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Impact of waste foundry sand on drainage 
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Abstract 

The study of drainage behavior is essential for using waste material in geotechnical applications. In this study, sandy 
soil was replaced with waste foundry sand (WFS) at an incremental interval of 20% by weight. Permeability (k) for each 
mix was acquired at three relative densities (RD), i.e., 65%, 75% and 85%, by using the constant head method. Then 
the results were further processed with machine learning (ML) models to validate the experimental data. The experi-
mental study demonstrated that k would decrease with the increase in relative density and WFS content. A rise in RD 
from 65% to 85% resulted in a substantial reduction of up to 140% in the value of k. Moreover, the complete replace-
ment of sand with WFS reduced the value of k by 36%, 51% and 57% for  RD of 65%, 75% and 85%, respectively. The 
total dataset of 90 observations was divided at a ratio of 63/13/15 into training/validation/testing datasets for ML-AI 
modeling. Input variables include percentage of sand (BS), replacement with WFS, total head (H), time interval (t) 
and outflow (Q); and k is the output variable. The methods of artificial neural network (ANN), random forest (RF), deci-
sion tree (DT) and multi-linear regression (MLR) are used for k prediction. It is found that the random forest approach 
performed outstandingly in these methods, with an R2 value of 0.9955. The performance of all the proposed methods 
was compared and verified with Taylor’s diagram. Sensitivity analysis showed that Q and RD were the most influential 
parameters for predicting k values.

Keywords Permeability, Waste foundry sand, Artificial intelligence, Random forest, Artificial neural network, Decision 
tree

1 Introduction
As a property of soils, permeability measures the speed 
of water percolation. Low permeability (k-value) means 
the possible generation of excess pore water pressure and 
secondary consolidation (Lin et  al., 2018; Zhang et  al., 
2021). The measurements of permeability are essential 
for geotechnical projects related to groundwater tables 
or precipitation water. The k-value of soil depends upon 
many factors, including: grain size properties, void ratio, 

fine content, over-consolidation ratio, drainage type, and 
density of soil or impurities, if any (Cashman & Preene, 
2020; Smith, 2014).

The k-value can be identified in direct and indirect 
methods. For direct methods, tests are carried out on soil 
samples. In contrast, for indirect methods, the k-value is 
calculated from empirical formulas based on grain size 
properties and void ratio (Nagy et  al., 2013; Osterhout, 
1922). Some direct and indirect methods are listed in 
Table 1. It is not convenient to perform permeability tests 
on every soil sample. So, modeling is often used to pro-
vide a rough estimate of the actual k-value. The k-value 
exhibits up to 10 orders of magnitude, ranging from a 
coarse feature to a very fine feature.
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Proposed earlier based on some assumptions, indirect 
methods are suitable for different conventional soils. 
However, for soils incorporating waste materials, the val-
ues of constants would change significantly. So, if various 
waste materials or composites are present, new equations 
must be developed based on experimental data. This gap 
can be bridged by developing certain models with artifi-
cial intelligence techniques (Baghbani et  al., 2022; Sha-
hin, 2013).

Sand is a kind of natural materials used in the major-
ity of construction projects. In India, the expected 
demand for sand is 700 MT (in 2017), with an annual 
growth rate of 6%–7%. Mining has led to a 90% decline 
in sediment levels in key Asian rivers, putting local com-
munities into risks of flooding, land loss, contaminated 
drinking water, and crop devastation (Ministry of Mines, 
2018). India produces more than 3 million tons of WFS 
annually. The scarcity of natural sand drives practition-
ers to replace them with waste and by-products from 
industries. The replacement materials should meet the 
strength and other requirements specified in construc-
tion laws and codes. One such material which has been 
used in construction over recent decades is WFS. Many 
researchers have reported the viability of WFS in various 
geotechnical applications (Gedik et al., 2018; Heidemann 
et  al., 2021; Javed, 1995; Siddique & Singh, 2011; Sinha 
et al., 2020; Tittarelli, 2018; Winkler & Bolshakov, 2000), 
hydraulic or fluid barriers (Abichou et  al., 1998, 2000, 
2002), retaining-wall backfills (Lee et al., 2001), highway 
sub-bases (Guney et al., 2006; Javed & Lovell, 1994; Mast 
& Fox, 1998; Partridge et al., 1999) and ground improve-
ment (Vipulanandan et  al., 2000). For all such applica-
tions, knowledge on the drainage behaviour of WFS or 
WFS-incorporating sand is necessary. FHWA (2004) has 
reported a range of permeability  10–3–10–6 cm/s.

This study proposes a model to measure the perme-
ability of soils incorporating a certain kind of industrial 

materials. Sandy soil has been mixed with waste foundry 
sand at different ratios to cover the range of replace-
ment, and the hydraulic behaviour at different densities 
has been observed. Few existing research is available that 
considers the relative density as a governing parameter 
in indirect methods. The main objective of this study 
is to explore the drainage behaviour of WFS-incorpo-
rated sand in retaining-wall backfills and earthen dam 
applications.

