcomes of this study based on computer-aided finite ele-
ment programs can be effectively implemented in machine learning to develop computer programs. In conclusion, 
the computational machine learning models adopted in this study offer a new insight for uncovering hidden intrinsic 
laws and creating new knowledge for geotechnical researchers and practitioners.
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1 Introduction
Numerous studies have been conducted on scenarios 
of dynamic stresses, including traffics, seismic loads, 
machine foundations, and piling, and the results can be 
applied in the field of clay or sandy soils. Various test-
ing methods have been implemented to ascertain the 

dynamic properties of various soils, with focuses on sand, 
so as to find relationships among shear stiffness, damp-
ing ratio, and stiffness (Gupta & Trivedi, 2009; Ishiba-
shi & Zhang, 1993; Ojha & Trivedi, 2013; Seed et  al., 
1986; Kumar et  al., 2023a, 2023b; Mohan et  al., 2021). 
The shaking table test and centrifuge test are most com-
monly used (Alshawmar & Fall, 2022). Machine learning 
techniques, including Category Theory and Regression 
Artificial Neural Networks (ANN) with Random For-
ests (CRRF), have been employed to forecast sand secant 
shear modulus and damping ratio (Baghbani et al., 2023). 
The models demonstrated high accuracy (R values of 
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0.998 for ANN and 0.995 for CRRF), highlighting the 
significance of relative density, vertical stress, and cyclic 
stress ratio in predicting dynamic characteristics.

In contrast, traditional backpropagation methods (such 
as MRM and MLP) are outperformed by the Adaptive 
Network-based Fuzzy Inference System (ANFIS), which 
can be used for superior modeling for soil parameters 
(Akbulut et al., 2004). ANN-DFO (Artificial Neural Net-
work-Dragonfly Optimizer), an innovative hybrid model, 
excels in forecasting displacement amplitudes under 
vibration loading, with its result surpassing RF, GPR, 
and M-5 rules (Hasthi et  al., 2022). Sensitivity analysis 
has identified crucial input variables. Genetic program-
ming and ANN have been employed to create predictive 
formulas for displacement amplitudes, with the former 
outperforming the latter, highlighting the impact of the 
operating frequency (Sharma et  al., 2019). For the seis-
mic investigation of soil-pile-structure (SPS) systems, a 
data-based model with two hidden layers has successfully 
anticipated dynamic properties and seismic responses, 
demonstrating the practical potential of data-based tech-
niques (Farfani et  al., 2015). A dual-driven approach 
combining Scoops 3D for physics-informed qualitative 
assessment and the random forest algorithm for data-
driven landslide susceptibility analysis has significantly 
boosted the model performance, as showcased by a 
20.1% increase in the area under the receiver operating 
characteristic curve (AUC), revealing the effectiveness of 
integrating qualitative and quantitative factors (Liu et al., 
2023). In geotechnical engineering, Feedforward Neural 
Networks (FNN) is widely used, but the limited improve-
ment potential of deep FNN compromises its adoption. 
Recurrent Neural Networks (RNN), especially with Long 
Short-Term Memory (LSTM), excels in addressing time 
series problems, such as landslide deformation predic-
tion. Convolutional Neural Networks (CNN) are effective 
for image-processing tasks, like porous media recon-
struction. Although Generative Adversarial Networks 
(GAN) are relatively new in geotechnical applications, 
their potential lies in complementing other supervised 
learning algorithms, due to their excellent generating 
ability (Phoon et al., 2023; Zhang et al., 2021; Zhang et al., 
2022). Although the existing literature has illustrated 
the utilization of Machine Learning (ML) in geotechni-
cal studies, there is a noticeable gap in the explicit explo-
ration of ML techniques in soil displacement analysis 
under vibratory loads. Given substantial risks associated 
with geohazards or structural failures, increasingly more 
emphases are placed on evaluating the safety of geotech-
nical structures, since geohazards or structural failures 
would pose significant threats to human’s lives and prop-
erties. As a result, there is a research gap in this field, 
which is yet to be filled. However, numerous difficulties 

may arise when ML is used to predict soil displacement 
caused by vibratory stress. It is not easy to find out high-
quality datasets with various soil qualities, input param-
eters, and associated displacement measurements under 
vibratory loading circumstances. But such datasets are 
required for training and validating ML models prop-
erly. Furthermore, it is still difficult to comprehend and 
explain ML models in geotechnical engineering. In a 
word, interpretable ML models would advance the adop-
tion of ML techniques by the geotechnical engineering 
community, since they can offer valuable insights into the 
underlying soil behavior.

