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Abstract
The paper investigates electrical properties of fully stabilized zirconia, which is widely applied as a solid electrolyte in elec-
trochemical devices such as solid oxide fuel cells. High ionic conductivity of these materials is crucial for effective operating 
of the devices; however, grain boundary resistivity limits conductivity in polycrystalline ceramics. Thus, optimisation of the 
microstructure of zirconia is necessary from an application point of view. Based on three-dimensional electron backscatter 
diffraction (3D EBSD) data, the research employed a complex impedance spectroscopy to establish a correlation between 
microstructure of cubic zirconia sinters and their conductivity. Samples with different levels of anisotropy in grain boundary 
plane parameters were investigated. The obtained results indicate that the conduction of ions through the grain boundaries 
is higher in the sample with the higher representation of the near-(001) grain boundaries. Such a relationship suggests that 
an over-representation of low-energy grain boundaries in zirconia polycrystals leads to an increase of ionic conductivity.
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1  Introduction

Stabilized cubic zirconia is often used as a solid electrolyte 
in electronic devices such as solid oxide fuel cells (SOFCs). 
An important parameter of solid electrolytes is the ionic 
conductivity. However, the grain boundaries (GBs) pre-
sent in polycrystalline ceramics increase the resistivity of 
the material. The ion transport properties of the GBs are 
expected to be dependent on their structure and crystal-
lography. Recently, Dillon et al. [1] measured the three-
dimensional microstructure of cubic zirconia (YSZ) and 
determined relative grain boundary energies for different 
classes of boundaries. When comparing them with experi-
mental data on the resistance of the YSZ bicrystals [2], it 

was concluded that the conductivity is higher for the low-
energy grain boundaries.

Impedance spectroscopy (IS) is a widely utilized method 
with applications across various fields of research, span-
ning from fuel cells, batteries, and semiconductor science 
to corrosion studies, chemical sensing, and biosensing [3]. 
The strength of impedance spectroscopy, compared to other 
methods, lies in its ability to investigate electrochemical 
processes exhibiting diverse time behaviors. In the case 
of polycrystalline solid electrolytes, IS allows for separate 
responses arising from bulk and grain boundaries conduc-
tion processes. Complex impedance analysis was applied 
for the first time to investigate a solid electrolyte by Bauerle 
[4]. Since then, IS studies have been widely conducted on 
zirconia-based solid electrolytes [5], including yttria-stabi-
lized ZrO2 [6].

In this work, 8% yttria-stabilized zirconia-textured sam-
ples were examined by complex impedance spectroscopy, 
which allowed to distinguish bulk and grain boundary resis-
tivity. On the other hand, by utilizing three-dimensional 
electron backscatter diffraction technique in dual-beam 
scanning microscope (3D EBSD in FIB SEM), it was pos-
sible to analyze GB networks based on five characteristic 
parameters. Three of these parameters specify the lattice 
misorientation ∆g between the two crystals across a grain 
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boundary. The misorientation space is parameterized into 
cells (or bins) with a specific discretization (e.g., 10°) using 
Bunge Euler angles (φ1, Φ, φ2). The misorientation domain 
is parameterized by φ1, cos(Φ), and φ2 within the range 
of 0 to π/2, 0 to 1, and 0 to π/2, respectively The other two 
parameters determine the inclination of the grain boundary 
normal n. The inclination of the boundary normal in the 
crystal reference frame is parameterized using two angles 
(i.e., θ and φ) in the spherical coordinate system. The two 
angles are parameterized by cos (θ) and φ within the range 
of 0 to 1 and 0 to 2π, respectively. When parameterizing 
grain boundary space, the cell size should be large enough 
to contain a considerable number of observations per cell (or 
per bin) and small enough to represent the textural features 
at a sufficient resolution [7]. The aim of this research was 
to find a correlation between the electrical properties and 
microstructure of the yttria-stabilized cubic zirconia sintered 
at elevated temperatures. Such a motivation comes from the 
requirement to improve the performances of solid oxide fuel 
cells (SOFCs) used as a potential power source for automo-
tive industry.

