Skip to main content

Advertisement

Log in

The Sequential Therapy in Osteoporosis

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Osteoporosis management often involves a sequential treatment approach to optimize patient outcomes and minimize fracture risks. This strategy is tailored to individual patient characteristics, treatment responses, and fracture risk profiles.

Methods

A thorough literature review was systematically executed using prominent databases, including PubMed and EMBASE. The primary aim was to identify original articles and clinical trials evaluating the effectiveness of sequential therapy with anti-osteoporosis drugs, focusing on the period from 1995 to 2023. The analysis encompassed an in-depth examination of osteoporosis drugs, delineating their mechanisms of action, side effects, and current trends as elucidated in the literature.

Results and Discussion

Our study yielded noteworthy insights into the optimal sequencing of pharmacologic agents for the long-term treatment of patients necessitating multiple drugs. Notably, the achievement of optimal improvements in bone mass is observed when commencing treatment with an anabolic medication, followed by the subsequent utilization of an antiresorptive drug. This stands in contrast to initiating therapy with a bisphosphonate, which may potentially diminish outcomes in the post-anabolic intervention period. Furthermore, it has been discerned that caution should be exercised against transitioning from denosumab to PTH homologs due to the adverse effects of heightened bone turnover and sustained weakening of bone structure. Despite the absence of fracture data substantiating the implementation of integrated anabolic/antiresorptive pharmacotherapy, the incorporation of denosumab and teriparatide presents a potential avenue worthy of consideration for individuals at a heightened vulnerability to fragility fractures.

Conclusions

A judiciously implemented sequential treatment strategy in osteoporosis offers a flexible and tailored approach to address diverse clinical scenarios, optimizing fracture prevention and patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matzkin, E. G., DeMaio, M., Charles, J. F., & Franklin, C. C. (2019). Diagnosis and treatment of osteoporosis: What orthopaedic surgeons need to know. Journal of American Academy of Orthopaedic Surgeons, 27(20), e902–e912.

    Article  Google Scholar 

  2. Reid, I. R. (2015). Short-term and long-term effects of osteoporosis therapies. Nature Reviews. Endocrinology, 11(7), 418–428.

    Article  CAS  PubMed  Google Scholar 

  3. Coughlan, T., & Dockery, F. (2014). Osteoporosis and fracture risk in older people. Clinical Medicine (London)., 14(2), 187–191.

    Article  PubMed Central  Google Scholar 

  4. Burge, R., Dawson-Hughes, B., Solomon, D. H., Wong, J. B., King, A., & Tosteson, A. (2007). Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. Journal of Bone and Mineral Research, 22(3), 465–475.

    Article  PubMed  Google Scholar 

  5. Ström, O., Borgström, F., Kanis, J. A., Compston, J., Cooper, C., McCloskey, E. V., et al. (2011). Osteoporosis: Burden, health care provision and opportunities in the EU: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Archives of Osteoporosis, 6, 59–155.

    Article  PubMed  Google Scholar 

  6. Osteoporosis on the rise in India among young adults [Internet]. https://www.deccanchronicle.com/lifestyle/health-and-wellbeing/011119/osteoporosis-on-the-rise-in-india-among-young-adults.html. Cited 24 Jun 2023.

  7. Brown, C. (2017). Osteoporosis: staying strong. Nature, 550(7674), S15–S17.

    Article  CAS  PubMed  Google Scholar 

  8. Raggatt, L. J., & Partridge, N. C. (2010). Cellular and molecular mechanisms of bone remodeling. Journal of Biological Chemistry., 285(33), 25103–25108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Canalis, E. (2013). Wnt signalling in osteoporosis: Mechanisms and novel therapeutic approaches. Nature Reviews. Endocrinology, 9(10), 575–583.

    Article  CAS  PubMed  Google Scholar 

  10. Alexandre, C., & Vico, L. (2011). Pathophysiology of bone loss in disuse osteoporosis. Joint, Bone, Spine, 78(6), 572–576.