This study used an accelerometer to determine the 
acceleration, velocity, and displacement over a range of 
distances. Accelerometer is composed of electromechan-
ical sensors that can produce electrical charges propor-
tional to the force exerted. Some geomaterial confined in 
a steel tank was excited at varied frequencies, while the 
accelerometer captured the data. Accelerometer signals 
were then measured in a data acquisition system which 
logged both static and dynamic activities. In this study, 
the models adopted to perform the machine learning 
investigations include the fine and medium decision-tree 
structures, the Matern 5/2 GPR, the rational quadratic 
GPR, the squared exponential GPR, the exponential GPR, 
and the boosted tree. The strength of adaptive learning 
was used to achieve more precise parameter estimation. 
Such precision is crucial in applications where accurate 
modeling of system behavior is necessary. Traditional 
backpropagation methods, especially when used in deep 
learning, are sensitive to the initialization of weights. 
However, ANFIS, a hybrid approach, exhibits reduced 
sensitivity to such initialization issues, thus becom-
ing a more robust and easier method for training effec-
tively. The novelty of this study lies in the integration of 
machine learning techniques for dynamic analysis of 
confined geomaterial subjected to dynamic load, deliv-
ering advancement in an interdisciplinary approach to 
explore the frequency-dependent behavior of displace-
ment. Moreover, the models can effectively facilitate the 
understanding of the dynamics of confined geomaterial 
and the designing of such structures as machine founda-
tions, pavements, railway tracks, etc.

2  Materials and methods
2.1  Properties of confined geomaterial
The grain size distribution curve gives a poorly graded 
sand (SP). According to IS 2720-4 (1985), the uniformity 
coefficient  (Cu) is 2.31 and the curvature coefficient  (Cc) 
is 0.94 (Fig. 1a). Based on IS 2720-7 (1980), the standard 
proctor compaction curve with the moisture content and 
maximum dry density are shown in Fig.  1b. The angles 
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of internal friction and cohesion are evaluated utilizing 
shear stress vs. normal stress plot as shown in Fig. 1c (IS 
2720-13, 1986).

The properties of the confined geomaterial surveyed in 
this study are shown in Table 1.

2.2  Experimental program
Experiments were set up to evaluate the response of the 
controlled geomaterial subjected  to dynamic load. The 
displacement response of the controlled geomaterial was 
evaluated along the depth. The experimental test setup 
includes a steel tank with a volume of 600 mm × 460 
mm × 400 mm, filled with the  geomaterial, as shown in 
Table 2.

The diagrammatic representation of Fig.  2a, b shows 
the arrangement of accelerometers, along with a power 
amplifier cum signal generator, an electrodynamic 
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Fig. 1 Geomaterial properties: (a) grain size distribution curve, (b) standard proctor compaction curve, and (c) shear stress vs. normal stress curve

Table 1 Properties of the confined geomaterial

Properties Results

Geomaterial classification Poorly 
graded 
sand (SP)

Specific gravity  (Gs) 2.68

Optimum moisture content (OMC) 10.4%

Maximum dry unit weight (MDU) 17 kN/m3

Cohesion (c) 4.4 kPa

Peak friction angle ( ∅p) 36.59º
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vibratory shaker, a steel tank filled with geomaterial, 
and a digital vibration meter. The testing configuration 
includes a dynamic vibrator (MEV-0020 electrodynamic 
vibrator), a data recorder, and several accelerometers 
(Kumari & Trivedi, 2022, 2020b, 2020c; Singh et  al., 
2020a). The accelerometers are strategically placed at a 
width of 5, 10, 15, 20 cm, respectively inside the tank as 
shown in Fig. 2b.

