Skip to main content

Advertisement

Log in

Biologic Antiresorptive: Denosumab

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background:

Osteoporosis is an age-related common bone disorder characterized by low bone mineral density and increased fragility fracture risk. Various Antiresorptive medications are being used to target osteoclast mediated bone resorption to prevent bone loss and reduce fracture risk.

About Denosumab:

Denosumab is a novel biological antiresorptive drug that belongs to the class of monoclonal antibodies. It binds to and inhibits the cytokine receptor activator of nuclear factor kappa-B ligand (RANKL), which is requisite for osteoclast differentiation, function and survival.

Effectiveness:

Denosumab has been shown to be a potent and effective therapy for osteoporosis, with clinical trial data demonstrating significant improvement in bone mineral density (BMD) and reductions in fracture risk at various skeletal sites for more than 10 years of treatment.

Safety Profile:

Denosumab has a favourable benefit/risk profile, with low rates of complications such as infection, atypical femoral fracture and osteonecrosis of the jawbone.

Challenges:

However, denosumab treatment requires continuous administration, as discontinuation leads to rapid bone mineral loss and increased risk of multiple vertebral fractures due to rebound of bone turnover. Therefore, modification to another anti-osteoporosis drug therapy after denosumab discontinuation is required to maintain bone health.

Conclusion:

Denosumab is a promising biological antiresorptive therapy for osteoporosis that offers high efficacy and safety, but also poses challenges for long-term management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AFF:

Atypical femur fracture

BMD:

Bone mineral density

BRC:

Bone remodeling compartment

BTMs:

Bone turnover markers

CMP:

Common myeloid progenitors

CTX:

C-telopeptide

DAPS:

Denosumab adherence preference satisfactions

DEFEND:

Denosumab fortifies bone density

FREEDOM:

Fracture reduction evaluation of denosumab in osteoporosis every 6 Months

GMP:

Granulocyte/macrophage progenitors

GM-CSF:

Granulocyte/macrophage colony stimulating factor

HALT:

Hormone ablation bone loss trial

HSC:

Hematopoietic Stem Cells

IGF-I:

Insulin-like growth factor-I

IL:

Interleukin and IL-6

MVF:

Multiple vertebral fractures

ONJ:

Osteonecrosis of jaw

OPG:

Osteoprotegerin

OPGL:

Osteoprotegerin ligand

P1NP:

Procollagen type 1 N-terminal peptide

PTH:

Human recombinant parathyroid hormone,

PTHrP:

Synthetic PTH-related peptide

RANK:

Receptor activator of nuclear factor kappa beta (NKfB)

RANKL:

Receptor activator of nuclear factor kappa beta (NKfB) ligand

SCF:

Stem cell factor

SERMs:

Selective estrogen receptor modulators

SC:

Subcutaneous

TGF-β:

Transforming growth factor beta

TRANCE:

TNF related activation induced cytokine

References

  1. Rosen, H., Drezner, M. Clinical manifestations, diagnosis, and evaluation of osteoporosis in postmenopausal women-UpToDate [Internet]. 2018.

  2. Compston, J., Bowring, C., Cooper, A., et al. (2013). Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National osteoporosis guideline group (NOGG) update 2013. Maturitas, 75, 392–396.

    Article  CAS  PubMed  Google Scholar 

  3. Cosman, F., de Beur, S. J., LeBoff, M. S., et al. (2014). Clinician’s guide to prevention and treatment of osteoporosis. Osteoporosis International, 25, 2359–2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Denosumab (Prolia): Treatment to increase bone mass in men with osteoporosis at high risk for fracture; or who have failed or are intolerant to other available osteoporosis therapy [Internet]. Ottawa (ON): Canadian agency for drugs and technologies in health; 2015 Oct.

  5. Tsai, J., Burnett-Bowie, S., Lee, H., et al. (2017). Relationship between bone turnover and density with teriparatide, denosumab or both in women in the DATA study. Bone, 95, 20–25.

    Article  CAS  PubMed  Google Scholar 

  6. Zaheer, S., LeBoff, M., & Lewiecki, E. M. (2015). Denosumab for the treatment of osteoporosis. Expert Opinion on Drug Metabolism & Toxicology, 11, 461–470.

    Article  CAS  Google Scholar 

  7. Raisz, L. G. (1988). Hormonal regulation of bone growth and remodelling. Ciba Foundation symposium., 136, 226–238.

    CAS  PubMed  Google Scholar 

  8. Mohan, S., & Baylink, D. J. (1996). Insulin-like growth factor system components and the coupling of bone formation to resorption. Hormone research., 45(Suppl 1), 59–62.