2 � Experimental

A set of three samples manufactured from a cubic polymor-
phic form of zirconia doped with 8% yttria were prepared 
by calcination of co-precipitated hydroxides at 500 °C. The 
powders of specific surface area Sw = 70.8 ± 0.2 m2/g were 
prepared as discs ~ 16 mm in diameter and ~ 1.5 mm high. 
They were uni-axially pressed at 50 MPa in 20 mm steel die 
(with the possibility of moving both punches) and after that 
isostatically re-pressed under 200 MPa to assure maximum 
homogeneous densification. Total shrinkage of the whole 
manufacturing process (isostatic pressing and sintering) was 
about 20%. Then the samples were pressureless sintered at 
the following temperatures of 1500, 1550, and 1600 °C 
denoted as 1500, 1500 and 1600, respectively. Soaking time 
was 20 h for each temperature. The reason that these par-
ticular sinters were taken into consideration was the fact that 
the YSZ samples sintered at the above temperatures revealed 
much stronger anisotropy compared with the YSZ samples 
sintered at lower temperatures, where anisotropy appeared to 

be relatively mild. Quantitative evaluation of the anisotropy 
based on multiples of the random distribution (MRD) was 
described in detail elsewhere [8, 9], where the values (in 
MRD) of grain boundary plane distributions at (001) pole 
for all YSZ sinters were calculated (Fig. 1).

The mean grain size given in microns and its standard 
deviation (in parentheses) for sintering temperatures 1500, 
1550, and 1600 °C was as follows: 4.6 (2.0), 3.6 (1.5), and 
7.0 (3.3), respectively.

The 3D EBSD experiments were described thoroughly 
in several papers. The influence of sintering conditions on 
anisotropy of grain boundary networks and microstruc-
ture topology in yttria-stabilized zirconia was described in 
Faryna et al. [8], the evaluation of grain boundary plane 
distribution in yttria-stabilized polycrystalline zirconia 
based on 3D EBSD analysis was thoroughly investigated in 
Bobrowski et al. [9], five-dimensional grain boundary distri-
bution for yttria-stabilized zirconia based on experimentally 
determined macroscopic boundary parameters was discussed 
in Faryna and Głowinski [10], microstructural characteriza-
tion of yttria-stabilized zirconia sintered at different tem-
peratures using 3D EBSD, 2D EBSD, and stereological cal-
culations was evaluated in Bobrowski et al. [11], correlation 
between microstructure and ionic conductivity in cubic zir-
conia polycrystals was first described in Faryna et al. [12], 
three-dimensional microstructural characterization of porous 
cubic zirconia was presented in Bobrowski et al. [13], and 
grain boundary geometry and pores morphology in dense 
and porous cubic zirconia polycrystals were investigated in 
Bobrowski et al. [14]. All these papers include microstruc-
ture investigation results and details of experiment. Thus, 
any information regarding 3D EBSD experiments on the 
zirconia sinters by use of FIB SEM can be found elsewhere.

In this work, the authors draw their attention on imped-
ance spectroscopy (IS) experiments. The pellets were cut 
to obtain samples, which allow dielectric and impedance 
measurements. Silver electrodes were deposited on pol-
ished surface of the samples. The dielectric and impedance 
data were measured using a Hewlett-Packard type 4192 A 
impedance analyzer, a Hewlett-Packard type 34,401 A mil-
livolt meter, and a Shimaden FP93 temperature controller. 
Impedance measurements were carried out in the 20 Hz to 
2 MHz frequency range and the temperature range of 550 

Fig. 1   Populations of boundary 
planes in the YSZ ceramic sin-
tered at a 1500 °C, b 1550 °C, 
and c 1600 °C. Distributions 
were computed for seven data 
sets separately and for merged 
data sets corresponding to given 
sinters. Distribution values 
(expressed as MRD distribu-
tions) are presented in Table 1)
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to 650 K in laboratory air. Before the measurements were 
taken, the samples were rejuvenated. Equivalent circuit fit-
ting to obtained data was performed using ZView software 
(Scribner Associates, USA).

Grain electrical conductivity (σgi) and total grain bound-
ary electrical conductivity (σtotal,gb) were calculated based on 
sample geometry based on the following equations:

where: Rgi—electrical resistance of the grains [Ω], Rtotal,gb—
total electrical resistance of grain boundaries (gb) [Ω], L—
sample thickness [cm], and S—cross-sectional surface area 
[cm2].