Sustainable geomaterials are rapidly replacing con-
ventional materials. Due to their accuracy, soft comput-
ing methodologies have gained pervasive traction over 
the preceding two to three decades. Many models have 
been trained for evaluating material properties based 
on known input parameters (Dalkilic et al., 2023; Khatti 
& Grover, 2023a, 2023b, 2023c, 2023d, 2023e; Kumar 
et al., 2023; Länsivaara et al., 2023; Rabbani et al., 2023). 
Machine learning modeling can be broadly classified as 
an approximation, classification and forecasting (Sarker, 
2021). This study will adopt artificial neural networks, 
multi-linear regression, decision trees, and random forest 
techniques. Several past studies on modelling of k-value 
by using AI techniques are listed in Table  2. In most 
cases, the input variable is the grain size properties of 
soil. The performance of models is dependent upon avail-
able data sets, correlation between variables, and stand-
ard deviation in values.

2  Materials used
2.1  Sand
Sandy soil samples acquired in Punjab, India is used 
in this study. The grain size properties are presented in 
Fig. 1 and Table 3. The type of gradation highly impacts 
the permeability of soil. The specific gravity of soil is 
determined as per ASTM D854 (2002), while GSD 
parameters are as per ASTM D422-63 (2007). The soil is 
classified as poorly graded sand.

Table 1 Direct and indirect methods for measuring the k-value

Direct methods Constant head method (Darcy, 1856) k = Q×L
h×A

Failing head method (Darcy, 1856) k = a×L
A×t

×loge
h1
h2

Indirect methods Hazen equation (Hazen, 1911) k = c × d210

Slichter equation (Slichter, 1899) k = 771×d2

c

Taylor equation (Taylor, 1948) k = d2e ×
γ
µ
× e3

1+e
× c

Terzaghi equation (Terzaghi, 1925)
k = c

µ
× n−0.13

3√1−n

2
× d210

Kozenl-Carman equation (Kozeny, 1927) k = 1
koS2s

× γ
µ
× e3

1+e
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2.2  Waste foundry sand
In this study, WFS is acquired from an iron foundry 
located in Ludhiana, India. The grain sizes are pre-
sented in Fig. 1. The WFS grain sizes’ distribution curve 
is found similar to that of Ottawa sand at the F65 grade 
(Carey et al., 2020). The grains of WFS are smaller than 
those of sand, so the specific gravity is found to be 
smaller. The index and engineering properties for this 
type of WFS are reported by Kumar and Parihar (2022). 

WFS is classified as poorly graded sand as per the USCS 
system (ASTM D2487, 2006; Casagrande, 1948).

3  Research methodology
This study is divided into four phases: data generation, 
data preparation, modeling, and getting conclusions 
based on the best-performed model (Fig. 2). The data in 
this study are generated from a series of laboratory scale 
tests. The experimental output data are further inves-
tigated for outliers and multicollinearity. The phases 
involved will be discussed in detail in the  following 
sections.

3.1  Lab experiments
To cover a wide range of replacements with WFS and 
to explore the relative density, 18 different composi-
tions are considered (Table 4). At least five distinct read-
ings of permeability for each composition are measured. 
The time during which a particular amount of water is 
drained from the samples is also considered as one of the 
governing parameters.

Permeability is affected by the relative density of soil, 
as liquid would take more time to flow through denser 

Table 2 AI methods used in the past studies on k-value

AI methods Input variables Model with highest 
performance

References

KNN, SVM, GB, LightGBM, RF, PI, wl, wp, CC, ρ, wc, e GB Tran (2022)

ANN, RF, SVM wl, wp, CC, ρ, wc, e RF Pham et al. (2021)

ANN, ANFIS D10, D30, D60 ANFIS Yilmaz et al. (2012)

GPR (Poly, PUK, RBF) wl, wp, CC, ρ, wc, e PUK Ahmad et al. (2022)

TLBO-ANN wl, wp, CC, G, wc, e TLBO-ANN Bui et al. (2022)

ANN, MEP, GEP D, ρd GEP Rehman et al. (2022)

GP, RF, MLR, SVM S, Fa, G, T, H SVM Singh et al. (2021)

CANFIS, MLP, SVM, DT, RF OC, BD, PD RF Singh et al. (2020)

CART, GMDH wl, wp, CC, ρ, wc, e GMDH Torabi et al. (2022a)

RF-GA UCS, Temp, Gp, σ′ RF-GA Wang et al. (2020)

GPR, DT, RVM, ANN FC, SC, LL, SG, PI, MDD, OMC GPR Khatti and Grover (2021a)

MLR e, D10, D30, D50, Cu, CC MLR Feng et al. (2023)

ANFIS, DNN, MR e, γ, d DNN Kim and Song (2023)

ANN, MLR FC, SC MLR Khatti and Grover (2021b)

SSA, EGME, BET, KC eeff, Seff KC Chen et al. (2022)

GEP, ANN CC, ω, LL, PL,
γ, e

GEP Torabi et al. (2022b)
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Fig. 1 Grain sizes’ distribution curve of the materials used

Table 3 Grain size properties of the materials used

Material Effective size, D10 (mm) Mean size, D50 (mm) CU CC Classification G

Sand 0.160 0.42 3.21 2.82 SP 2.69

WFS 0.175 0.20 1.53 0.84 SP 2.43
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media. Test for RD is a preliminary step for sample prepa-
ration in the permeability experiment.