    Article  CAS  PubMed  Google Scholar 

  11. Doty, S. B., & DiCarlo, E. F. (1995). Pathophysiology of immobilization osteoporosis. Current Opinion in Orthopaedics, 6(5), 45–49.

    Article  CAS  PubMed  Google Scholar 

  12. Sibonga, J., Matsumoto, T., Jones, J., Shapiro, J., Lang, T., Shackelford, L., et al. (2019). Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone, 128, 112037.

    Article  CAS  PubMed  Google Scholar 

  13. Mazziotti, G., Formenti, A. M., Adler, R. A., Bilezikian, J. P., Grossman, A., Sbardella, E., et al. (2016). Glucocorticoid-induced osteoporosis: Pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine, 54(3), 603–611.

    Article  CAS  PubMed  Google Scholar 

  14. Whittier, X., & Saag, K. G. (2016). Glucocorticoid-induced Osteoporosis. Rheumatic Disease Clinics of North America., 42(1), 177–189.

    Article  PubMed  Google Scholar 

  15. Kim, H. Y., & Kim, Y. (2019). Associations of obesity with osteoporosis and metabolic syndrome in Korean postmenopausal women: A cross-sectional study using national survey data. Archives of Osteoporosis, 14(1), 64.

    Article  PubMed  Google Scholar 

  16. Xiao, W., Li, S., Pacios, S., Wang, Y., & Graves, D. T. (2016). Bone remodeling under pathological conditions. Frontiers of Oral Biology, 18, 17–27.

    Article  PubMed  Google Scholar 

  17. Yuan, F. L., Xu, R. S., Jiang, D. L., He, X. L., Su, Q., Jin, C., et al. (2015). Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. Bone, 75, 128–137.

    Article  CAS  PubMed  Google Scholar 

  18. Suchacki, K. J., Cawthorn, W. P., & Rosen, C. J. (2016). Bone marrow adipose tissue: formation, function and regulation. Current Opinion in Pharmacology, 28, 50–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aspray, T. J., & Hill, T. R. (2019). Osteoporosis and the ageing skeleton. SubCellular Biochemistry, 91, 453–476.

    Article  CAS  PubMed  Google Scholar 

  20. Khosla, S., & Hofbauer, L. C. (2017). Osteoporosis treatment: recent developments and ongoing challenges. The Lancet Diabetes & Endocrinology, 5(11), 898–907.

    Article  Google Scholar 

  21. Sølling, A. S. K., Harsløf, T., & Langdahl, B. (2019). Current status of bone-forming therapies for the management of osteoporosis. Drugs and Aging, 36(7), 625–638.

    Article  PubMed  Google Scholar 

  22. Cano, A., Chedraui, P., Goulis, D. G., Lopes, P., Mishra, G., Mueck, A., et al. (2018). Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide. Maturitas, 107, 7–12.

    Article  CAS  PubMed  Google Scholar 

  23. Paschalis, E. P., Gamsjaeger, S., Hassler, N., Fahrleitner-Pammer, A., Dobnig, H., Stepan, J. J., et al. (2017). Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality. Bone, 95, 41–46.

    Article  CAS  PubMed  Google Scholar 

  24. Weaver, C. M., Alexander, D. D., Boushey, C. J., Dawson-Hughes, B., Lappe, J. M., LeBoff, M. S., et al. (2016). Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporosis International, 27, 367–376.

    Article  CAS  PubMed  Google Scholar 

  25. Pagnotti, G. M., Styner, M., Uzer, G., Patel, V. S., Wright, L. E., Ness, K. K., et al. (2019). Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nature Reviews. Endocrinology, 15(6), 339–355.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feng, X., & McDonald, J. M. (2011). Disorders of bone remodeling. Annual Review of Pathology, 6, 121–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drake, M. T., Clarke, B. L., & Khosla, S. (2008). Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clinic Proceedings, 83(9), 1032–1045.

