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Abstract
In this paper, preliminary studies on the failure analysis of hybrid composite materials utilizing acoustic emission and 
machine learning are presented. The main purpose of this study was to analyze the possibilities of using machine learning 
techniques as a way to better cluster the data obtained from acoustic emission. In this paper, we focus on data preparation, 
feature extraction (Laplacian score), determination of cluster number (Caliński–Harabasz, Silhouette, and Davies–Bouldin), 
and testing three clustering techniques, namely K-means, fuzzy C-means, and spectral clustering. The dataset was obtained 
by testing fiber metal laminates—composites consisting of metal and composite layers. Two experimental tests were real-
ized on pre-cracked rectangular specimens—one with loading in mode I and one with loading in mode II (DCB—double 
cantilever beam and ENF—end-notch flexural test). Elastic waves were recorded during these tests via an acoustic emission 
system. Preliminary studies show that the proposed method can be used successfully to cluster data obtained in this way. 
The obtained dataset was split into 3 clusters (for the ENF test) and 5 clusters (DCB test). In the next stages of the research 
campaign, based on the presented results, we intend to change the approach to semi-supervised by running additional single-
cause damage tests to enhance the achieved results and enable easier damage recognition.

Keywords  FML · Composites · Acoustic emission · Clustering · Machine learning · DCB · ENF

1 � Introduction & literature review

Both composite materials and acoustic emission are not 
new in the engineering world. Acoustic emission when used 
during the experimental research of the composite material 
can produce large datasets. The challenge is to understand 
the dataset. The material used in the research presented in 
this paper is additionally interesting for that matter as they 
include both metal and composite material, which amplify 
a variety of different damage that can occur in the material.

Acoustic emission was used to describe the behavior of 
material even from ancient times. As an example, usually, 
the plastic deformation of the tin is given, as it can be heard 
with naked ears. The first systematic attempts were proven in 
the twentieth century when audible emissions were noted for 
metals, such as tin, zinc, and cast iron [1]. The first scientific 
experiment was conducted in 1933 by F. Kishinoue in Tokyo 

[2]. These experiences led to the founding of acoustic emis-
sion as a practical method of assessing concrete damage by 
J. Kaiser in the 1950s of the 20th century [2]. The idea of 
acoustic emission is connected to the stress wave, which is 
produced as an effect of energy released during the splitting 
of crack surfaces. The elastic wave is recorded through sen-
sors that are attached to the tested object. Usually, sensors 
are utilizing the piezoelectric effect (thanks to PZT, lead 
zirconate titanate) [3]. Stress waves are registered during the 
life of the object or during the course of the experiment in 
the form of time-based signals. As part of post-processing, 
the wave parameters are usually obtained directly from the 
acoustic emission system. A simple presentation of the wave 
and its standard parameters is shown in Fig. 1. The abbre-
viations and the meanings of particular characteristics are 
explained in Table 1. These types of features are usually 
described as basic as they are calculated directly from the 
signal obtained during experiments. It is also possible to 
obtain derived features calculated as some ratio, sum, or 
function of basic ones.

In the presented research, experimental tests were con-
ducted for composites belonging to the fiber metal laminates. 
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This type of composite is characterized by containing both 
metal and reinforced composite layers. They were originally 
designed as a material for aircraft, as they are characterized 
by excellent fatigue properties. The most well-known mate-
rials from this group are GLARE (glass-reinforced epoxy 
with aluminum), CARALL (carbon-reinforced epoxy with 
aluminum), and ARALL (aramid-reinforced epoxy with 
aluminum). However, in recent years, a significant increase 
in work on FMLs has been observed. Different modifica-
tions to FML are proposed. In some research, aluminum is 
substituted with other metals like titanium [4], steel, and 
magnesium [5]. Another possibility is to use natural fibers, 
such as flax [6], hemp [7], kenaf [8], and sugar palm [9], 
instead of synthetic fibers. Finally, the matrix material can 
be changed from epoxy resin to another, for example, ther-
moplastic materials, such as PEEK [10], polyamide [11], 
or polypropylene [12]. In this paper, the latter will be used 
because the fiber metal laminates used in the experimental 
part are made of aluminum and fiber-reinforced polyamide. 