3.1.1  Relative density
The relative density of soil composites indicates the com-
pactness of cohesionless materials. The test in this study 
is conducted as per ASTM D4254 (2000). To measure 
the minimum density ( ρmin), the soil is poured down 
by free, falling from 2–3  cm height in a relative density 
mold of 3000 cc, and the mass of soil in the mold is noted 
down. The maximum density ( ρmax) is determined by 
vibrating the filled mold at a frequency of 3,600 vibra-
tions/min under a 115 kg surcharge for 8 min. After the 
vibration and removal of the load, the settlement of the 
loading plate is measured, and the reduced volume is 
thereby determined. Since the mass remains constant, a 
reduction in volume in the latter case results in increased 
density.

The density for different relative densities is calculated 
by using Eqs. 2 and 3. The values of densities for different 
relative densities with variation in WFS replacement level 
are shown in Fig. 8.

Define problem statement and 
hypothesis

Formulate sample proportions

Selection of laboratory scale tests to 
consider formulated input parameters

Perform lab tests using formulated 
input parameters and compute output

Check for outliers & 
Multicollinearity

Yes No

Reformulate  

Repetitive output

Yes

No

Compile input and output data 
(n=90 data points)

Spliting of  total dataset for training, 
validation and testing 

Training and Validation
(n=75)

Testing
(n=15)

Random selection

k-fold selection (k=5)

Training
 (n=62)

Validation
 (n=13)

Descriptive statistical analysis

Selection of AI - approaches

Select DT, RF, ANN and MLR

Define hyper parameters considering 
type of data and computation time 

Train and develop models 

Compute performance parameters for 
all models

Compare the performance and 
choose best performed model

Check for overfitting of models by 
calculation overfitting ratio

Analyse residual distribution and 
Taylor’s diagram

Evaluate sensitivity of each input 
parameter with best performed model

Compare performance of  best performed model with available 
models in literature

STEP 1: DATA GENERATION STEP 2: DATA PREPERATION STEP 3: MODELLING

STEP 4: CONCLUDE FOR BEST PERFORMED MODEL

Confirm viability of model by changing input parameters

Fig. 2 Flowchart of the research methodology

Table 4 Proportions of different composite soils

S. No Base sand (%) WFS (%) iD (%)

1 100 0 65

2 80 20 65

3 60 40 65

4 40 60 65

5 20 80 65

6 0 100 65

7 100 0 75

8 80 20 75

9 60 40 75

10 40 60 75

11 20 80 75

12 0 100 75

13 100 0 85

14 80 20 85

15 60 40 85

16 40 60 85

17 20 80 85

18 0 100 85
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3.1.2  Permeability
The permeability of soil indicates the degree of easiness 
of water to flow through a porous medium. Permeabil-
ity doesn’t depend upon the density and viscosity of the 
flow-in materials, like hydraulic conductivity. This study 
measures permeability for all considered cases (Table 4) 
as per ASTM D2434 (2019). As the soil composites are 
granular, the constant head method is performed on all 
compositions. The total head is maintained at 122.5 cm. 
A Permeameter with a height of 12.73  cm, a diameter 
of 10  cm, two operating valves, and an air vent is used 
(Fig.  3). De-aired water is allowed to flow through the 
sample with two-way drainage. At least five readings of 
quantity outflow per unit of time for each sample are 
noted. An equation given by Darcy law (Eq. 3) is adopted 
for calculating the k-value in m/day.

where Q is the amount of drained water per unit time; h 
is water head; A is the cross-sectional area of sample; and 
L is the length of the sample.

(1)ρ� = ρmax − ρmin

(2)ρd = ρmax − (RD ∗ ρ�)

(3)k =
Q × L

h× A

3.2  AI‑approaches
R programming offers a rich ecosystem of packages, and 
is specifically designed for machine learning, so it is a 
versatile tool for data scientists and researchers. Its pack-
ages, such as "caret", "mlr" and "tidymodels", provide a 
wide range of tools and functions to streamline the entire 
machine-learning workflow. These packages offer well-
documented and efficient solutions, ranging from data 
preprocessing, feature engineering and model selection 
to training, validation and evaluation. This study uses 
Rstudio (V 1.4.1564) and R programming platform (V 
4.3.1) to access soft computing techniques.

For training the model, data are initially split into three 
sections: Training data, Validation data and Test data. 
At the beginning, classifier training is done by using a 
training data set, followed by using the validation data 
set to tune the parameters, so as to estimate the skill of 
the machine learning model on unseen data. In the final 
stage, the performance of the classifier is tested by using 
a test data set. According to a widely used thumb rule, 
the number of data points should be at least ten times 
the input parameters (Alwosheel et  al., 2018; Haykin, 
2009). The minimum number of data points required 
in this study is 70. To avoid overfitting of the model, 
k-fold cross-validation is considered, with the value of 
k as a five-seed value of 42 (Fushiki, 2011). The data-
set for training and validation combined should be 85% 
of the total dataset, with the nearest multiple of 5. The 
total 90 data points in this study are divided in the ratio 
of 62/13/15 for training/validation/testing, respectively 
(Fig.  4). The k here represents the fold for cross-valida-
tion; it should not be mistaken with k, which represents 
the permeability.

