Skip to main content
Log in

The influence of Mo addition on static recrystallization and grain growth behaviour in CoNiFeMn system subjected to prior deformation

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this work, the influence of Mo in the CoNiFeMn system during heat treatment after prior hot and cold rolling was investigated. At present, relatively few studies on static recrystallization and grain growth kinetics in high entropy alloys are available. This paper focuses on static recrystallization and grain growth kinetics as well as the influence of molybdenum on these phenomena. This work compares two alloys, CoNiFeMn and (CoNiFeMn)95Mo5, in relation to the formations of the brittle µ phase at room- and high-temperature plastic deformation regimes due to its negative affect on material ductility. Microstructures were characterized by energy dispersive X-ray spectroscopy analysis and by scanning electron microscopy, whereas the mechanical properties were assessed by tensile testing. The effect of recrystallization and grain growth behaviours on the microstructural evolution and the final mechanical properties was assessed. It was found that Mo addition into the CoNiFeMn system has a strong effect on both the static recrystallization and grain growth kinetics as well as the final mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Yeh JW, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  2. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377(1–2):213–8. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  3. Mehta A, Sohn Y. High entropy and sluggish diffusion ‘core’ effects in senary FCC Al–Co–Cr–Fe–Ni–Mn alloys. ACS Comb Sci. 2020;22(12):757–67. https://doi.org/10.1021/acscombsci.0c00096.

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloys Compd. 2018;760:15–30. https://doi.org/10.1016/j.jallcom.2018.05.067.

    Article  CAS  Google Scholar 

  5. Tang Z, Zhang S, Cai R, Zhou Q, Wang H. Designing high entropy alloys with dual fcc and bcc solid-solution phases: structures and mechanical properties. Metall Mater Trans A Phys Metall Mater Sci. 2019;50(4):1888–901. https://doi.org/10.1007/s11661-019-05131-1.

    Article  ADS  CAS  Google Scholar 

  6. Liu F, Liaw PK. Recent progress with BCC-structured high-entropy alloys. Metals. 2022;12:501.

    Article  CAS  Google Scholar 

  7. Gao MC, Zhang B, Guo SM, Qiao JW, Hawk JA. High-entropy alloys in hexagonal close-packed structure. Metall Mater Trans A Phys Metall Mater Sci. 2016;47(7):3322–32. https://doi.org/10.1007/s11661-015-3091-1.

    Article  ADS  CAS  Google Scholar 

  8. Rogal L, Ikeda Y, Lai M, Körmann F, Kalinowska A, Grabowski B. Design of a dual-phase hcp-bcc high entropy alloy strengthened by ω nanoprecipitates in the Sc–Ti–Zr–Hf–Re system. Mater Des. 2020;192:108716. https://doi.org/10.1016/j.matdes.2020.108716.

    Article  CAS  Google Scholar 

  9. Wang B, et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scr Mater. 2018;155:54–7. https://doi.org/10.1016/j.scriptamat.2018.06.013.

    Article  CAS  Google Scholar 

  10. Zhu JM, Meng JL, Liang JL. Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCux alloy. Rare Met. 2016;35(5):385–9. https://doi.org/10.1007/s12598-014-0268-5.

    Article  CAS  Google Scholar 

  11. George EP, Curtin WA, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–74. https://doi.org/10.1016/j.actamat.2019.12.015.

    Article  ADS  CAS  Google Scholar 

  12. Cantor B. Multicomponent high-entropy Cantor alloys. Prog Mater Sci. 2021;120:100754. https://doi.org/10.1016/j.pmatsci.2020.100754.

    Article  CAS  Google Scholar 

  13. Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George EP. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61(15):5743–55. https://doi.org/10.1016/j.actamat.2013.06.018.

    Article  ADS  CAS  Google Scholar 

  14. Zeng Z, et al. Mechanical properties of Cantor alloys driven by additional elements: a review. J Mater Res Technol. 2021;15:1920–34. https://doi.org/10.1016/j.jmrt.2021.09.019.

    Article  CAS  Google Scholar 

  15. Otto F, Yang Y, Bei H, George EP. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013;61(7):2628–38. https://doi.org/10.1016/j.actamat.2013.01.042.

    Article  ADS  CAS  Google Scholar 

  16. Ma D, Yao M, Pradeep KG, Tasan CC, Springer H, Raabe D. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 2015;98:288–96. https://doi.org/10.1016/j.actamat.2015.07.030.

    Article  ADS  CAS  Google Scholar 

  17. Cichocki K, Bała P, Kozieł T, Cios G, Schell N, Muszka K. Effect of Mo on phase stability and properties in FeMnNiCo high-entropy alloys. Metall Mater Trans A Phys Metall Mater Sci. 2022;53(5):1749–60. https://doi.org/10.1007/s11661-022-06629-x.

    Article  ADS  CAS  Google Scholar 

  18. Qin G, et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. J Mater Sci Technol. 2019;35(4):578–83. https://doi.org/10.1016/j.jmst.2018.10.009.

    Article  CAS  Google Scholar 

  19. Jain A, et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013. https://doi.org/10.1063/1.4812323.

    Article  Google Scholar 

  20. Guo B, Ray RK, Yoshida S, Bai Y, Tsuji N. In-situ observations of static recrystallization and texture formation in a cold-rolled CoCrFeMnNi high entropy alloy. Scr Mater. 2022;215:114706. https://doi.org/10.1016/j.scriptamat.2022.114706.