The fiber metal laminates are tested in various ways. The 
focus is often on fatigue testing, as in the past, this type of 
material has proved good properties in this area. Previous 
research carried out by authors on similar thermoplastic fiber 
metal laminates was carried out for different loading condi-
tions: mixed-mode loading (three-point bending tests) [11], 
double cantilever beam test (DCB) for mode I [13], and end-
notched flexural test for mode II [13] and focused primar-
ily on experimental and numerical aspects of the research. 
Acoustic emission was used as an auxiliary method with 
some successes, but it was clear, that it can provide much 
more information with proper methods and approaches, 
which was motivation to conduct presented research on new 
configurations of material.

Acoustic emission is a popular measurement method, but 
nevertheless, there is not so much research on AE applied 
to FML tests. Al-Azzawi et al. [14] applied acoustic emis-
sion to detect the initiation and propagation of damage under 
quasistatic and fatigue loading. Another exemplary work is 

Fig. 1   Example of elastic wave 
registered with acoustic emis-
sion system and typical features 
of such wave

Table 1   Description of basic features derived from the signal

Feature Symbol Unit Description

Hit – – Every part of the signal, which exceeds a threshold. In analysis usually used as a cumulative value
Count – – The signal can cross the threshold value defined for detecting time multiple times in a short amount of time. It is 

treated as one hit, but each of the crossings is named as a count. Can be described as the number of counts in 
the hit (counts) or the number of counts before the peak amplitude (PCNTS)

Amplitude A dB The highest value of the signal registered during one single hit. It is measured in mV but usually presented in a 
relative way using decibels

Duration D �s Calculated for a single hit as the time that passes between the first rise of amplitude over the threshold to the last 
decrease of amplitude below the threshold

Rise time RT �s The time between the first rise of amplitude over the threshold in the hit until amplitude is reached
Energy E – These parameters can be dependent on the exact implementation of a system of particular manufacturers but usu-

ally, it is calculated based on the integral of the signal over time
Root mean 

squared of 
noise

RMS mV This is the root of the arithmetic mean of the squares of the noise values. It is usually used as a prediction feature, 
as its higher values are often registered during rupture events

Frequency F This group of parameters is based on the analysis of waveforms. Multiple different types of frequency can be 
derived, but the two most popular ones are centroid of frequency (c-freq), which is a frequency that separates 
the waveform into two parts with equal values of integral and peak frequency (p-freq) which is the frequency of 
the signal with the highest intensity
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the Ph.D. thesis written by John McCrory who focused on 
GLARE material and also tested it using AE [15]. A short 
summary of the papers on Acoustic emission used in the 
FML research is presented in Table 2.

In recent years, artificial intelligence and machine learn-
ing in particular has gained a lot of traction in both sci-
entific and common communities. Naturally, such methods 
are considered to use as a tool also in mechanical engineer-
ing science. Jenis et al. in [20] present a review of various 
machine learning techniques with recommendations on how 
they can be used in the creation of mechanical components. 
Patange and Pandya analyze the opportunities and the threats 
of machine learning (ML) techniques in the area of mechan-
ical engineering. Nasiri and Khosravani in [21] present a 
review of data-driven approaches used to predict fatigue life 
and fracture of various components including various ML 
approaches like artificial neural networks (ANN), Gaussian 
regression, or neuro-fuzzy-based. In this paper, its’ authors 
note that acoustic emission is often considered a potential 
solution to detect damage. However, they also state the limi-
tation, which is the limited ability of defect identification 
and proposes to use machine learning instead of acoustic 
emission. We propose to use both methods simultaneously 
for synergetic gains. In [22], authors present a review on 
predicting the mechanical behavior of additively manufac-
tured parts including process parameters, the porosity of 
printed components and defects in printed parts. Often a 
big problem with applying machine learning techniques to 

mechanical engineering problems is the size of the dataset as 
usually number of experimental tests is limited. This can be 
offset using numerical methods like finite element analysis 
to generate more data based on experimental results. For 
example, Smolnicki in [23] used automatically generated 
FEA models to obtain a dataset with 15,000 records to pre-
dict reaction forces in a plate. Another possibility is to obtain 
data via other techniques—in this paper, we will use data 
registered with an acoustic emission system.

