Skip to main content
Log in

The effect of dispersing agents on the electrophoretic deposition, morphology and adhesion strength of multicomponent TiN/PTFE/PEEK coatings

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this work, multicomponent PEEK coatings with PTFE particles and TiN nanoparticles were developed on Ti-6Al-4V alloy substrates using electrophoretic deposition (EPD) and post-EPD heat treatment. Three different polyelectrolytes involving chitosan, PAZO and sodium alginate were used to enable the co-deposition of all particles on one electrode. All polyelectrolytes were effective and enabled coating deposition through electrosteric stabilization of suspension. The EPD mechanism consisted of the adsorption of the dispersant on the surface of the particles and the imparting of a positive (chitosan) or negative (PAZO, sodium alginate) charge. Heat treatment densified the coatings but also caused microcrack formation in the coating with chitosan, shrinkage of the polymers in the coating with PAZO, and open porosity in the coating with sodium alginate. Coatings obtained from suspension with chitosan showed excellent adhesion strength and scratch resistance, higher that those deposited from suspensions containing PAZO or alginate. The introduction of TiN and PTFE particles into the PEEK matrix resulted in a simultaneous reduction of the friction coefficient and wear rate of the titanium alloy in the case of coatings with chitosan and alginate. These coatings are promising for improving the wear and friction properties of titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram. 2008;28:1353–67. https://doi.org/10.1016/j.jeurceramsoc.2007.12.011.

    Article  Google Scholar 

  2. Ishihara T, Sato K, Takita Y. Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. J Am Ceram. 1996;79:913–9. https://doi.org/10.1111/j.1151-2916.1996.tb08525.x.

    Article  Google Scholar 

  3. Besra L, Zha S, Liu M. Preparation of NiO-YSZ/YSZ bi-layers for solid oxide fuel cells by electrophoretic deposition. J Power Sources. 2006;160:207–14. https://doi.org/10.1016/j.jpowsour.2005.12.090.

    Article  Google Scholar 

  4. Ferrari B, Moreno R. Electrophoretic deposition of aqueous alumina slips. J Eur Ceram. 1997;77:549–56. https://doi.org/10.1016/S0955-2219(96)00113-6.

    Article  Google Scholar 

  5. Moreno R, Ferrari B. Effect of the slurry properties on the homogeneity of alumina deposits obtained by aqueous electrophoretic deposition. Mater Res Bull. 2000;35:887–97. https://doi.org/10.1016/S0025-5408(00)00288-9.

    Article  Google Scholar 

  6. Abolmaali SB, Talbot JB. Synthesis of superconductive thin films of YBa2Cu3O7-x by a nonaqueous electrodeposition process. J Electrochem Soc. 1993;140:443–5. https://doi.org/10.1149/1.2221065.

    Article  Google Scholar 

  7. Nicholson PS, Sarkar P, Haung X. Electrophoretic deposition and its use to synthesize ZrO2/Al2O3 micro-laminate ceramic/ceramic composites. J Mater Sci. 1993;28:6274–8. https://doi.org/10.1007/BF01352183.

    Article  Google Scholar 

  8. Farrokhi-Rad M, Ghorbani M. Electrophoretic deposition of titania nanoparticles in different alcohols: kinetics of deposition. J Am Ceram. 2011;94:2354–61. https://doi.org/10.1111/j.1551-2916.2011.04401.x.

    Article  Google Scholar 

  9. Ammam M. Electrophoretic deposition under modulated electric fields: a review. RSC Adv. 2012;2:7633–46. https://doi.org/10.1039/C2RA01342H.

    Article  Google Scholar 

  10. Chen Q, Cordero-Arias L, Roether JA, Cabanas-Polo S, Virtanen S, Boccaccini AR. Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition. Surf Coat Technol. 2013;233:49–56. https://doi.org/10.1016/j.surfcoat.2013.01.042.

    Article  Google Scholar 

  11. López I, Vázquez A, Hernández-Padrón GH, Gómez I. Electrophoretic deposition (EPD) of silver nanoparticles and their application as surface-enhanced Raman scattering (SERS) substrates. Appl Surf Sci. 2013;280:715–9. https://doi.org/10.1016/j.apsusc.2013.05.048.

    Article  Google Scholar 

  12. Hu S, Li W, Finklea H, Liu X. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv Colloid Interface Sci. 2020;276: 102102. https://doi.org/10.1016/j.cis.2020.102102.

    Article  Google Scholar 

  13. Wang C, Ma J, Cheng W. Formation of polyetheretherketone polymer coating by electrophoretic deposition method. Surf Coat Technol. 2003;173:271–5. https://doi.org/10.1016/S0257-8972(03)00626-1.