3.2.1  Artificial neural networks (ANN)
This computing technique’s working principle is inspired 
by the biological neural network of human brains. This 
method was first proposed by  MaCulloch and Pitts 
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Total Dataset (n=90)
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Fig. 4 Splitting of the total data set
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(1943). A group of simulated neurons make an artificial 
neural network. Every neuron functions as a node linked 
to other nodes via connections that resemble biological 
axon-synapse-dendrite connections. A weight is assigned 
to each link to indicate how strongly one node will affect 
others (Winston, 1992). Because they can reproduce and 
model non-linear processes, artificial neural networks 
have been applied in many disciplines. In civil engi-
neering, they are widely used for soft computing (Laza-
revska et  al., 2014; Xu et  al., 2022; Yang et  al., 2021). 

The input-hidden-output layer schematic is presented 
in Fig.  5. The hit and trial method is used to select the 
number of hidden layers, which is found to be optimum 
at 10. The hyperparameters are optimized for computa-
tion time and respective error (Table  5). The activation 
function chosen for the neurons in the hidden layers is 
Rectified Linear Unit (ReLU), which helps introduce 
non-linearity into the model.

3.2.2  Multilinear regression (MLR)
This approach reveals linear relationships between inde-
pendent (y) and dependent (x) variables. Since multiple-
regression takes into account many explanatory variables, 
it extends the ordinary least-squares regression. The gen-
eralized relation is given in Eq.  3, where ’a’ represents 
the intercept and ′ǫ′ represents the error. The coefficient 
bn is determined by minimizing the sum of the square 
of residuals after the model is evaluated with statistical 
parameters.

3.2.3  Decision tree model (DT)
Decision tree is a non-parametric supervised learning 
method, which can be used for classification and regres-
sion. It is aimed at discovering simplistic decision rules 
derived from data features, so as to build a model that 
can predict the value of a variable (Fig. 6). This technique 
is widely used in civil engineering fields, where deci-
sions are often made based on variables’ upper or lower 
limits. For example, if the permeability value is less than 
 10–6 cm/s, the soil will be classified as clay (Desai & Joshi, 
2010; Singh et  al., 2020). Table  6 outlines the hyperpa-
rameters and their respective approximate values used 
for tuning a decision tree classifier, where the criterion is 
Gini impurity.

(4)
y = a+ b1x1 + b2x2 + · · · · · · · · · · · · · · · + bnxn + ǫ

(5)k = a(BS)b1(WFS)b2(RD)b3(Q)b4 (T )b5

Table 5 Hyperparameters for ANN model

Hyperparameter Approximate value

Number of hidden layers 1

Number of neurons per hidden layer 10

Activation function Relu

Learning rate 0.001

Batch size 64

Number of epochs 50

Optimizer Adam

Weight initialization Xavier/glorot

Dropout rate 0.3

Regularization strength 0.01 Fig. 6 Parts of the decision tree

BS

WFS

RD

T

Q

k

Input
Layer

Hidden Layer 
(n=10)

Output
Layer

Fig. 5 Architecture of the proposed neural network model
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3.2.4  Random forest (RF)
In 1995, the first random decision forest method was 
developed by Ho  (1995). In the fitting process, errors 
are computed, and the importance of variables is 
measured. The relevance of variables in a regression or 
classification task can be ranked by using random for-
ests. Variables that create high values for this score are 
given higher weightage than those that produce low 
values. This method solves the problem of overfitting, 
since the output is based on majority voting or aver-
aging. This technique is widely used in geotechnical 
engineering to calculate engineering and index proper-
ties (Dutta et al., 2019; Rauter & Tschuchnigg, 2021).

In this method, the number of trees for the predic-
tion of the k-value is optimized by using an error rate 
curve, as shown in Fig. 7. More trees than the optimum 
value may increase the calculation time of the model; 
meanwhile, a less value can predict erroneous values. 
The error rate is found to vary insignificantly (can be 
considered constant) after 50 trees. Fundamental set-
tings or hyperparameters that influence the behavior 
and performance of the model are tabulated in Table 7.

3.2.5  Limitations of AI models

1. ANN: ANN requires a relatively large amount of data 
for training, so it may be computationally intensive. It 
is also often considered a kind of "black-box" models, 
which makes it a challenging task to interpret their 
decision-making process. Selecting the exemplary 
architecture and hyperparameters can be a trial-and-
error process, and it is sensitive to initial conditions.

2. MLR: MLR assumes a linear relationship between 
independent and dependent variables. It might not 
capture complex non-linear relationships in data. 
Additionally, it is sensitive to multicollinearity among 
the predictor variables, which can lead to unstable 
coefficient estimates.

3. DT: Decision tree assumes that data are non-linearly 
separable, and it can lead to overfitting, especially 
when the tree depth is not adequately controlled. It 
may not perform well on highly imbalanced datasets; 
and biased trees might be created if one class domi-
nates others.