The main challenge in research with acoustic emission is 
the processing of the data. The classic approach used in most 
research is to investigate amplitude and frequency, as they 
are usually the two most informative features of the signal. 
However, by reducing the data to only these two parameters, 
we lose a lot of obtained information. Also, in more complex 
cases, other features could be more important than these two. 
The main issue with analyzing more features is a problem 
with their visualization, which makes it hard to manually 
decide about the clustering of the data points. This issue can 
be solved by applying artificial intelligence methods—more 
precisely, machine learning techniques. Machine learning is 
intended to be used with larger datasets, and is proven to be 
very successful with it.

Machine learning techniques can be divided into three 
main categories [24]:

–	 Supervised learning, which is focused on the mapping 
between input (Set of features) and output (result). The 

Table 2   Short review of research of FMLs with acoustic emission analysis

Purpose Sensors Software Parameters Test Ref

Monitor damage events 
during the test

2 (Nano-30 125–750 kHz) Mistras PCI-2 + 
(f = 5 MHz)

A, E, counts Quasi-static, fatigue [14]

Clustering of different 
types of damage using 
machine learning

1 Catman + MISTRAS 8 ∶ RT , Counts, E,A, 
PCNTS, Signal Strength, 
Absolute Energy, c − freq

Quasi-static, fatigue [16]

Clustering of damage. 
Correlation between 
stress–strain behav-
ior and gathering AE 
signals

1 PAC’s AEwinPost D, A, Counts Monotonic tensile [17]

Determining the loca-
tions of H-N sources 
in the GLARE panel 
(Significance of the grid 
resolution)

6 (2 at the same time) 
(Nano-30 sen-
sors—125—750 kHz)

Physical Acoustic 
PCI-2 + PALs Aewin

Necessary for 
delta − Tgrid+
TOF for TOA

None (only location 
analysis)

[18]

Clustering of damage 
based on signal param-
eters. Analyze MVF 
influence

2
(WD sensors 100—

1000 kHz)

Physical Acousitic + PAC 
PCI-DSP data acquisi-
tion board f = 10 MHz) 
AEwinPost + MatLAB

A, RT , counts, D, 
absolute energy

Tensile [19]

Analysis of damage 4 in indentation, 2 in 
tensile (PZT resonant at 
150 kHz)

AMSY-5 AE D, A, Counts Indentation, Tensile [7]
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results obtained during the learning process are com-
pared with the known correct answers. The parameters 
of the method are changed based on the comparison 
between these results and true answers until a satisfactory 
level of accuracy is achieved or further progress is not 
possible. These techniques are used mainly in problems 
of classification (determination of affiliation) and regres-
sion (prediction of resultant values).

–	 Unsupervised learning is used in the case where the data 
is not labeled or has a 'true' value. In this case, we use 
only the input data. In this type of learning, the model is 
focused on presenting interesting structures in the data. 
We can distinguish clustering (grouping data points into 
clusters) and association (detecting rules in the dataset).

–	 Reinforcement learning, which is a method in which the 
trial and error approach is utilized, by testing different 
sets of parameters the model gets the response from the 
environment (feedback).