    Article  CAS  PubMed  Google Scholar 

  9. Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., & Shi, Z. (2009). TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 15, 757–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xian, L., Wu, X., Pang, L., Lou, M., Rosen, C. J., Qiu, T., Crane, J., Frassica, F., Zhang, L., Rodriguez, J. P., Xiaofeng, J., Shoshana, Y., Shouhong, X., Argiris, E., Mei, W., & Xu, C. (2012). Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nature Medicine, 18, 1095–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Falany, M. L., Thames, A. M., 3rd., McDonald, J. M., Blair, H. C., McKenna, M. A., Moore, R. E., Young, M. K., & Williams, J. P. (2001). Osteoclasts secrete the chemotactic cytokine mim-1. Biochemical and Biophysical Research Communications, 281(1), 180–185.

    Article  CAS  PubMed  Google Scholar 

  12. Martin, T., Gooi, J. H., & Sims, N. A. (2009). Molecular mechanisms in coupling of bone formation to resorption. Critical Reviews in Eukaryotic Gene Expression, 19, 73–88.

    Article  CAS  PubMed  Google Scholar 

  13. Andersen, T. L., Sondergaard, T. E., Skorzynska, K. E., Dagnaes-Hansen, F., Plesner, T. L., Hauge, E. M., Plesner, T., & Delaisse, J. M. (2009). A physical mechanism for coupling bone resorption and formation in adult human bone. American Journal of Pathology, 174, 239–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gothlin, G., & Ericsson, J. L. (1976). The osteoclast: Review of ultrastructure, origin, and structure-function relationship. Clinical orthopaedics and related research., 120, 201–231.

    Google Scholar 

  15. Walker, D. G. (1973). Osteopetrosis cured by temporary parabiosis. Science, 180, 875.

    Article  CAS  PubMed  Google Scholar 

  16. Kahn, A. J., & Simmons, D. J. (1975). Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature, 258, 325–327.

    Article  CAS  PubMed  Google Scholar 

  17. Walker, D. G. (1975). Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science, 190, 784–785.

    Article  CAS  PubMed  Google Scholar 

  18. Walker, D. G. (1975). Spleen cells transmit osteopetrosis in mice. Science, 190, 785–787.

    Article  CAS  PubMed  Google Scholar 

  19. Scheven, B. A., Visser, J. W., & Nijweide, P. J. (1986). In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature, 321, 79–81.

    Article  CAS  PubMed  Google Scholar 

  20. Kondo, M., Wagers, A. J., Manz, M. G., Prohaska, S. S., Scherer, D. C., Beilhack, G. F., Shizuru, J. A., & Weissman, I. L. (2003). Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annual Review of Immunology, 21, 759–806.

    Article  CAS  PubMed  Google Scholar 

  21. Metcalf, D. (2008). Hematopoietic cytokines. Blood, 111(2), 485–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N., & Suda, T. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/ANKL. Proc Natl Acad Sci U S A., 95, 3597–3602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsuzaki, K., Udagawa, N., Takahashi, N., Yamaguchi, K., Yasuda, H., Shima, N., Morinaga, T., Toyama, Y., Yabe, Y., Higashio, K., & Suda, T. (1998). Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and Biophysical Research Communications, 246, 199–204.

    Article  CAS  PubMed  Google Scholar 

  24. Metcalf, D. (1970). Studies on colony formation in vitro by mouse bone marrow cells. II. Action of colony stimulating factor. Journal of Cellular Physiology, 76, 89–99.

    Article  CAS  PubMed  Google Scholar 

  25. Xaus, J., Comalada, M., Valledor, A. F., Cardó, M., Herrero, C., Soler, C., Lloberas, J., & Celada, A. (2001). Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology, 204, 543–550.

    Article  CAS  PubMed  Google Scholar 

  26. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., … Boyle, W. J. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–176.

    Article  CAS  PubMed  Google Scholar 

  27. Anderson, D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D., & Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390, 175–179.

    Article  CAS  PubMed  Google Scholar 

  28. Bucay, N., Sarosi, I., Dunstan, C. R., Morony, S., Tarpley, J., Capparelli, C., Scully, S., Tan, H. L., Xu, W., Lacey, D. L., Boyle, W. J., & Simonet, W. S. (1998). osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes & Development, 12, 1260–1268.

    Article  CAS  Google Scholar 

  29. Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Lüthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H. L., Trail, G., Sullivan, J., Davy, E., Bucay, N., … Boyle, W. J. (1997). Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 89, 309–319.