Table 6 Hyperparameters for DT model

Hyperparameter Approximate value

Criterion Gini impurity

Max depth None

Min samples split 5

Min samples leaf 3

Max leaf nodes None

Min impurity decrease 0

Splitter Best

Class weights None

Random state 42

Zone I
(High Variation)

Zone II
(Transition)

Zone III
(Low Variation)

Mean of 
Zone II

Fig. 7 Error rate progressively for number of trees

Table 7 Hyperparameters for RF model

Hyperparameter Approximate 
value

Number of trees 50

Max depth None

Min samples split 2

Min samples leaf 1

Max features Auto

Bootstrap True

Criterion Gini

Random state 42

Class weights None

N_jobs − 1
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4. RF: Random forest is less interpretable than individ-
ual decision trees and can be computationally expen-
sive for large datasets. It may not perform optimally 
when there is a high degree of multicollinearity in 
the features; and it may struggle with extrapolation 
as relying on the range of values seen in the training 
data.

4  Results and discussion
4.1  Experimental results
The variation in density is plotted against WFS content 
(Fig.  8). It can be seen that the density reduces by 25% 
with increased WFS content, because WFS exhibits 
lower dry density values. The experimental results of the 

k value for all cases are plotted in Fig. 9. As seen in the 
surface heat map, the permeability is decreasing as the 
relative density and WFS content increase. And the per-
meability also decreases with an increase in the replace-
ment level of WFS. Fully replacement of sand with WFS 
reduces the k value by 36%, 51% and 57% for RD values of 
65%, 75% and 85%, respectively.

4.2  Statistical features of data sets
The descriptive statistical summary for the training, vali-
dation, testing and total data sets is given in Table 8. The 
summary features all necessary statistical parameters: 
count, lower and upper bound, mean, standard deviation, 
kurtosis and skewness. Standard deviation is the maxi-
mum in the validation dataset for all parameters. Kurto-
sis and skewness are reported for all datasets, purposed 
to measure the symmetries about the center point and 
the distribution pattern of data. The Pearsons coefficient 
between two input parameters shows their relationship, 
and the histogram represents the distribution of data val-
ues (Fig. 10).

4.3  Performance of AI models
4.3.1  Results of ANN
The hit and trial method was used to select the number 
of hidden layers, which is found to be optimum at 10. The 
5–10–1 network with 76 weights resulted in SSE value of 
0.0782 with a skip-layer connection. More than half of 
the predicted points are on the negative side of the 1:1 
line. Figure 11 shows the output of the ANN model. Error 
lines of ± 20% indicate that the maximum data points 

Fig. 9 Variation of permeability with RD and WFS
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exist within that limit (Fig.  11a). The maximum error 
value is found to be -0.55 m/day, which is unacceptable 
(Fig.  11c). Consequently, this model is inadequate for 
determining the permeability of sand and WFS mixture.

4.3.2  Results of MLR
The results of MLR model are presented in Fig.  12. As 
can be seen, all data points get fitted between ± 15% error 
lines (Fig. 12a). The plot for actual and predicted values 
along data points is presented in Fig. 12b. The maximum 
value of the errors is 0.4 m/day (Fig. 12c). MLR assumes 
that the amount of errors in the residuals is similar at 
each point of the linear model. This scenario is known 
as homoscedasticity. This assumption is attributed to the 
low degree of reliability.

k = 0.5051
(BS)0.001(Q)0.03724

(RD)0.492(WFS)0.0591(T )0.003

4.3.3  Results of DT
The decision tree analysis predicts the k-values based on 
Q values. The decision-making process is showcased in 
Fig. 13. As seen, in a particular box, the k-value is given 
with the no. of observations (n) and the percentage of 
observations considered in that condition (%). Condition 
is written beneath the boxes; all boxes are filled with con-
trast counter colors (the larger the values, the darker the 
colors).

Figure 14a presents the scatter plot of actual and pre-
dicted k-values acquired from the decision tree model. It 
is shown that this model performs poorly in predicting 
the k-value of the sand-WFS mixture; so it is not recom-
mended. A particular predicted value covers a wide range 
of actual values. The relative error value is 0.6 m/day, the 
highest among all models (Fig. 14c).