In the case of composites, the causes of the failure can be 
various: matrix cracking, delamination of fibers or layers, 
fiber kinking or breaking, etc. Therefore, one of the goals is 
to split the obtained data set into groups (clusters) that can 
reflect one of these causes [25]. Because usually, we don’t 
know the right answers, the natural choice is to use unsu-
pervised methods. Dieng et al. [16] use a machine learning 
approach to group signals and assign them to different types 
of damage i.e., matrix cracking, de-bonding, delamination/
de-cohesion, and fiber cracking. The most popular approach 
is to utilize the so-called K-means method [26–28]. The 
advantages of the method, that make it popular, are its sim-
plicity and low computational cost. Different attempts are 
present in the literature, where researchers try to improve 
methods. In their paper, Godin et al. [29] used not only 
K-means, but also assumed labels of the data used K-near-
est neighbor, which is similar to K-means, but a supervised 
technique. The addition of harmony search was proposed by 
Pashmforoush et al. [30] in their classification of failure in 
polyester reinforced by glass fiber composites in the DCB 
test. The idea of the methods used in this research will be 
discussed in the methods section, as they are important for 
presented results and formulated conclusions.

A big part of analyzing acoustic emission datasets from 
experimental testing of composite material is pre-process-
ing focused on choosing the right features to include in the 

clustering process. It is possible to either use the classic 
method of reducing dimensionality like PCA (principal com-
ponent analysis) [26, 27, 31, 32] or follow other approaches 
like Laplacian feature selection, based on the Laplacian 
score proposed by He [33], which utilize the fact that obser-
vation within one cluster tends to be close to each other. 
Another issue is to determine the right number of clusters. 
For composites, it is usually assumed that the number of 
clusters should not be higher than 5 (assuming we cluster 
the data based on the failure cause).

In this paper, the result of research conducted on thermo-
plastic fiber metal laminates is presented. This composite 
material was tested under mode I and mode II loading con-
ditions in DCB (double cantilever beam) (Fig. 2a) and ENF 
(end-notched flexural test) (Fig. 2b) tests respectively.

During these tests, elastic waves were registered using 
an acoustic emission system. Some features of these waves 
were obtained directly from the system, and others were cal-
culated in the post-analysis of the data. The investigation 
in the paper is focused on analyzing obtained data—distin-
guishing the causes of damage as clusters of data points. 
Instead of manual analysis following only chosen param-
eters, such as frequency and amplitude, the data is processed 
using machine learning techniques. First, the best features 
are determined utilizing the Laplacian score. Then, three dif-
ferent clustering techniques are used and compared—namely 
K-means, fuzzy C-means, and spectral clustering. The paper 
is concluded by pointing good and bad sides of chosen meth-
ods and formulating recommendations for future research on 
composite materials utilizing acoustic emission analysis and 
machine learning techniques.

2 � Materials and methods

2.1 � Materials

In this paper, experimental research was realized on com-
posite material from the group of fiber metal laminates. The 
composite consisted of layers of metal (aluminum alloy 
AW-6061 T6) and fiber-reinforced composite—Celstran® 
CFR-TP PA6 GF60-01 (60% of E-glass by weight polyamide 
6 continuous unidirectional fiber-reinforced thermoplastic 
composite tape). Two configurations of composite layers 
were included with 0◦ and 90◦ fibers. A graphical illustration 

Fig. 2   The schematic idea of the 
DCB test (left) and ENF (right). 
Both tests are realized on ini-
tially pre-cracked specimen



Archives of Civil and Mechanical Engineering (2023) 23:254	

1 3

Page 5 of 18  254

of the used material is presented below in Fig. 3. The mate-
rial was manufactured in a typical process for fiber metal 
laminates based on thermoplastic matrices. Metal plate and 
composite prepregs were cut, laid in the form, and then 
bonded with high pressure and temperature using Collin 
hydraulic press (Labor Plattenpresse P 300 PM) with heat-
ing. In order to prepare the initial crack in a specimen, pol-
ytetrafluoroethylene film was used, which ensured no bond-
ing during the technological process in the designed place.

2.2 � Experimental setup

All tests that were conducted in order to obtain acoustic 
emission data were realized on Instron 5944 with a maxi-
mum force of 2 kN. This is enough for researched mate-
rials, as the pre-crack is introduced to interface between 
metal and composite layers. All specimens were cut from 
manufactured plates using a circular saw. The dimensions 
of the specimen were 160 mm × 20 mm for ENF tests and 
180 mm × 20 mm for DCB tests as the DCB specimen needs 
additional mounting. In the case of the DCB specimen, aux-
iliary aluminum blocks were glued on both sides of one end 
of the specimen. For both types of specimens, two acoustic 
emission sensors were mounted with hot glue on two ends 
of the specimen. The experimental setup for the DCB test is 
presented in Fig. 4.