Equation (2) gives only an apparent value of the con-
ductivity of the grain boundaries. However, it is possible to 
calculate the ‘true’ value of the grain boundary conductiv-
ity, also known as the specific grain boundary conductivity 
(σsp,gb) using the following formula [15]:

where: σtotal,gb is the total grain boundary conductivity [S/
cm], d is the average grain size [nm], δ is the grain bound-
ary thickness [nm]. The grain boundary thickness can be 
calculated based on the following dependence between the 
microstructural parameters and the electrical properties of 
the material [15, 16]:

where: Cb, Cgb are the bulk and grain boundary capacitance, 
εb, εgb are the dielectric permeability of the bulk and grain 
boundaries. Formula (4) is derived from brick layer model 
under assumption that bulk conductivity is significantly 
higher than the grain boundaries conductivity. When assum-
ing that bulk and grain boundaries exhibit nearly identical 
dielectric permittivity (εgb≈ εgi) Eq. (4) can be simplified to:

The effective capacitances Cb and Cgb can be calculated 
with the following Eq. [17]:

where: Ri is bulk or grain boundary resistance, ni and Ai 
are the parameters that describe the constant phase element 
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L
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i
(j�)−ni ), which was used for fitting 

the electric equivalent circuit.

3 � Results

The first approach to analyze the relationship between GB 
density and components of ionic conductivity was presented 
in Faryna et al. [12]. However, these results were preliminary 
and did not show, in a precise way, the effect of observed 
anisotropy in GB plane parameters caused by manufacturing 
conditions on the electrical properties of the zirconia sinters. 
This aforementioned paper showed only that both types of 
resistance, i.e., bulk and GB resistance decreased with the 
increase of sintering. In the recent paper [8], GB network 
based on all five parameters in zirconia sinters was thor-
oughly investigated. That data were used for computing the 
grain boundary plane distribution (GBPD) showing popula-
tions of grain boundaries as a function of their plane param-
eters. The values of the GBPD were presented as multiples 
of the random distribution (MRD). A common observation 
for all GBPDs was under-representation of near-(111) planes 
and over-representation of near-(001) planes (compared to 
random boundaries) in all analyzed YSZ samples. The ani-
sotropy appeared to be stronger if grains were larger. This 
effect was particularly strong in the case of YSZ ceramic 
sintered in the temperature range from 1500 to 1600 °C 
showing its maximum at 1550 °C [8].

This raises the question of whether such anisotropy in GB 
plane parameters affects the electrical properties of the mate-
rial. To answer this question, electrochemical impedance 
spectroscopy measurements were carried out on the three 
selected samples. The variation of real (Z′) and imaginary 
(Z″) impedance components with frequency at selected tem-
peratures is presented in Fig. 2. In the low-frequency range, 
Z′ shows weak frequency dependence and high values for all 
discussed samples. Such a behavior is connected with high 
resistivity due to the effectiveness of the resistivity of grain 
boundaries at this frequency range [18, 19]. With a rise in 
frequency (> 104 Hz), Z′ rapidly decreases, corresponding to 
an increase in AC conductivity. Similar Z value changes are 
observed in other materials, e.g., in lead-free Na0.5Bi0.5TiO3 
ceramics [20] and vanadium-modified BaBi2Nb2O9 ceramics 
[21]. The measurement points described the Z″(f) relation-
ship forms a curve with a broadened minimum at low-fre-
quency range and diffuse maximum at high frequency. It is 
worth to notice that the broadening degree of the mentioned 
minimum is exceptionally high for the sample sintered at 
1550 °C. In turn, the maxima visible on the Z″(f) curves 
are connected with the space charge relaxation. Their loca-
tion on the frequency axis is strongly dependent on the tem-
perature. Namely, the growth of temperature caused shifts 
of the mentioned maximum to the higher frequencies. This 
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behavior is characteristic for the materials in which the 
microstructure is characterized by the presence of grains 
and grain boundaries. In this sense, the role of active areas 
play grain boundaries, which become a reservoir of space 
charge. The speed of these charge carriers increases with an 
increase in temperature, as a result of which the relaxation 
time of the moving charges is shortened and the frequency 
fmax shifts to higher values [22].