The accelerometers are mounted on a steel plate, 
so as to ensure stability and accurate measurement of 
vibrations, which are generated by an MEV-0020 elec-
trodynamic vibrator. This vibrator consists of a mov-
ing platform, which is positioned to strike the steel 
tank with the geomaterial from the sides. The power 
amplifier cum signal generator (MPA-0500) is used 
to drive the electrodynamic vibrator. The vibrator is 
excited at the frequencies of 5, 10, 15, 20, and 25 Hz, 
which are chosen to cover the range of vibrations often 
encountered in real-world scenarios. The accelerom-
eters measure the displacement, velocity, and accelera-
tion of the granular substance at different depths. The 

displacement data are logged by an MVM-555 digital 
vibration meter, which can record vibration-induced 
position changes over time. When the vibrator strikes 
the steel tank, vibrations would be caused in the geo-
material. The accelerometers would then collect data 
on the displacement velocity, and acceleration of the 
geomaterial at various depths in response to the applied 
vibrations. Throughout the experiment, the data 
recorder would monitor and record the measurements 
taken by the accelerometers. After the experiments 
are completed, the collected data will be analyzed, so 
as to understand how the vibrations induced by the 
electrodynamic vibrator at different frequencies have 
impacted the displacement, velocity and acceleration 
of the geomaterial at various depths.  A flowchart rep-
resenting  the  dynamic displacement prediction model 
developed for confined geomaterial subjected to vibra-
tory load is as shown in Fig. 3.

2.3  Numerical analysis
Numerical analysis was performed with computational 
software of Abaqus /CAE (2017). The computational 
program considered a peak value of the angle of inter-
nal friction, ∅p , where, ∅p = ∅c + ψD , which is a func-
tion of the constant volume friction angle, ∅c , and the 
angle of dilation, ψD (Mehra & Trivedi, 2021). The input 
parameters for the geomaterial medium are defined in 
Table 1. The steel tank was filled with geomaterial, and 
the boundary conditions considered were fixed at the 
exterior surface, in order to model the confinement of 
the geomaterial. The four-node plane stress element 
(CPS4R), with reduced integration, was considered for 

Table 2 Geomaterial parameters used in the numerical analysis 
of this study

a Kumar et al. (2023)

Parameters Magnitude

Poisson’s ratio (μ) 0.45a

Young’s modulus, E (MPa) 30–50a

Dilation angle ( ψD) 1°

Constant volume friction angle ( ∅c) 35°

Unit weight, γ (kN/m3) 18

Fig. 2 a Experimental setup b Diagrammatic representation. They show the arrangement of accelerometers along with a power amplifier cum 
signal generator, an electrodynamic vibratory shaker, a steel tank filled with geomaterial, and a digital vibration meter
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numerical modeling. The top surface was considered 
unconfined for the numerical analysis. Dynamic load 
was applied to the tank’s side walls at varied frequen-
cies, i.e., 5–25 Hz. The parameters of the geomaterial 
for the present numerical analysis are shown in Table 2.

2.4  Machine learning approach
The data acquired in the experimental investigation 
were used to validate the numerical model, while the 
numerical analysis was made to determine various 
data, including: tank width, particle size corresponding 
to  D50, density, pressure applied by the armature, and 
loading frequency, which were inputted for the data 
training set in the machine learning model. Thereaf-
ter, the input parameters are normalized to clean the 
dataset for the machine learning model. This is fol-
lowed by the selection parameter step, where the input 
variables influencing the displacement of confined 
geomaterial were selected from numerical investiga-
tion. Subsequently, a machine learning algorithm was 
obtained from numerical analysis and the target vari-
able (displacement). The model was then trained to cre-
ate a training set and a testing set based on the dataset, 
followed by a model evaluation step, where the testing 
set would evaluate the trained model. The accuracy of 
the model’s prediction of displacement can be assessed 
with the mean squared error (MSE), root mean squared 
error (RMSE), mean absolute error (MAE), and 

coefficient of determination  (R2). Equations below are 
used to determine  R2, RMSE, MAE, and MSE. (1–4) 
(Ahmad et al., 2018; Ibrahim et al., 2022; Younas et al., 
2022).

where x and y indicate the input and output parameters 
for the dataset with n sample points, respectively; ŷi and 
yi are the predicted and actual values, respectively.

Prediction—After trained and evaluated, the model 
would be used to forecast displacement for the untested 
samples. When relevant sand parameters are provided, 
the model will generate displacement estimates.