Two types of tests were realized during the presented 
research:

•	 Loading of the interface in opening mode (mode I). This 
test was based on ASTM standard [34] with necessary 
changes, as the standards are not meant for FML materi-
als, and didn’t take into concern the fact of different stiff-
ness of layers, the character of metal-composite interface.

•	 Loading of the interface in shearing mode (mode II). This 
test was based on ASTM standard D7905 [35] and ESIS 
ENF test protocol [36] with necessary changes required 
because of the character of the material.

Important parameters of both tests are presented in 
Table 3

To monitor elastic waves, acoustic emission system pro-
duced by Vallen Company was used (AMSY-6). In both 
tests, two passive piezoelectric sensors were used, capable 
of monitoring signals with frequencies between 100 and 
450 kHz. To amplify the signals, two wide-band preampli-
fiers were used (AEP5). Two sensors were used to enhance 

Fig. 3   The schematic idea of 
material used in the research. 
On the left, additionally, the 
localization of the PTFE film 
included for the initial crack is 
presented

Fig. 4   Proper DCB tests were conducted using INSTRON 5944

Table 3   Parameters of DCB and ENF tests

Parameter Value

Support span (ENF only) 80 mm
Initial crack length 60 mm
Acoustic emission sensors span 120 mm
Total delamination length (ENF) 55 mm
Test speed 1 mm/min
End displacement (DCB/ENF) 50/15 mm
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the quality of the obtained dataset as well as enable location 
analysis.

2.3 � Acoustic emission & ML techniques

The first step in the classification of damage causes utiliz-
ing acoustic emission to obtain the data during experiments. 
Acoustic emission signals were registered during the experi-
mental procedures and saved in form of the databases. The 
Vallen system stores main data in *.pridb files (Vallen Pri-
mary Data) and *.tradb (Vallen transient data). After using 
a fast Fourier transform (FFT), it is also possible to obtain 
the data about the frequencies of the signals in the form of 
another database. This database contains basic features of 
acoustic events, such as amplitude, duration, rise time, etc. 
However, it is also possible to define derivative features cal-
culated as arithmetic operations between basic features. The 
list of features used in this study with their abbreviations and 
explanations is presented below in Table 4.

In order to process the data more easily and create the 
derivative features mentioned above, databases were com-
bined into a resultant database with DB Browser and scripts 
written in SQL (SQL lite).

The preparation of the final analysis requires the limita-
tion of the dimensionality to decrease computational cost. It 
can be done by choosing features that in the best way explain 
differences between data. To achieve this, we introduce the 
Laplacian score to our data. This is a method proposed by 
He [33] and is based on the assumption that data points from 
one cluster should be close to themselves. Data from the 
database were read into Python script. Then we follow the 
proposed algorithm by constructing an affinity matrix and 
conducting calculations. A lot of used methods to investigate 

data are influenced by the magnitude of data values over 
a different axis. Thus, a standard approach is to revalue 
data from initial ranges to for example range (0, 1). In the 
research, after checking popular approaches, we decided to 
use the so-called “Min–Max scaler”. It transforms the data 
X into Xnew  in the following manner:

The next step after standardization of the data and 
choosing the best features to use in analysis is to decide 
the number of clusters. Some clustering algorithms, such as 
OPTICS, can skip this step. Anyway, there are a few meth-
ods in determining the best number of clusters used in the 
current research. In this paper, we analyze three of them: 
the Davies–Bouldin index, the Silhouette approach, and the 
Calinski–Harabasz score.