    Article  CAS  Google Scholar 

  21. Zheng C, et al. Recrystallization and grain growth behavior of variously deformed CoCrFeMnNi high-entropy alloys: microstructure characterization and modeling. J Mater Res Technol. 2022;20:2277–92. https://doi.org/10.1016/j.jmrt.2022.07.182.

    Article  ADS  CAS  Google Scholar 

  22. Klimova MV, Shaysultanov DG, Zherebtsov SV, Stepanov ND. Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Mater Sci Eng A. 2019;748:228–35. https://doi.org/10.1016/j.msea.2019.01.112.

    Article  CAS  Google Scholar 

  23. Bozzolo N, Bernacki M. Viewpoint on the formation and evolution of annealing twins during thermomechanical processing of FCC metals and alloys. Metall Mater Trans A Phys Metall Mater Sci. 2020;51(6):2665–84. https://doi.org/10.1007/s11661-020-05772-7.

    Article  ADS  CAS  Google Scholar 

  24. Wu H, Du L, Ai Z, Liu X. Static recrystallization and precipitation behavior of a weathering steel microalloyed with Vanadium. J Mater Sci Technol. 2013;29(12):1197–203. https://doi.org/10.1016/j.jmst.2013.10.030.

    Article  CAS  Google Scholar 

  25. Annasamy M, Haghdadi N, Taylor A, Hodgson P, Fabijanic D. Static recrystallization and grain growth behaviour of Al 0.3 CoCrFeNi high entropy alloy. Mater Sci Eng A. 2019;754:282–94. https://doi.org/10.1016/j.msea.2019.03.088.

    Article  CAS  Google Scholar 

  26. Wu Z, Bei H, Otto F, Pharr GM, George EP. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131–40. https://doi.org/10.1016/j.intermet.2013.10.024.

    Article  CAS  Google Scholar 

  27. Dąbrowa J, et al. Demystifying the sluggish diffusion effect in high entropy alloys. J Alloys Compd. 2019;783:193–207. https://doi.org/10.1016/j.jallcom.2018.12.300.

    Article  CAS  Google Scholar 

  28. Jin K, Zhang C, Zhang F, Bei H. Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys. Mater Res Lett. 2018;6(5):293–9. https://doi.org/10.1080/21663831.2018.1446466.

    Article  CAS  Google Scholar 

  29. Kucza W, Dąbrowa J, Cieślak G, Berent K, Kulik T, Danielewski M. Studies of ‘sluggish diffusion’ effect in Co–Cr–Fe–Mn–Ni, Co–Cr–Fe–Ni and Co–Fe–Mn–Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J Alloys Compd. 2018;731:920–8. https://doi.org/10.1016/j.jallcom.2017.10.108.

    Article  CAS  Google Scholar 

  30. Huang YC, Su CH, Wu SK, Lin C. A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys. Entropy. 2019;21(3):297. https://doi.org/10.3390/e21030297.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Basu I, De Hosson JTM. Strengthening mechanisms in high entropy alloys: fundamental issues. Scr Mater. 2020;187:148–56. https://doi.org/10.1016/j.scriptamat.2020.06.019.

    Article  CAS  Google Scholar 

  32. Ma Y, Song W, Bleck W. Investigation of the microstructure evolution in a Fe–17Mn–1.5Al–0.3C steel via in situ synchrotron X-ray diffraction during a tensile test. Materials (Basel). 2017;10(10):1–16. https://doi.org/10.3390/ma10101129.

    Article  CAS  Google Scholar 

  33. Haridas RS, Agrawal P, Yadav S, Agrawal P, Gumaste A, Mishra RS. Work hardening in metastable high entropy alloys: a modified five-parameter model. J Mater Res Technol. 2022;18:3358–72. https://doi.org/10.1016/j.jmrt.2022.04.016.

    Article  CAS  Google Scholar 

  34. Liang X, et al. Static recrystallization and texture evolution of cold-rolled powder metallurgy CoCrFeNiN0.07 high-entropy alloy. J Alloys Compd. 2021;862:158602. https://doi.org/10.1016/j.jallcom.2021.158602.

    Article  CAS  Google Scholar 

  35. Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr Mater. 2013;68(7):526–9. https://doi.org/10.1016/j.scriptamat.2012.12.002.

    Article  CAS  Google Scholar 

  36. Zamani MR, Mirzadeh H, Malekan M, Cao SC, Yeh J-W. Grain growth in high-entropy alloys (HEAs): a review, no. 0123456789. Springer US; 2022.

    Google Scholar 

  37. Naghizadeh M, Mirzadeh H. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall Mater Trans A Phys Metall Mater Sci. 2016;47(12):5698–703. https://doi.org/10.1007/s11661-016-3764-4.

    Article  ADS  CAS  Google Scholar 

  38. Burke JE. Some factors affecting the rate of grain growth in metals. Trans Am Inst Min Metall Eng. 1949;180:73–91.

    Google Scholar 

  39. Beck PA, Towers J, Manly WD. Grain growth in 70–30 brass. Trans Am Inst Min Metall Eng. 1948;175:162–77.

    Google Scholar 

  40. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–8.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research project supported by the program “Excellence initiative—research university” for the AGH University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Cichocki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors state that this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cichocki, K., Bala, P., Kwiecien, M. et al. The influence of Mo addition on static recrystallization and grain growth behaviour in CoNiFeMn system subjected to prior deformation. Archiv.Civ.Mech.Eng 24, 81 (2024). https://doi.org/10.1007/s43452-024-00888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00888-8

Keywords

Navigation