    Article  CAS  PubMed  Google Scholar 

  28. Levin, V. A., Jiang, X., & Kagan, R. (2018). Estrogen therapy for osteoporosis in the modern era. Osteoporosis International, 29(5), 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  29. Ellis, A. J., Hendrick, V. M., Williams, R., & Komm, B. S. (2015). Selective estrogen receptor modulators in clinical practice: A safety overview. Expert Opinion on Drug Safety, 14(6), 921–934.

    Article  CAS  PubMed  Google Scholar 

  30. Guañabens, N., Moro-Álvarez, M. J., Casado, E., Blanch-Rubió, J., Gómez-Alonso, C., Díaz-Guerra, G. M., et al. (2019). The next step after anti-osteoporotic drug discontinuation: An up-to-date review of sequential treatment. Endocrine, 64(3), 441–455.

    Article  PubMed  Google Scholar 

  31. Xu, Z., Fan, C., Zhao, X., & Tao, H. (2016). Treatment of osteoporosis with eldecalcitol, a new vitamin D analog: A comprehensive review and meta-analysis of randomized clinical trials. Drug Design, Development and Therapy., 10, 509–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Noguchi, Y., Kawate, H., Nomura, M., & Takayanagi, R. (2013). Eldecalcitol for the treatment of osteoporosis. Clinical Interventions in Aging, 8, 1313–1321.

    PubMed  PubMed Central  Google Scholar 

  33. Iba, K., Sonoda, T., Takada, J., Dohke, T., & Yamashita, T. (2017). Further significant effects of eldecalcitol on bone resorption markers and bone mineral density in postmenopausal osteoporosis patients having undergone long-term bisphosphonate treatment. Journal of Bone and Mineral Metabolism, 35(2), 171–176.

    Article  CAS  PubMed  Google Scholar 

  34. Cosman, F., Crittenden, D. B., Adachi, J. D., Binkley, N., Czerwinski, E., Ferrari, S., et al. (2016). Romosozumab treatment in postmenopausal women with osteoporosis. The New England Journal of Medicine, 375(16), 1532–1543. https://doi.org/10.1056/NEJMoa1607948

    Article  CAS  PubMed  Google Scholar 

  35. Tsai, J., Uihlein, A., Burnett-Bowie, S., Neer, R., Zhu, Y., Derrico, N., et al. (2015). Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: The DATA-HRpQCT study. Journal of Bone and Mineral Research, 30(1), 39–45.

    Article  CAS  PubMed  Google Scholar 

  36. Hofbauer, L. C., & Schoppet, M. (2004). Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA, 292(4), 490–495.

    Article  CAS  PubMed  Google Scholar 

  37. Shea, B., Wells, G., Cranney, A., Zytaruk, N., Robinson, V., Griffith, L., et al. (2002). Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocrine Reviews., 23(4), 552–559.

    Article  CAS  PubMed  Google Scholar 

  38. Je, R., G, A., R, P., Az, L., C, K., & M, S., et al. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–33.

  39. Zmuda, J. M., Cauley, J. A., Ljung, B. M., Bauer, D. C., Cummings, S. R., Kuller, L. H., et al. (2001). Bone mass and breast cancer risk in older women: Differences by stage at diagnosis. Journal of the National Cancer Institute, 93(12), 930–936.

    Article  CAS  PubMed  Google Scholar 

  40. Greenspan, S. L., Emkey, R. D., Bone, H. G., Weiss, S. R., Bell, N. H., Downs, R. W., et al. (2002). Significant differential effects of alendronate, estrogen, or combination therapy on the rate of bone loss after discontinuation of treatment of postmenopausal osteoporosis. Annals of Internal Medicine, 137(11), 875–883. https://doi.org/10.7326/0003-4819-137-11-200212030-00008

    Article  CAS  PubMed  Google Scholar 

  41. Ettinger, B., & Grady, D. (1993). The waning effect of postmenopausal estrogen therapy on osteoporosis. New England Journal of Medicine, 329(16), 1192–1193.