Davies–Bouldin index (DB index, see [37]) is calculated 
for k clusters and based on inter-cluster separation � between 
clusters (where Xn denotes cluster number n ) and intra-clus-
ter dispersion Δ (averaged distance between the centroid of 
cluster and cluster points) in a cluster. The formula to cal-
culate the index is presented below:

The lower the Davies–Bouldin index, the better clusteri-
zation is.

In the Silhouette approach [38], the score is calculated for 
each cluster independently as an average of values derived 
for each of its points. For a single data point, the score is 
based on the average distance between it and all other points 
in its cluster a(i) as well as the average distance to all other 
cluster centroids b(i) . The formulas for one point i and clus-
ter n containing k points are presented below:

The higher the Silhouette score, the better clusterization 
is.

Calinski–Harabasz score [39] is calculated for one of k 
cluster of dataset E(size nE) based on the ratio of the inter-
cluster dispersion mean and the intra-cluster dispersion:

(1)Xnew =
X − min(X)

max(X) − min(X)

(2)DB(u) =
1

k

k
∑

i=1

max
i≠j

{

Δ
(

Xi

)

+ Δ
(

Xj

)

�

(

Xi,Xj

)

}

(3)s(i) =
b(i) − a(i)

max{a(i), b(i)}

(4)S(n) =

∑k

i=1
s(i)

k

(5)s(n) =
tr
(

B
k

)

tr
(

W
k

) ⋅

n
E
− k

k − 1

Table 4   Features (basic and derivative) used in the presented research

Descriptor Definition

A Amplitude
RT Rise time
log(RT) Logarithm (base 10) of rise time
E Energy
RMS Root-mean-square of noise strength
c − f req Center of gravity of frequency of a signal
D Duration
log(D) Logarithm (base 10) of duration
p − f req Peak frequency
CNT Number of counts
CSS Cumulative signal strength
RA Rise Time/Amplitude
CNT∕D Number of counts/Duration
D∕A Duration/Amplitude
E∕A Energy/Amplitude
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where tr is the trace function, and Wk and Bk are inter-cluster 
and intra-cluster dispersion matrices respectively. The higher 
the Calinski–Harabasz score, the better the clusterization is.

Technically, all the above-described methods are used in 
order to rate the quality of the clusterization. However, their 
use to determine the best cluster number is straightforward. 
Using Python script written by us, we read the data from 

the prepared database, standardize them using the min–max 
scaler, and after that, we run clusterization by chosen method 
(for example K-means) in the loop for different numbers of 
clusters between 2 and 9. For each clusterization, we cal-
culate the scores’ values based on a formula between 2 and 
5. Finally, we can plot the values obtained on the chart and 
determine the best cluster number.

Fig. 5   Clustering algorithms 
used in the presented research: 
K-means, fuzzy C-means, and 
spectral clustering

Table 5   Summary of advantages and disadvantages of using clustering techniques

Advantage Disadvantage

K-Means • Simple, easy to comprehend
• Relatively efficient (fast)
• Very good for distinct datasets
• Best with even cluster size

• Require assumption about the number of clusters
• It cannot resolve overlapped clusters
• Not best with non-flat geometry of data

Fuzzy C-means • Data point can belong to more than one cluster
• It is Possible to resolve even overlapped data
• Best with even cluster size
• Can be used with non-flat geometry of data

• Require assumption about the number of clusters
• Sensitive to initial parameters (choice of centroid)
• Higher computation cost (referring to K-means)

Spectral clustering • It applies to high-dimensional datasets (multiple features)
• It doesn’t introduce strong assumptions about cluster 

shape, thus it can capture irregular clusters

• Require assumption about the number of clusters
• Relatively slow (referring to K-means)
• Hard to comprehend
• Sensitive to initial parameters (choice of centroids)



	 Archives of Civil and Mechanical Engineering (2023) 23:254

1 3

254  Page 8 of 18

After determining the best features to use and the pre-
ferred number of clusters, the next step is clusterization 
itself. There is a wide range of machine learning techniques 
that can be used for classification problems, as presented 
in the Introduction to this paper. In this research, we focus 
on three different unsupervised methods: K-means, fuzzy 
C-means, and spectral clustering.