    Article  Google Scholar 

  14. Zhitomirsky I, Petric A. Electrophoretic deposition of ceramic materials for fuel cell applications. J Eur Ceram. 2000;20:2055–61. https://doi.org/10.1016/S0955-2219(00)00098-4.

    Article  Google Scholar 

  15. Grandfield K, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite–silica–chitosan coatings. Mater Charact. 2008;59:61–7. https://doi.org/10.1016/j.matchar.2006.10.016.

    Article  Google Scholar 

  16. Mohan L, Durgalakshmi D, Geetha M, Sankara Narayanan TSN, Asokamani R. Electrophoretic deposition of nanocomposite (HAp+TiO2) on titanium alloy for biomedical applications. Ceram Int. 2012;38:3435–43. https://doi.org/10.1016/j.ceramint.2011.12.056.

    Article  Google Scholar 

  17. Corni I, Neumann N, Novak S, König K, Veronesi P, Chen Q, Ryan MP, Boccaccini AR. Electrophoretic deposition of PEEK-nano alumina composite coatings on stainless steel. Surf Coat Technol. 2009;203:1349–59. https://doi.org/10.1016/j.surfcoat.2008.11.005.

    Article  Google Scholar 

  18. Zhang J, Wen Z, Zhao M, Li G, Dai C. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition. Mater Sci Eng C. 2016;58:992–1000. https://doi.org/10.1016/j.msec.2015.09.050.

    Article  Google Scholar 

  19. Huang Y, Sarkar DK, Chen X. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process. Appl Surf Sci. 2015;327:327–34. https://doi.org/10.1016/j.apsusc.2014.11.170.

    Article  Google Scholar 

  20. Zhitomirsky D, Roether JA, Boccaccini AR, Zhitomirsky I. Electrophoretic deposition of bioactive glass/polimer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol. 2009;209:1853–60. https://doi.org/10.1016/j.jmatprotec.2008.04.034.

    Article  Google Scholar 

  21. Hadidi M, Bigham A, Saebnoori E, Hassanzadeh-Tabrizi SA, Rahmati S, Alizadeh ZM, Nasirian V, Rafienia M. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf Coat Technol. 2017;321:171–9. https://doi.org/10.1016/j.surfcoat.2017.04.055.

    Article  Google Scholar 

  22. Ferrari B, Moreno R, Hernan L, Melero M, Morales J, Caballero A. EPD of thick films for their application in lithium batteries. J Eur Ceram. 2007;27:3823–7. https://doi.org/10.1016/j.jeurceramsoc.2007.02.051.

    Article  Google Scholar 

  23. Du C, Pan N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. J Power Sources. 2006;160:1487–94. https://doi.org/10.1016/j.jpowsour.2006.02.092.

    Article  Google Scholar 

  24. Castro Y, Ferrari B, Moreno R, Duran A. Corrosion behavior of silica hybrid coatings produced from basic catalyzed particulate sols by dipping and EPD. Surf Coat Technol. 2005;191:228–35. https://doi.org/10.1016/j.surfcoat.2004.03.001.

    Article  Google Scholar 

  25. Fiołek A, Zimowski S, Kopia A, Sitarz M, Moskalewicz T. Effect of low-friction composite polymer coatings fabricated by electrophoretic deposition and heat treatment on the Ti-6Al-4V titanium alloy’s tribological properties. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:4786–98. https://doi.org/10.1007/s11661-020-05900-3.

    Article  Google Scholar 

  26. Moskalewicz T, Warcaba M, Zimowski S, Łukaszczyk A. Improvement of the Ti-6Al-4V alloy’s tribological properties and electrochemical corrosion resistance by nanocomposite TiN/PEEK708 coatings. Metall Mater Trans A Phys Metall Mater Sci. 2019;50:5914–24. https://doi.org/10.1007/s11661-019-05484-7.

    Article  Google Scholar 

  27. Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52:1–61. https://doi.org/10.1016/j.pmatsci.2006.07.001.

    Article  Google Scholar 

  28. Yamashita K, Nagai M, Umegaki T. Fabrication of green films of single- and multicomponent ceramic composites by electrophoretic deposition technique. J Mater Sci. 1997;32:6661–4. https://doi.org/10.1023/A:1018608605080.

    Article  Google Scholar 

  29. Luo D, Zhitomirsky I. Electrophoretic deposition of polyetheretherketone composites, containing huntite and alumina platelets. J Electrochem Soc. 2015;162:3057–62. https://doi.org/10.1149/2.0191511jes.