    Article  CAS  PubMed  Google Scholar 

  42. Nelson, E. R., Wardell, S. E., & McDonnell, D. P. (2013). The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: Implications for the treatment and prevention of osteoporosis. Bone, 53(1), 42–50.

    Article  CAS  PubMed  Google Scholar 

  43. Ettinger, B., Black, D. M., Mitlak, B. H., Knickerbocker, R. K., Nickelsen, T., Genant, H. K., et al. (1999). Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA, 282(7), 637–645.

    Article  CAS  PubMed  Google Scholar 

  44. Delmas, P. D., Genant, H. K., Crans, G. G., Stock, J. L., Wong, M., Siris, E., et al. (2003). Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: Results from the MORE trial. Bone, 33(4), 522–532.

    Article  CAS  PubMed  Google Scholar 

  45. Silverman, S. L., et al. (2008). Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. Journal of Bone and Mineral Research. https://doi.org/10.1359/jbmr.080710

    Article  PubMed  Google Scholar 

  46. Barrett-Connor, E., Mosca, L., Collins, P., Geiger, M. J., Grady, D., Kornitzer, M., et al. (2006). Effects of Raloxifene on cardiovascular events and breast cancer in postmenopausal women. New England Journal of Medicine, 355(2), 125–137. https://doi.org/10.1056/NEJMoa062462

    Article  CAS  PubMed  Google Scholar 

  47. Naylor, K. E., Clowes, J. A., Finigan, J., Paggiosi, M. A., Peel, N. F. A., & Eastell, R. (2010). The effect of cessation of raloxifene treatment on bone turnover in postmenopausal women. Bone, 46(3), 592–597.

    Article  CAS  PubMed  Google Scholar 

  48. Delmas, P. D., Ensrud, K. E., Adachi, J. D., Harper, K. D., Sarkar, S., Gennari, C., et al. (2002). Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: Four-year results from a randomized clinical trial. Journal of Clinical Endocrinology and Metabolism, 87(8), 3609–3617.

    Article  CAS  PubMed  Google Scholar 

  49. Harris, S. T., Watts, N. B., Genant, H. K., McKeever, C. D., Hangartner, T., Keller, M., et al. (1999). Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA, 282(14), 1344–1352.

    Article  CAS  PubMed  Google Scholar 

  50. Chesnut, C. H., Skag, A., Christiansen, C., Recker, R., Stakkestad, J. A., Hoiseth, A., et al. (2004). Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. Journal of Bone and Mineral Research, 19(8), 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  51. Naylor, K. E., Bradburn, M., Paggiosi, M. A., Gossiel, F., Peel, N. F. A., McCloskey, E. V., et al. (2018). Effects of discontinuing oral bisphosphonate treatments for postmenopausal osteoporosis on bone turnover markers and bone density. Osteoporosis International, 29(6), 1407–1417.

    Article  CAS  PubMed  Google Scholar 

  52. Dempster, D. W., Lambing, C. L., Kostenuik, P. J., & Grauer, A. (2012). Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis: A review of preclinical and clinical data. Clinical Therapeutics, 34(3), 521–536.

    Article  CAS  PubMed  Google Scholar 

  53. Cummings, S. R., Martin, J. S., McClung, M. R., Siris, E. S., Eastell, R., Reid, I. R., et al. (2009). Denosumab for prevention of fractures in postmenopausal women with osteoporosis. The New England Journal of Medicine, 361(8), 756–765. https://doi.org/10.1056/NEJMoa0809493

    Article  CAS  PubMed  Google Scholar 

  54. Papapoulos, S., Lippuner, K., Herbeck, C., Lin, C., Kendler, D., Lewiecki, E., et al. (2015). The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: Results from the FREEDOM Extension study. Osteoporosis International., 1(26), 2773–2783.

    Article  Google Scholar 

  55. Ominsky, M. S., Libanati, C., Niu, Q. T., Boyce, R. W., Kostenuik, P. J., Wagman, R. B., et al. (2015). Sustained modeling-based bone formation during adulthood in cynomolgus monkeys may contribute to continuous BMD gains with denosumab. Journal of Bone and Mineral Research, 30(7), 1280–1289.