Table 8 Statistical features of different data sets

Variable Units Count Minimum Maximum Mean Standard 
Deviation

Kurtosis Skewness

Training Dataset

 BS % 62 0 100 48.064 33.867 − 1.2619 0.0884

 WFS % 62 0 100 51.935 33.867 − 1.2619 − 0.0884

 RD % 62 65 85 75.483 8.381 − 1.5767 − 0.0929

 T sec 62 30 150 92.419 43.218 − 1.3543 − 0.1114

 Q gm 62 17 109 55.580 25.178 − 1.0317 0.17817

 k m/day 62 0.6638 4.256 2.171 0.9839 − 1.0385 0.17528

Validation Dataset

 BS % 13 0 100 63.0769 36.3741 − 0.7616 − 0.6609

 WFS % 13 0 100 36.9231 36.3741 − 0.7616 0.66086

 RD % 13 65 85 75.7692 8.62316 − 1.6804 − 0.1636

 T sec 13 30 150 92.3077 43.2346 − 1.3689 0.43572

 Q gm 13 29 102 59 26.8359 − 1.2159 0.75133

 k m/day 13 1.13236 3.982 2.30378 1.04786 − 1.2159 0.75133

Testing Dataset

 BS % 15 0 100 46.67 34.365 − 1.0909 0.08304

 WFS % 15 0 100 53.33 34.365 − 1.0909 − 0.083

 RD % 15 65 85 72.33 7.03732 − 0.6691 0.43303

 T sec 15 30 150 78 40.5674 − 1.2147 0.056

 Q gm 15 25 110 62 24.3663 − 0.4054 0.42475

 k m/day 15 0.9761 4.295 2.42 0.95143 − 0.4054 0.42475

Total Dataset

 BS % 90 0 100 50 34.3479 − 1.2722 − 5E−18

 WFS % 90 0 100 50 34.3479 − 1.2722 5.3E−18

 RD % 90 65 85 75 8.21071 − 1.517 3.1E−17

 T sec 90 30 150 90 42.6641 − 1.3055 8.9E−18

 Q gm 90 17 110 57.14 25.1233 − 0.9451 0.27479

 k m/day 90 0.6638 4.295 2.232 0.98149 − 0.9499 0.2725
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4.3.4  Results of RF
This approach performs better than other techniques. 
Results from the RF model are presented in Fig. 15. The 
error lines to fit the data in the scatter plot are drawn at 
15% on the positive side and at 10% on the negative side. 
For actual k-values less than 3.5  m/day, the data points 
are around the 1:1 line, and the values greater than 
3.5 m/day lean towards the negative error line (Fig. 15a). 
The maximum value of error is found to be 0.45 m/day 
(Fig. 15c).

4.4  Comparison of performance of different models
4.4.1  Performance parameters
The effectiveness of the proposed models is evaluated 
by the following performance parameters: coefficient 
of determination (R2), mean squared error (MSE), root 
mean square error (RMSE), performance index (PI), 

index of scatter (IOS), index of agreement (IOA), vari-
ance accounted for (VAF), and a20 index (Table 9). The 
mathematical expressions, ideal values and significance 
of each parameter are also listed in Table  9. Notation y 
represents actual data, y represents the mean of actual 
data, ŷ represents the predicted data, n is the number 
of data points, and 20 m represents the number of data 
points, which are in the range of ± 20% of the actual data.

The values of these parameters for the training, valida-
tion and testing datasets are presented in Tables  10, 11 
and 12, respectively. The values demonstrate the perfor-
mance of different models. The values of R2, MSE and 
RMSE for the testing dataset are less than those for the 
training and validation datasets.

The values of R2 for the training, validation and test-
ing datasets are 0.96500, 0.96614 and 0.9126, respec-
tively. The R2 value for the ANN model is the least of 
all the proposed models for the testing dataset. For 

Fig. 10 Distribution of input parameters with Pearson’s coefficient values
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the training data, the values of R2, MSE and RMSE are 
0.96106, 0.04289 and 0.2071, respectively.

The performance parameters for RF are optimum for 
all datasets in a minimum error. The value of R2 for the 
training, validation and testing datasets are 0.99314, 
0.99374 and 0.9579, respectively. Contrast to the ran-
dom forest, the multi-linear regression performs well, 
as the values of R2 for the training, validation and test-
ing datasets are 0.98066, 0.96854 and 0.9265, respec-
tively. The values of R2 for the training, validation 
and testing datasets are 0.96106, 0.95567 and 0.9338, 
respectively, which shows a poor correlation between 
the actual and predicted values.

4.4.2  Check for overfitting 
Overfitting is a common challenge in machine learn-
ing. It means that a model learns the training data to a 
so excessive degree that it even captures the noises and 
random fluctuations, instead of only the genuine under-
lying patterns. As a result, an overfitted model performs 
well on the training data, but poorly on unseen or new 
data, leading to bad generalization. Understanding the 
issue of overfitting is crucial for building up accurate 
and reliable models on real-world tasks. In this study, 
the overfitting ratio is computed in Eq. 5. OFR confirms 
that the RF model is ideally fit.

0

1

2

3

4

5

0 1 2 3 4 5

Pr
ed

ic
te

d 
k,

 m
/d

ay

Actual k, m/day

Training
Validation
Testing

0

1

2

3

4

5

0 20 40 60 80 100

k,
 m

/d
ay

Data Points

Training Validation Testing Actual

-0.6
-0.4
-0.2

0
0.2
0.4
0.6

0 20 40 60 80 100

R
el

at
iv

e 
Er

ro
r

Data Points

Training Validation Testing

(a)

(b)

(c)

Fig. 11 Results of artificial neural network: a performance 
of the model; b actual and predicted k-values; and c distribution 
of errors

0

1

2

3

4

5

0 1 2 3 4 5

Pr
ed

ic
te

d 
k,

 m
/d

ay

Actual k, m/day

Training
Validation
Testing

0

1

2

3

4

5

0 20 40 60 80 100

k,
 m

/d
ay

Data Points

Training Validation Testing Actual

-0.6

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80 100

R
el

at
iv

e 
Er

ro
r

Data Points

Training Validation Testing

(a)

(b)

(c)

Fig. 12 Results of multi-linear regression model: a performance 
of the model; b actual and predicted k-values; and c distribution 
of errors



Page 12 of 18Kumar and Parihar  AI in Civil Engineering             (2024) 3:1 

1.121
1.004

1.340

1.034

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

DT RF MLR NN

O
ve

rf
itt

in
g 

R
at

io
 (O

FR
)

Overfit

Underfit

Bestfit

4.4.3  Taylor’s diagram
Taylor’s diagram quantifies the degree of correspond-
ence between the predicted and actual values. Figure 16 
depicts a Taylor diagram, which graphically illustrates the 
following metrics for all the proposed methods: the value 
of the Pearson correlation coefficient, the root-mean-
square error, and the standard deviation. As can be seen, 

(6)OFR =
RMSEvalidation

RMSEtraining

the mark of RF is much closer to the actual value point 
than other marks are.