    Article  CAS  PubMed  Google Scholar 

  30. Lum, L., Wong, B. R., Josien, R., Becherer, J. D., Erdjument-Bromage, H., Schlöndorff, J., Tempst, P., Choi, Y., & Blobel, C. P. (1999). Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzymelike protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. Journal of Biological Chemistry, 274, 13613–13618.

    Article  CAS  PubMed  Google Scholar 

  31. Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H., & Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Molecular Cell, 4, 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  32. Amgen, Inc. Prolia (denosumab) prescribing information. 2010 updated 2014.

  33. Bekker, P., Holloway, D., Rasmussen, A., et al. (2004). A single-dose placebo-controlled study of AMG 162, a fully monoclonal antibody to RANKL, in postmenopausal women. Journal of Bone and Mineral Research, 19(7), 1059–1066.

    Article  CAS  PubMed  Google Scholar 

  34. Sutjandra, L., Rodriguez, R., Doshi, S., et al. (2011). Population pharmacokinetic metaanalysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clinical Pharmacokinetics, 50(12), 793–807.

    Article  CAS  PubMed  Google Scholar 

  35. Block, G., Bone, H., Fang, L., et al. (2012). A single-dose study of denosumab in patients with various degrees of renal impairment. Journal of Bone and Mineral Research, 27(7), 1471–1479.

    Article  CAS  PubMed  Google Scholar 

  36. Miller, P., Bolognese, M., Lewiecki, E., et al. (2008). Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: A randomized blinded phase 2 clinical trial. Bone, 43(2), 222–229.

    Article  CAS  PubMed  Google Scholar 

  37. Cummings, S., San Martin, J., Mcclung, M., et al. (2009). Denosumab for prevention of fractures in postmenpausal women with osteoporosis. New England Journal of Medicine, 361(8), 756–765.

    Article  CAS  PubMed  Google Scholar 

  38. Papapoulos, S., Lippuner, K., Roux, C., Lin, C. J., Kendler, D. L., Lewiecki, E. M., Brandi, M. L., Czerwiński, E., Franek, E., Lakatos, P., Mautalen, C., Minisola, S., Reginster, J. Y., Jensen, S., Daizadeh, N. S., Wang, A., Gavin, M., Libanati, C., Wagman, R. B., & Bone, H. G. (2015). The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporosis International, 26(12), 2773–2783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown, J., Roux, C., Torring, O., et al. (2013). Discontinuation of denosumab and associated fracture incidence: analysis from the fracture reduction evaluation of denosumab in osteoporosis every 6 months (FREEDOM) trial. Journal of Bone and Mineral Research, 28(4), 746–752.

    Article  CAS  PubMed  Google Scholar 

  40. Brown, J., Reid, I., Wagon, R., et al. (2014). Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. Journal of Bone and Mineral Research, 29(9), 2051–2056.

    Article  CAS  PubMed  Google Scholar 

  41. Orwoll, E., Teglbjærg, C., Langdahl, B., et al. (2012). A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. Journal of Clinical Endocrinology and Metabolism, 97(9), 3161–3169.

    Article  CAS  PubMed  Google Scholar 

  42. Smith, M., Egerdie, B., Toriz, N., et al. (2009). Denosumab in men receiving androgen deprivation therapy for prostate cancer. New England Journal of Medicine, 361(8), 745–755.

    Article  CAS  PubMed  Google Scholar 

  43. Ellis, G. K., Bone, H. G., Chlebowski, R., et al. (2008). Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. Journal of Clinical Oncology, 26, 4875–4882.

    Article  CAS  PubMed  Google Scholar 

  44. Tsai, J., Uihlein, A., Lee, H., et al. (2013). Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: The DATA study randomised trial. Lancet, 382(9886), 50–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, Y., Zhu, J., Zhou, Y., Peng, J., & Wang, B. (2021). Efficacy and safety of denosumab in osteoporosis or low bone mineral density postmenopausal women. Frontiers in Pharmacology, 14(12), 588095.

    Article  Google Scholar 

  46. Freemantle, N., Satram-Hoang, A., Tang, E., et al. (2012). Final results of the DAPS (Denosumab ADHERENCE PREFERENCE SATISFACTION) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporosis International, 23(1), 317–326.

    Article  CAS  PubMed  Google Scholar 

  47. von Keyserlingk, C., Hopkins, R., Anastasilakis, A., et al. (2011). Clinical efficacy and safety of denosumab in postmenopausal women with low bone mineral density and osteoporosis: a meta-analysis. Seminars in Arthritis and Rheumatism, 41(2), 178–186.