    Article  CAS  PubMed  Google Scholar 

  56. Zebaze, R. M., Libanati, C., Austin, M., Ghasem-Zadeh, A., Hanley, D. A., Zanchetta, J. R., et al. (2014). Differing effects of denosumab and alendronate on cortical and trabecular bone. Bone, 59, 173–179.

    Article  CAS  PubMed  Google Scholar 

  57. Zebaze, R., Libanati, C., McClung, M. R., Zanchetta, J. R., Kendler, D. L., Høiseth, A., et al. (2016). Denosumab reduces cortical porosity of the proximal femoral shaft in postmenopausal women with osteoporosis. Journal of Bone and Mineral Research, 31(10), 1827–1834.

    Article  CAS  PubMed  Google Scholar 

  58. Boonen, S., Ferrari, S., Miller, P. D., Eriksen, E. F., Sambrook, P. N., Compston, J., et al. (2012). Postmenopausal osteoporosis treatment with antiresorptives: Effects of discontinuation or long-term continuation on bone turnover and fracture risk—a perspective. Journal of Bone and Mineral Research, 27(5), 963–974.

    Article  CAS  PubMed  Google Scholar 

  59. Martin, T. J. (2014). Bone biology and anabolic therapies for bone: Current status and future prospects. Journal of Bone Metabolism, 21(1), 8–20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. McClung, M. R., San Martin, J., Miller, P. D., Civitelli, R., Bandeira, F., Omizo, M., et al. (2005). Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Archives of Internal Medicine, 165(15), 1762–1768.

    Article  CAS  PubMed  Google Scholar 

  61. Dempster, D. W., Zhou, H., Recker, R. R., Brown, J. P., Recknor, C. P., Lewiecki, E. M., et al. (2018). Remodeling- and modeling-based bone formation with teriparatide versus denosumab: A longitudinal analysis from baseline to 3 months in the AVA study. Journal of Bone and Mineral Research, 33(2), 298–306. https://doi.org/10.1002/jbmr.3309

    Article  CAS  PubMed  Google Scholar 

  62. Jiang, Y., Zhao, J. J., Mitlak, B. H., Wang, O., Genant, H. K., & Eriksen, E. F. (2003). Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. Journal of Bone and Mineral Research, 18(11), 1932–1941.

    Article  CAS  PubMed  Google Scholar 

  63. Cohen, A., Stein, E. M., Recker-Robert, R., Lappe, J. M., Dempster, D. W., Zhou, H., et al. (2013). Teriparatide for idiopathic osteoporosis in premenopausal women: A pilot study. The Journal of Clinical Endocrinology and Metabolism, 98(5), 1971–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dempster, D. W., Zhou, H., Ruff, V. A., Melby, T. E., Alam, J., & Taylor, K. A. (2018). Longitudinal effects of teriparatide or zoledronic acid on bone modeling- and remodeling-based formation in the SHOTZ study. The Journal of Bone and Mineral Research, 33(4), 627–633. https://doi.org/10.1002/jbmr.3350

    Article  CAS  PubMed  Google Scholar 

  65. Langdahl, B. L., Teglbjærg, C. S., Ho, P. R., Chapurlat, R., Czerwinski, E., Kendler, D. L., et al. (2015). A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: Results from the ADAMO trial. Journal of Clinical Endocrinology and Metabolism, 100(4), 1335–1342.

    Article  CAS  PubMed  Google Scholar 

  66. Silverman, S., Langdahl, B. L., Fujiwara, S., Saag, K., Napoli, N., Soen, S., et al. (2019). Reduction of hip and other fractures in patients receiving teriparatide in real-world clinical practice: Integrated analysis of four prospective observational studies. Calcified Tissue International, 104(2), 193–200.