(1)R =
n xy − x y

(n x2 − x
2
)(n y2 − y

2
)

(2)RMSE =

√∑n
i=1

(
yi − ŷi

)2

n

(3)MAE =
1

n

n∑

i=1

∣∣ŷi − yi
∣∣

(4)MSE =
1

n

n∑

i=1

(
yi − ŷi

)2

Fig. 3 Flow chart of the dynamic displacement prediction model developed for confined geomaterial subjected to vibratory load
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2.5  Machine learning models
2.5.1  Decision tree
Decision Tree (DT) is used to classify an unknown sam-
ple into several groups by successively applying one or 
more decision functions (Swain & Hauska, 1977). The 
classifier adopted in this process is a tree structure with 
leaf nodes, which represent classification results, and 
inner nodes, which represent dataset features, branching, 
and decision-making processes. The DT approach can 
break down complex problems into simple ones, result-
ing in an easy-to-understand solution (Xu et  al., 2005). 
Based on dataset features, a test or decision can be finally 
made.

Let represent the pattern or feature vector; Y (which 
takes integer values) is defined as the class label that has 
been assigned to take values from the real-valued space 
Rq. The d(.) decision rule function maps the elements in 
Rq to the matching class label Y (Safavian & Landgrebe, 
1991), and the valid misclassification rate of d can be 
expressed as below:

Training a DT model involves employing recursive 
partitioning and multiple regressions on the training 
dataset. This process begins at the root node and repeti-
tively splits data within each internal node according to 
a defined rule, until specific halting requirements are 
reached (Rodriguez-Galiano et al., 2015).

There are two scoring criteria, i.e., Information Gain 
(InfoGain) (Quinlan, 1993) and Gini Index (Gini) (Brei-
man, 1984).

As shown, in node t, there are Nj samples, N(t) sam-
ples, and Nj(t) samples of class j. Nj is the total number of 
samples in node t.

where pk denotes the percentage of samples sent to the k-
th subspace, and Info (q) denotes the information of the 
feature subspace q.

(5)R∗(d) = p(d(X) �= Y )

(6)Info = −

∑

j

(
Nj(t)

N (t)

)
log2

(
Nj(t)

N (t)

)

(7)InfoGain = Info(parent)−
∑

k

(pk)Info(childk)

(8)Impurity = 1−
∑

j

�p(j)Nj(t)/N (t)�2

(9)

Gini = Impurity(parent)−
∑

k

(pk)Impurity(childk)

p(j) denotes the prior probability that a sample belongs 
to class j for a set of training samples, and ||g|| denotes 
the normalization of the vector g to unit length. To match 
the default configuration in the Matlab decision tree 
code, proportional priors are used, i.e., p(j) = Nj/N(1) 
(Myles et al., 2004).

Three alternative DT topologies are accessible in this 
situation. The first architecture is made up of “Fine” DT, 
the most sophisticated of the three. The second architec-
ture is labeled as “Medium”, while the third as “Coarse”.

2.6  Gaussian process regression
Vector data points are represented by D = y(xi): I = 1…n, 
where x is any input variable. The expected value E [y(x) 
| x, D] and the covariance cov[y(x) | x, D] are to be cal-
culated for a test input x. The correlations between the 
noise and signal components of y(x) vary with x. Assum-
ing x = t, one element of the p-dimensional vector y(t) 
may represent the level of expression of a certain gene 
at a particular time. The variances and correlations 
among these genes at time t, on the other hand, would be 
reflected in the other components (t). The entire vector 
y(x) is modeled to reflect its interactions and dependen-
cies, rather than assuming temporal dependence (Wilson 
et al., 2011).

∈ represents a random variable, and z represents inde-
pendent and identically distributed white noise follow-
ing a Gaussian distribution with the mean 0 and identity 
covariance matrix ( N (0, I)). W(x) is a p × q matrix made 
up of independent Gaussian Processes (GPs), whereas 
f(x) = (f1(x), …, fq(x))T is a q × 1 vector made up of inde-
pendent GPs (Quinonero-Candela & Rasmussen, 2005).