    Article  Google Scholar 

  48. Hageman, K., Patel, K., Mace, K., et al. (2013). The role of denosumab for prevention of skeletal-related complications in multiple myeloma. Annals of Pharmacotherapy, 47(7–8), 1069–1074.

    Article  PubMed  Google Scholar 

  49. Watts, N. B., Grbic, J. T., Binkley, N., et al. (2019). Invasive oral procedures and events in postmenopausal women with osteoporosis treated with denosumab for up to 10 years. Journal of Clinical Endocrinology and Metabolism, 104, 2443–2452.

    Article  PubMed  Google Scholar 

  50. Ferrari, S., Lewiecki, E. M., Butler, P. W., et al. (2020). Favourable skeletal benefit/risk of long-term denosumab therapy: a virtual-twin analysis of fractures prevented relative to skeletal safety events observed. Bone, 134, 115287.

    Article  CAS  PubMed  Google Scholar 

  51. Bone, H. G., Bolognese, M. A., Yuen, C. K., Kendler, D. L., Wang, H., Liu, Y., et al. (2008). Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. Journal of Clinical Endocrinology and Metabolism, 93, 2149–2157.

    Article  CAS  PubMed  Google Scholar 

  52. Geller, M., Wagman, R., Ho, P., et al. (2014). SAT0479 early findings from Prolia® post-marketing safety surveillance for atypical femoral fracture, osteonecrosis of the jaw, severe symptomatic hypocalcemia, and anaphylaxis. Annals of the Rheumatic Diseases, 73, 766–767.

    Article  Google Scholar 

  53. Ferrari-Lacraz, S., & Ferrari, S. (2011). Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporosis International, 22, 435–446.

    Article  CAS  PubMed  Google Scholar 

  54. Miller, P., Bolognese, M., Lewiecki, E., et al. (2008). Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone, 43(2), 222–229.

    Article  CAS  PubMed  Google Scholar 

  55. Bone, H. G., Bolognese, M. A., Yuen, C. K., Kendler, D. L., Miller, P. D., Yang, Y. C., Grazette, L., San Martin, J., & Gallagher, J. C. (2011). Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. Journal of Clinical Endocrinology and Metabolism, 96(4), 972–980.

    Article  CAS  PubMed  Google Scholar 

  56. Brown, J. P., Dempster, D. W., Ding, B., et al. (2011). Bone remodeling in postmenopausal women who discontinued denosumab treatment: Off-treatment biopsy study. Journal of Bone and Mineral Research, 26, 2737–2744.

    Article  CAS  PubMed  Google Scholar 

  57. Aubry-Rozier, B., Gonzalez-Rodriguez, E., Stoll, D., & Lamy, O. (2016). Severe spontaneous vertebral fractures after denosumab discontinuation: three case reports. Osteoporosis International, 27, 1923–1925.

    Article  CAS  PubMed  Google Scholar 

  58. Lamy, O., Gonzalez-Rodriguez, E., Stoll, D., Hans, D., & Aubry-Rozier, B. (2017). Severe rebound-associated vertebral fractures after denosumab discontinuation: 9 clinical cases report. Journal of Clinical Endocrinology and Metabolism, 102, 354–358.

    Article  PubMed  Google Scholar 

  59. Kendler, D., Chines, A., Clark, P., Ebeling, P. R., McClung, M., Rhee, Y., Huang, S., & Stad, R. K. (2020). Bone mineral density after transitioning from denosumab to alendronate. Journal of Clinical Endocrinology and Metabolism, 105(3), e255–e264.

    Article  PubMed  Google Scholar 

  60. Cummings, S. R., Ferrari, S., Eastell, R., et al. (2018). Vertebral fractures after discontinuation of denosumab: A post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. Journal of Bone and Mineral Research, 33, 190–198.

    Article  CAS  PubMed  Google Scholar 

  61. Kendler, D. L., Chines, A., Brandi, M. L., et al. (2019). The risk of subsequent osteoporotic fractures is decreased in subjects experiencing fracture while on denosumab: Results from the FREEDOM and FREEDOM extension studies. Osteoporosis International, 30, 71–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, L., Arora, M.K. & Marwah, S. Biologic Antiresorptive: Denosumab. JOIO 57 (Suppl 1), 127–134 (2023). https://doi.org/10.1007/s43465-023-01064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-01064-5

Keywords

Navigation