    Article  CAS  PubMed  Google Scholar 

  67. McClung, M. R., Harvey, N. C., Fitzpatrick, L. A., Miller, P. D., Hattersley, G., Wang, Y., et al. (2018). Effects of abaloparatide-SC on bone mineral density and risk of fracture in postmenopausal women aged 80 years or older with osteoporosis. Menopause, 25(7), 767–771.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Miller, P. D., Hattersley, G., Riis, B. J., Williams, G. C., Lau, E., Russo, L. A., et al. (2016). Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA, 316(7), 722–733.

    Article  CAS  PubMed  Google Scholar 

  69. Watts, N. B., Hattersley, G., Fitzpatrick, L. A., Wang, Y., Williams, G. C., Miller, P. D., et al. (2019). Abaloparatide effect on forearm bone mineral density and wrist fracture risk in postmenopausal women with osteoporosis. Osteoporosis International, 30(6), 1187–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chavassieux, P., Chapurlat, R., Portero-Muzy, N., Roux, J. P., Garcia, P., Brown, J. P., et al. (2019). Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: Bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. Journal of Bone and Mineral Research, 34(9), 1597–1608.

    Article  CAS  PubMed  Google Scholar 

  71. Wijenayaka, A. R., Kogawa, M., Lim, H. P., Bonewald, L. F., Findlay, D. M., & Atkins, G. J. (2011). Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE, 6(10), e25900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cosman, F., Crittenden, D. B., Ferrari, S., Khan, A., Lane, N. E., Lippuner, K., et al. (2018). FRAME study: The foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. Journal of Bone and Mineral Research., 33(7), 1219–1226. https://doi.org/10.1002/jbmr.3427

    Article  CAS  PubMed  Google Scholar 

  73. Saag, K. G., Petersen, J., Brandi, M. L., Karaplis, A. C., Lorentzon, M., Thomas, T., et al. (2017). Romosozumab or alendronate for fracture prevention in women with osteoporosis. New England Journal of Medicine, 377(15), 1417–1427. https://doi.org/10.1056/NEJMoa1708322

    Article  CAS  PubMed  Google Scholar 

  74. US Pharmacist—The Leading Journal in Pharmacy [Internet]. https://www.uspharmacist.com/. Cited 12 Sep 2023.

  75. Kanis, J. A., Harvey, N. C., McCloskey, E., Bruyère, O., Veronese, N., Lorentzon, M., et al. (2020). Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporosis International, 31(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  76. Ettinger, B., San Martin, J., Crans, G., & Pavo, I. (2004). Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. Journal of Bone and Mineral Research, 19(5), 745–751.

    Article  CAS  PubMed  Google Scholar 

  77. Bone, H. G., Cosman, F., Miller, P. D., Williams, G. C., Hattersley, G., Hu, M. Y., et al. (2018). ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. Journal of Clinical Endocrinology and Metabolism, 103(8), 2949–2957.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kendler, D., Chines, A., Clark, P., Ebeling, P. R., McClung, M., Rhee, Y., et al. (2020). Bone mineral density after transitioning from denosumab to alendronate. Journal of Clinical Endocrinology and Metabolism, 105(3), e255-264.

    Article  PubMed  Google Scholar 

  79. Ramchand, S. K., David, N. L., Lee, H., Eastell, R., Tsai, J. N., & Leder, B. Z. (2021). Efficacy of zoledronic acid in maintaining areal and volumetric bone density after combined denosumab and teriparatide administration: DATA-HD study extension. Journal of Bone and Mineral Research, 36(5), 921–930.

    Article  CAS  PubMed  Google Scholar 

  80. Sølling, A. S., Harsløf, T., & Langdahl, B. (2021). Treatment with zoledronate subsequent to denosumab in osteoporosis: A 2-year randomized study. Journal of Bone and Mineral Research, 36(7), 1245–1254.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Sauhta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Standard Statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed Consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauhta, R., Makkar, D. & Siwach, P.S. The Sequential Therapy in Osteoporosis. JOIO 57 (Suppl 1), 150–162 (2023). https://doi.org/10.1007/s43465-023-01067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-01067-2

Keywords

Navigation