    Article  Google Scholar 

  30. Kuśmierczyk F, Zimowski S, Łukaszczyk A, Kopia A, Cieniek Ł, Moskalewicz T. Development of microstructure and properties of multicomponent MoS2/HA/PEEK coatings on a titanium alloy via electrophoretic deposition and heat treatment. Metall Mater Trans A Phys Metall Mater Sci. 2021;52:3880–95. https://doi.org/10.1007/s11661-021-06350-1.

    Article  Google Scholar 

  31. Kruk A, Zimowski S, Łukaszczyk A, Cieniek Ł, Moskalewicz T. The influence of heat treatment on the microstructure, surface topography and selected properties of PEEK coatings electrophoretically deposited on the Ti-6Al 4V alloy. Prog Org Coat. 2019;133:180–90. https://doi.org/10.1016/j.porgcoat.2019.04.049.

    Article  Google Scholar 

  32. Vallar S, Houivet D, El Fallah J, Kervadec D, Haussonne JM. Oxide slurries stability and powders dispersion: optimization with zeta potential and rheological measurements. J Eur Ceram. 1999;19:1017–21. https://doi.org/10.1016/S0955-2219(98)00365-3.

    Article  Google Scholar 

  33. Chung Y, Tsai C, Li C. Preparation and characterization of water-soluble chitosan produced by Maillard reaction. Fish Sci. 2006;72:1096–103. https://doi.org/10.1111/j.1444-2906.2006.01261.x.

    Article  Google Scholar 

  34. Ferrari B, Moreno R. EPD kinetics: a review. J Eur Ceram. 2010;30:1069–78. https://doi.org/10.1016/j.jeurceramsoc.2009.08.022.

    Article  Google Scholar 

  35. Ferrari B, Moreno R. The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Mater Lett. 1996;28:353–5. https://doi.org/10.1016/0167-577X(96)00075-4.

    Article  Google Scholar 

  36. Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym. 2020;238: 116126. https://doi.org/10.1016/j.carbpol.2020.116126.

    Article  Google Scholar 

  37. Kim S, Lee K, Lee K. Polyelectrolyte complex membranes based on two anionic polysaccharides composed of sodium alginate and carrageenan: the effect of annealing on the separation of methanol/water mixtures. J Appl Polym. 2006;102:5781–8. https://doi.org/10.1002/app.23903.

    Article  Google Scholar 

  38. Hamlin RE, Dayton TL, Johnson LE, Johal MS. A QCM study of the immobilization of beta-galactosidase on polyelectrolyte surfaces: effect of the terminal polyion on enzymatic surface activity. Langmuir. 2007;23:4432–7. https://doi.org/10.1021/la063339t.

    Article  Google Scholar 

  39. Ata MS, Liu Y, Zhitomirsky I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 2014;4:22716–32. https://doi.org/10.1039/C4RA02218A.

    Article  Google Scholar 

  40. Zhang D, Wang X, Peng X, Wang Q, Xiang Q. Kinetics of electrophoretic deposition of nano-Co3O4 coating. J Mater Sci Mater Electron. 2019;30:8967–73. https://doi.org/10.1007/s10854-019-01224-0.

    Article  Google Scholar 

  41. Flores-Hernández CG, Cornejo-Villegas MDLA, Moreno-Martell A, Del Real A. Synthesis of a biodegradable polymer of poly (sodium alginate/ethyl acrylate). Polymers. 2021;13:504. https://doi.org/10.3390/polym13040504.

    Article  Google Scholar 

  42. Zhang G, Yu H, Zhang C, Liao H, Coddet C. Temperature dependence of the tribological mechanisms of amorphous PEEK (polyetheretherketone) under dry sliding conditions. Acta Mater. 2008;56:2182–90. https://doi.org/10.1016/j.actamat.2008.01.018.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the valuable contribution of M. Gajewska (ACMiN, AGH University of Krakow) for help with TEM investigation.

Funding

The study was supported by AGH-UST (project no. 16.16.110.663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Fiołek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The manuscript has been prepared by the contribution of all authors, it is the original authors’ work, it has not been published before. The paper is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiołek, A., Zimowski, S. & Moskalewicz, T. The effect of dispersing agents on the electrophoretic deposition, morphology and adhesion strength of multicomponent TiN/PTFE/PEEK coatings. Archiv.Civ.Mech.Eng 24, 48 (2024). https://doi.org/10.1007/s43452-024-00860-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00860-6

Keywords

Navigation