A collection of random variables, known as a GP, has 
joint Gaussian distributions that are valid for all finite 
numbers. The Matérn 5/2 GPR, rational quadratic GPR, 
squared exponential GPR, and exponential GPR are some 
examples of GPR models. Among them, the rational 
quadratic GPR kernel is particularly useful for show-
ing data with fluctuations of various magnitudes; there-
fore, it has been widely utilized in multivariate statistical 
analysis in metric spaces, geostatistics, machine learning, 
and spatial statistics (Zhang et al., 2018). In the context 
of function space, the squared exponential GPR repre-
sents a regression model with an unlimited number of 
basis functions, similar to a radial basis function regres-
sion model; and it can be distinguished from the expo-
nential GPR by squaring the Euclidean distance. One 
distinctive quality of the squared exponential GPR is the 
use of kernels to replace inner products of basis functions 
(Athavale et al., 2019). The Matérn 5/2 kernel generates 
Fourier transforms of the Radial Basis Function (RBF) 

(10)y(x) = W (x)[f (x)+ σf ∈] + σyz
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kernel from spectral densities of the stationary kernel; 
it can avoid high-dimensional concentration of measure 
problems. Modeling data in such spaces is suitable (Li 
et  al., 2021). The exponential GPR uses kernels, instead 
of basis function inner products; although it may strug-
gle to detect abrupt data discontinuities, it can accurately 
approximate smooth operations.

Ensemble machine learning can be used to create a 
flawless prediction model from several basic models. 
The classifiers categorize new data points by voting with 
or without weights (Dietterich, 2000). These methods 
have solved several machine-learning problems. Then, 
a methodology for training many models and integrat-
ing their predictions is adopted to improve predictive 

Fig. 4 The testing process of this study

Fig. 5 Geomaterial’s sectional view. The color scheme is selected to illustrate the magnitude of displacement: red and blue colors are 
for the maximum (3.427 ×  10–5) and minimum (2.856 ×  10–06) displacement, respectively
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performance (Sagi & Rokach, 2018). Based on the vari-
ety and experience of multiple models, Ensemble tech-
niques can handle complex patterns, reduce overfitting, 
and increase generalization. This approach is fundamen-
tal to modern machine learning, because it succeeds 
across numerous domains. Afterwards, the averaging of 
the forecast from each decision tree is done, a process 
called “bagging”, followed by a process called “boost-
ing”, which successively adds ensemble members that 
give correct predictions generated by previous models, 
while producing a weighted average of the predictions. 
Focused on improperly classified samples, this process 
repeatedly changes sample weights to improve the clas-
sification abilities of basic models during the integration 
stage (Dong et  al., 2020). The experiment as described 
above was carried out with the classification toolbox in 
MATLAB. To predict soil displacement under vibratory 
pressure, this study developed fine and medium decision 
tree structures, Matern 5/2 GPR, rational quadratic GPR, 
squared exponential GPR, exponential GPR, and boosted 
tree models.

The step-by-step testing procedure of this study is 
detailed below:

2.7  Step 1: experimentation

• The testing configuration includes a dynamic vibra-
tor (MEV-0020 electrodynamic vibrator), a data 
recorder, and several accelerometers (Kumari & 
Trivedi, ; Singh et al., 2020a). The accelerometers are 
strategically placed at various depths inside the tank.

• The experiments were performed in a controlled 
environment to observe the properties of geomaterial 

by using the direct shear test, pycnometer, and stand-
ard proctors test.

• After the basic properties of geomaterial listed in 
Table  1 were obtained, the geomaterial was then 
placed in a steel tank, with a mechanical actuator 
used to investigate the dynamic response of confined 
geomaterial.

• The diagrammatic representation of Fig. 2a, b shows 
the arrangement of the accelerometers along with 
the power amplifier cum signal generator, electrody-
namic vibratory shaker, geomaterial-filled steel tank, 
and digital vibration meter; and a flow chart is shown 
below.

2.8  Step 2: numerical simulation

• Numerical simulations were carried out in a set of 
commercial finite element software (Abaqus/ CAE 
2017).

• The properties, including angle of friction, cohesion 
and unit weight, were inputted from the experimen-
tal test results.

• To perform the numerical simulations, such param-
eters as dilation angle, modulus of elasticity, and poi-
sons ratio, are required, in addition to the properties 
listed above and inputted in the model as per the 
range provided by Kumar et al. (2023).