4.4.4  Distribution of residuals
The error distribution highlights the instances where a 
model consistently underperforms or overperforms along 
the data points. The error distribution comparison of all 
proposed AI approaches (Fig. 17) indicates that the ran-
dom forest is the best-fit approach for the prediction of 
the k-value of sand-WFS mixtures. The box plots depict 
the lower and upper values of residuals with outlier 
points. Investigating these outliers can provide insights 
into unique scenarios or data points that require special 
attention. The performance of the models can be com-
pared based on the distance of the median from the ori-
gin line. The results are consistent with the performance 
parameters. Patterns and trends identified from the mod-
els’ error distribution indicate the absence of systematic 
errors. These patterns can help increase the robustness 
of the performance of the models. In addition, the error 
distribution results show that the models are well-cali-
brated, particularly in specific prediction ranges.

4.5  Sensitivity analysis
Sensitivity analysis is carried out to determine the most 
influential input parameters in predicting k-values. As RF 
is an outperforming approach, sensitivity analysis is done 

Q<55

2.2
n=62 100%

1

yes no

Q<32

1.3
n=31 50%

2

Q<84

3
n=31 50%

3

0.92
n=14 23%

4

1.6
n=17 27%

5

2.5
n=10 16%

8

2.9
n=12 19%

9

Q<70

2.7
n=22 35%

3.7
n=9 15%

7

6

Fig. 13 Decision tree based on Q value



Page 13 of 18Kumar and Parihar  AI in Civil Engineering             (2024) 3:1  

0

1

2

3

4

5

0 1 2 3 4 5

Pr
ed

ic
te

d 
k,

 m
/d

ay

Actual k, m/day

Training
Validation
Testing

0

1

2

3

4

5

0 20 40 60 80 100

k,
 m

/d
ay

Data Points

Training Validation Testing Actual

-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 20 40 60 80 100

R
el

at
iv

e 
Er

ro
r

Data Points

Training Validation Testing

(a)

(b)

(c)

Fig. 14 Results of decision tree model: a performance of the model; 
b actual and predicted k-values; and c distribution of errors

0

1

2

3

4

5

0 1 2 3 4 5

Pr
ed

ic
te

d 
k,

 m
/d

ay

Actual k, m/day

Training
Validation
Testing

0

1

2

3

4

5

0 20 40 60 80 100

k,
 m

/d
ay

Data Points

Training Validation Testing Actual

-0.2

0

0.2

0.4

0.6

0 20 40 60 80 100

R
el

at
iv

e 
Er

ro
r

Data Points

Training Validation Testing

(a)

(b)

(c)

Fig. 15 Results of random forest model: a performance of the model; 
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Table 9 Insights into the considered performance parameters

Parameter Notation Mathematical expression Ideal value Significance

Coefficient of determination R2 ∑n
i=1(y−y)2−

∑n
i=1(y−ŷ)

2

∑n
i=1(y−y)2

1 Measure of the model’s goodness of fit

Mean Squared Error MSE 1
n

∑(
y − ŷ

)2 0 Quantifies the average squared error between predicted 
and actual values

Root Mean Squared Error RMSE
√

1
n

∑(
y − ŷ

)2 0 Provides the same measure as MSE but in the original units 
of the variable

Performance Index PI
1−

∑n
i=1(y−ŷ)

2

∑n
i=1(y−y)2

1 Measures how well a model’s predictions match the actual values

Index of Scatter IOS
√

1
n

∑
(y−ŷ)

2

y

0 Assessment of scatteredness of data points around a 1:1 line

Index of Agreement IOA 1−
∑n

i=1(ŷ−α)

2∗
∑n

i=1(α−y)
1 Measures agreement between predicted and actual values

Variance Accounted For VAF
[
1− var(y−ŷ)

var(y)

]
∗ 100 100% Quantifies the proportion of the total variance in the observed 

data that is explained by the model’s predictions

a20 index a20 20m
n

100% Percentage of predicted values within ± 20% of the actual values
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based on the RF method, and the results are presented in 
Table 13. This analysis is made by relucting one param-
eter, and the value of  R2 is noted. The parameters that 
cause a reduction in R2 are influential. It is shown that RD 
and Q are the most influential parameters, which highly 
impact the k-values of the composite soil.

4.6  Comparison with the existing literature
The best architecture model in this study is the random 
forest for predicting the soil permeability. The proposed 
model in this study is compared with the models avail-
able from the existing literature (Table 14). The R2 for the 
actual and predicted datasets of the available models is 
relatively lower than that of the model proposed in this 
study.