Figure 3 shows Nyquist plots obtained for investigated 
sinters at temperatures in range of 550 K to 650 K. The 
characteristics presented have the shape of a deformed sem-
icircle and a fragment of the next one. The deformations 
indicate that the observed semicircle consists of two over-
lapping semicircles representing grains and GBs, and the 

visible fragment of the third semicircle is associated with the 
response of the near-electrode regions. Therefore, a descrip-
tion of the examined samples can be achieved using an 
equivalent circuit consisting of 3 Voigt elements, in which 
capacitance has been replaced with a CPE—constant phase 
element (insert in Fig. 3). These Voit elements correspond 
to the interior of the grains, the grain boundaries, and the 
electrode [4], respectively.

The parameters obtained from the equivalent circuit 
allowed to determine the electrical conductivity (σgi) and 
the electrical conductivity (σtotal,gb) (Eqs. 1 and 2). The aver-
age thickness of the grain boundaries (δ) based on formula 
(Eq. 5) was calculated. All necessary information about the 
grain size, GBPD at (001) plane, and the calculated GB 

Fig. 2   The frequency depend-
encies of real (a, c, e) and 
imaginary (b, d, f) part of the 
impedance at various tempera-
ture for a, b 1500, c, d 1550, 
and e, f 1600 ZrO2 sinters
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thickness are presented in Table 1. It is worth noting that the 
smallest δ was obtained for the sample sintered at 1500 °C.

The determined GB thicknesses allowed also for the cal-
culation of the specific GB conductivity (Eq. 3). The com-
parison of the electrical conductivity (σgi) and specific GB 
conductivity between the measured samples is presented in 
Fig. 4 in the form of Arrhenius plots. The linear nature of the 
presented plots indicates the activating form of conductivity 

processes. The activation energy of the conductivity of the 
grain interior (Ea(gi)) and the grain boundaries (Ea(sp,gb)) were 
determined based on the Arrhenius relationship:

where Ea is the activation energy of the conductivity process 
[eV], k is the Boltzmann constant [eV/K], T is temperature 
[K], and σo is a pre-exponential factor [S K/cm]. The calcu-
lated activation energies are listed in Table 1.

The temperature-dependent characteristic of conduc-
tivities of the grains (Fig. 4a) has the same slope, which 
determines the similar value of the activation energy of 
this process. On the other hand, the plots of GB conduc-
tivities vs. temperature are significantly different. Namely, 
the conductivity and activation energy obtained for the 
sample sintered at 1550 °C are higher than the ones sin-
tered at 1500 and 1600 °C sintering temperatures.

4 � Conclusion

The use of complex impedance spectroscopy confirmed 
the existence of non-Debye type of relaxation process 
in the materials, which is connected with the grain and 
grain boundary effects. An equivalent circuit has been 
proposed based on the brick layer model for the observed 
electrical response of the sample. The grain interior and 
grain boundary conductivity were calculated based on the 
equivalent circuit. Both values increase with the rise in 
temperature for all the samples. Moreover, the obtained 
conductivity values show that the ion conduction process 
through the GBs is more favorable in the case of the sam-
ple denoted as 1550, which shows relatively strong ani-
sotropy with the highest value MRD for GBPD (Table 1). 
This fact can be explained as follows: low-energy (001) 
GBs have higher transverse ionic conductivity. Hence, a 
sample with an over-representation of such a kind of GBs 
has greater ion conductivity than samples with more ran-
dom microstructures. The results obtained correlate well 
with the hypothesis presented in [1].

(7)� = �0exp

(

−Ea

kT

)

Fig. 3   Impedance spectrums for the a 1500, b 1550, and c 1600 sin-
ters. Points represent experimental data, line represents a fitted curve

Table 1   Microstructural and 
electrical characteristics of 
investigated sinters

Sample GBPD at (001) [MRD] Mean grain 
size [μm]

GB thickness 
(δ) [nm]

Ea(gi) [eV] Ea(sp,gb) [eV]

1500 1.44 ± 0.04 4.6 ± 2.0 3.16 1.12 ± 0.004 0.73 ± 0.04
1550 1.95 ± 0.05 3.6 ± 1.5 2.31 1.13 ± 0.003 1.51 ± 0.03
1600 1.58 ± 0.07 7.0 ± 3.3 4.13 1.12 ± 0.003 0.80 ± 0.03
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