• Using implicit integration, the numerical simulations 
were carried out for the dynamic response of con-
fined geomaterial subjected to dynamic loads.

2.9  Step 3: implementation of machine learning

• Based on the data acquired from the numerical simu-
lations, several machine learning models, including 
Ensemble boosted tree, Squared exponential Gauss-
ian Process Regression (GPR), Matern 5/2 GPR, 
Exponential GPR, and Decision tree architectures 
(fine and medium), were used to make predictions 
of displacement and a possible implementation for a 
computer program.

3  Results and discussion
3.1  Experimental and numerical programs
The testing process  employs  experimentation, numeri-
cal simulation and machine learning utilized in this study 
(Fig.  4).  The numerical modeling results and the ML 
model’s forecast are compared for each input parameter 
considered in this study. The accelerometers are placed at 
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the displacement was measured, respectively) in the frequency range 
of (5–25) Hz at γ = 18 kN/m3
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Fig. 7 Variation of geomaterial displacement with the depth as captured at frequencies of (a) 5 Hz, (b) 10 Hz, (c) 15 Hz, (d) 20 Hz, and (e) 25 Hz. The 
outcomes from the numerical analysis are validated with the experimental observations
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varying distances from the shaking equipment to record 
the dynamic response of the geomaterial. The geomate-
rial’s sectional view is shown in Fig. 5. The color scheme 
is selected to illustrate the magnitude of displacement: 
red and blue colors are for the maximum (3.427 ×  10–5) 
and minimum (2.856 ×  10–6) displacement, respectively. 
As seen, the displacement decreases as the waves move 
away from the vibratory source. The outcomes from the 
ML modeling are in good agreement with the experimen-
tal and numerical results. The variation of displacement 
with  B′/B (where B and Bʹ denote the breadth of the steel 
tank and the width at which the displacement was meas-
ured, respectively) in the frequency range of (5–25) Hz at 
γ = 18 kN/m3 as shown in Fig. 6.

The variation of geomaterial displacement as cap-
tured at frequencies of (a) 5 Hz, (b) 10 Hz, (c) 15 Hz, 
(d) 20 Hz, and (e) 25 Hz is shown in Fig. 7a–e. The out-
comes from the numerical analysis are validated with 
the experimental observations, so a good agreement 
has been achieved. The displacement is observed to 
increase with the frequency, but to decrease with the 
depth of the geomaterial. These models can be used 
to compute geomaterial’s dynamic properties, such as 
shear modulus and damping ratio. The data were ana-
lyzed with fine and medium DT topologies, Matern 
5/2 GPR, rational quadratic GPR, squared exponential 
GPR, exponential GPR, and boosted tree. The response 
plot shows the projected response with the recorded 
numbers after the regression model was trained. Hold-
out or cross-validation predicts using a model learned 
without the associated observation. This study uses 
two-fold cross-validation. The feedforward and back-
propagation network was trained in a backpropagation 
training algorithm. The input variables included: tank 
width (0–0.6 m), frequency (5–25 Hz), D50 (0.285), 
unit weight (18 kN/m3), OMC (10.4%) of the geomate-
rial, and amateur pressure (30 kPa). The plot of the pre-
dicted vs. true responses for (a) fine tree, (b) medium 
tree, (c) Matern 5/2 GPR, (d) squared exponential GPR, 
(e) the rational quadratic GPR, (f ) exponential GPR, 

and (g) boosted tree is shown in Fig. 8a–g. The residual 
vs. true response plot of (a) fine tree, (b) medium tree, 
(c) Matern 5/2 GPR, (d) squared exponential GPR, (e) 
the rational quadratic GPR, (f ) exponential GPR, and 
(g) boosted tree is shown in Fig. 9a–g. The model per-
formance measures (RSME, R2, MSE and MAE) are 
essential for analyzing the model efficacy. The perfor-
mance of each model was assessed after the network 
was properly trained, with the results shown in Table 3. 
RMSE reflects the square root of the average of the 
squared differences between the actual and forecasted 
values in a regression model. RMSE is always positive, 
and cannot be negative, since, as indicated by its name, 
it gauges the average size of the errors. R2 is a metric 
to show in what extend the dependent variable’s vari-
ance can be accounted for by the independent variables 
in a model. This parameter ranges from 0 to 1, indicat-
ing whether a model can explain all variation or none. 
R-squared never exceeds 1. MAE is positive and less 
outlier-prone than RMSE.