5  Conclusions
This study explores the drainage behavior of WFS-
incorporated sand. The experimental research has been 
extended to include AI modeling. The following major 
conclusions are drawn from this study.

(7)ŝi = ŝa − ŝr

• The permeability tends to decrease as the relative 
density of the soil increases. A notable reduction in 
the k-value, up to 140%, can be observed when the 
relative density is increased from 65% to 85%. Simi-
larly, an increase in the replacement level of WFS 
is associated with the decrease in the permeability. 
When sand is completely replaced with WFS, there 
are reductions of 36%, 51%, and 57% in the k-val-
ues for the relative density of 65%, 75%, and 85%, 
respectively.

• The R2 value and other performance parameters 
indicate that the relationship between the actual 
and predicted values is most pronounced in the 
random forest method. The order of the perfor-
mance of all the proposed models can be presented 
as RF > MLR > ANN > DT.

• Taylor’s diagram is used to verify the outcomes of 
all the considered AI approaches, and it proves the 
good performance of RF, as its mark is nearer to the 
actual value. The overfitting ratio for RF is close to 
1, indicating a strong level of fitness of the model.

• Sensitivity analysis demonstrates that Q and RD are the 
most influential parameters for predicting k-values.

Table 10 Performance parameters for the training dataset

R2 MSE RMSE PI IOS IOA VAF a20

ANN 0.9650 0.0386 0.1963 0.9636 0.0962 0.9611 99.33 88.71

MLR 0.9807 0.0232 0.1524 0.9791 0.0912 0.8947 98.18 100.00

DT 0.9611 0.0429 0.2071 0.9611 0.0708 0.9311 98.81 100.00

RF 0.9931 0.0076 0.0869 0.9909 0.0404 0.9520 99.17 100.00

Table 11 Performance parameters for the validation dataset

R2 MSE RMSE PI IOS IOA VAF a20

ANN 0.9661 0.0412 0.2030 0.9401 0.1027 0.9555 99.31 100.00

MLR 0.9685 0.0418 0.2040 0.9651 0.0897 0.8520 97.71 100.00

DT 0.9557 0.0539 0.2320 0.9555 0.0904 0.9119 98.64 100.00

RF 0.9937 0.0076 0.0870 0.9912 0.0386 0.9467 99.18 100.00

Table 12 Performance parameters for the testing dataset

R2 MSE RMSE PI IOS IOA VAF a20

ANN 0.9126 0.0633 0.2517 0.9258 0.1132 0.9331 99.27 93.33

MLR 0.9265 0.0144 0.1201 0.9656 0.0994 0.7972 97.80 100.00

DT 0.9338 0.9791 0.9867 0.9331 0.0474 0.8714 98.60 100.00

RF 0.9679 0.0207 0.144 0.9728 0.0569 0.9059 98.98 100.00
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Fig. 16 Taylor diagram for comparison of all proposed models

Fig. 17 Distribution of residuals for the proposed models

Table 13 Sensitivity analysis based on the random forest 
method

Input parameters Input 
parameter 
removed

R2 (For 
total 
dataset)

Sensitivity Rank

BS, WFS, RD, T, Q – 0.9955 –

WFS, RD, T, Q BS 0.9912 0.0043 4

BS, RD, T, Q WFS 0.9907 0.0048 3

BS, WFS, T, Q RD 0.9837 0.0118 2

BS, WFS, RD, Q T 0.9924 0.0031 5

BS, WFS, RD, T Q 0.9787 0.0168 1
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Abbreviations
KNN  k-nearest neighbors
SVM  support vector machine
LightGBM  light gradient boosting machine
RF  random forest
GB  gradient boosting
ANN  artificial neural network
MLP  multiple layer perceptron
RBF  radial basis function
ANFIS  adaptive neuro-fuzzy inference system
GPR  gaussian process regression
Poly  polynomial
PUK  pearson universal kernel
TLBO  teaching learning-based optimization
MEP  multi-expression-programming
GEP  genetic-expression-programming
GP  gaussian process
MLR  multi-linear-regression
CANFIS  co-active neuro-fuzzy inference-system
MLP  multilayer perceptron
DT  decision tree
CART   classification and regression trees
GMDH  group method of data handling
GA  genetic algorithm
k  permeability
PI  plasticity index
wl  liquid limit
wp  plastic limit
CC  clay content
ρ  density
wc  water content
e  void ratio
D10  diameter at 10% finer
D30  diameter at 30% finer
D60  diameter at 60% finer
G  specific gravity
ρd  dry density
D  grain size
S  % of sand
Fa  % of fly ash
T  time
H  head
OC  organic content
BD  bulk density
PD  particle density
UCS  uniaxial compressive strength
Gp  gas pressure
Temp  temperature
σ′  effective stress
Q  rate of flow
A  c/s area of sample
L  length of flow within soil sample
h  total hydraulic head
a  c/s area of stand pipe
µ  coefficient of viscosity
γ  unit weight of water

h1, h2  hydraulic heads
t  time interval
de  effective grain size
c  constant related to e
n  porosity
SS  specific surface
BS  percentage of sand
WFS  fraction of waste foundry sand
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