To  compare the displacement projections by the 
numerical and machine learning models, each model 
tested at 5–25 Hz is shown in Fig. 10. The mean squared 
error is used to evaluate the performance of a model. 
MSE presented for various models in this study indi-
cates a better-performing model for an MSE ranging 
from  10–11 to  10–12. The boosted tree model delivered 
the smallest MSE with a 1.7424 ×  10−12 value. This excep-
tionally low value suggests that the boosted tree model 
gives the smallest overall prediction error. The boosted 
tree model for MAE further gives the lowest value of 
5.07 ×  10–12, indicating that the boosted tree model can 
deliver the smallest average absolute difference between 
its predictions and the actual values. Hence, it is able 
to give better and more reliable results for developing 
machine learning-based computer software to predict 
displacement behavior, while designing structures resting 
on geomaterial subjected to dynamic loads.

4  Conclusions
By utilizing certain machine learning models, this study 
examined various forecasting approaches and assessed 
their efficiency. Several model experiments and numeri-
cal analyses were performed to evaluate the displacement 
of geomaterial along the width of a tank. Moreover, vari-
ous machine learning models were effectively adopted to 
understand the dynamics of confined geomaterial. The 
main conclusions of this study are as follows:

• The displacement at different sections were kept rela-
tively consistent along the width of confined geoma-
terial. However, as the frequency changes from 5 to 
25 Hz, there was a significant increase in the peak 

Table 3 Comparison of models’ performance

Model RSME R2 MSE MAE

Fine tree 0.031891 0.98 0.0010171 0.019795

Medium tree 0.071315 0.91 0.0050858 0.036892

Rational Quadratic GPR 0.030544 0.98 0.00093291 0.010344

Square exponential GPR 0.032592 0.98 0.0010622 0.011338

Matern 5/2 GPR 0.028357 0.99 0.00080412 0.0091226

Exponential GPR 0.039679 0.97 0.0015745 0.011376

Boosted tree 1.32 ×  10–6 0.94 1.7424 ×  10–12 5.07 ×  10–12
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Fig. 8 The plot of the predicted vs. true responses of (a) fine tree, (b) medium tree, (c) Matern 5/2 GPR, (d) squared exponential GPR, (e) the rational 
quadratic GPR, (f) exponential GPR, and (g) boosted tree
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Fig. 9 The plot of the residual vs. true responses of (a) fine tree, (b) medium tree, (c) Matern 5/2 GPR, (d) squared exponential GPR, (e) the rational 
quadratic GPR, (f) exponential GPR, and (g) boosted tree
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Fig. 10 Comparison of experimental and ML model results on displacement variation along the width ratio in (a) 5 Hz, (b) 10 Hz, (c) 15 Hz, (d) 20 
Hz, and (e) 25 Hz
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displacement from 0.006 to 0.03 mm. The highest 
peak displacement, identified at the frequency of 25 
Hz, showcased an overall increase of 80% against  the 
frequency of 5 Hz.

• The Matern 5/2 GPR model delivered the highest 
level of accuracy, as indicated by its greatest  R2 value 
of 0.99. Given that  R2 value measures the proportion 
of the variance in the dependent variable that is pre-
dictable from the independent variables, this greatest 
 R2 value indicates a strong relationship between the 
Matern 5/2 GPR model’s prediction and the actual 
outcome. Therefore, based on this evaluation, the 
Matern 5/2 GPR model is considered the most reli-
able for accurate predictions.

• The mean squared error (MSE) is used as a perfor-
mance metric for evaluating a model. MSE presented 
for varied models in this study indicates a better-
performing model for an MSE ranging from  10–11 to 
 10–12. The boosted tree model achieved the smallest 
MSE with a value of 1.7424 ×  10–12. This exceptionally 
low value suggests that the boosted tree model has 
the smallest overall prediction error.

• The boosted tree model for MAE further delivers 
the lowest value of 5.07 ×  10–12, indicating that this 
model has the smallest average absolute difference 
between its predictions and the actual values.
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