K-means is one of the grouping methods based on the 
iterative relocation of the data points into clusters. The 
method was first proposed by MacQueen in 1967 [40] and 
by now few modifications of this method in terms of its 
implementation have been proposed like Lloyd and Harti-
gan’s methods. The K-means method is one of the fastest 
clustering algorithms, which influences its popularity. Also, 

Fig. 6   AE events are described 
by amplitude (vertical axis) and 
frequency (color axis) presented 
along with force in the function 
of time

Fig. 7   Calculated Laplacian score over different features for the DCB dataset. On the left without any scaling of the data, on the right after 
applying Min—Max scaler
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the clustering will always be done (the algorithm surely con-
verges). In the K-means method, the number of clusters must 
be determined a priori. The main limitation is the fact that 
k-means clustering tends to find the local minimum and not 
optimal partition in a global sense. Those issues are usually 
solved by running the algorithm a dozen times with differ-
ent initialization parameters or choosing the initial centroid 
using some heuristics. Another issue is that the K-means 
algorithm has to fully decide to which cluster each of the 

data points belongs. In reality, especially in problems like 
composite damage, we have a lot of data points that have 
features suggesting membership to multiple clusters. The 
solution to this issue can be the utilization of fuzzy cluster-
ing, which is characterized by the fact that data points in 
the outer part of the cluster belong to this cluster to a lesser 
degree. In this paper, a specific algorithm from this group is 
used—namely fuzzy C-means clustering (FCM) which was 

Fig. 8   Calculated Laplacian score over different features for the ENF dataset. On the left without any scaling of the data, on the right after apply-
ing Min—Max scaler

Fig. 9   Investigation of the best 
number of clusters for the ENF 
dataset using three approaches: 
Davies–Bouldin index, Calin-
ski–Harabasz, and Silhouette
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developed by Dunn and Bezdek [41, 42]. It can be imple-
mented and used with Python scripting [43]

Spectral clustering is a method based on an affinity 
matrix. In the process, low-dimensional embedding of such 
matrix occurs, and after that, standard method like k-means 
is used for final clustering. This is a method designed for 
highly non-convex geometry of clusters, which can be the 
case in signals registered from experimental research of 

composites. Unfortunately, it works best in a case with an 
even size of clusters, which cannot be true in the investigated 
cases.

The summary of all three methods in the form of a block 
diagram is presented in Fig. 5.

For the purpose of better summarizing the method used 
in this study, in Table 5, advantages and disadvantages are 
compared for all three clustering techniques.

Fig. 10   Investigation of the best 
number of clusters for the DCB 
dataset using three approaches: 
Davies–Bouldin index, Calin-
ski–Harabasz, and Silhouette

Fig. 11   Comparison between silhouette scores for the case with 3 clusters (left) and with 5 clusters (right)
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3 � Results and discussion

Experiments were registered in terms of force and dis-
placement, but in this research, we are focusing on signals 
from acoustic emission and their meaning. However, as an 
example in Fig. 6, we present acoustic emission events in 
the function of time (amplitude on the vertical axis and fre-
quency on the color axis) along with force in the function 
of time. A high correlation between the observed physical 
behavior of the specimens during a test and the registered 
acoustic emission is observed. Because of that, it is possi-
ble to assume that analysis of acoustic emission events can 
explain fracture processes in specimens.

The dataset (database) obtained from the acoustic emis-
sion system was pre-processed using a DB browser for 
SQLite and SQL scripts written by authors. After that, the 
resultant database was processed using Python scripts as 
described in the methods section. Data were cleaned and 
derived features were calculated. All used features of the 
signals were described in the methods section in Table 4. 
Features, such as (basic and derivative), are used in the 
presented research. After that, for both datasets, from DCB 

and ENF tests, the Laplacian score was calculated for each 
feature. The Laplacian score was calculated for both non-
normalized and normalized data. Normalization was realized 
using “min–max scaler” (see Eq. 1). The results of score cal-
culation for both options are presented in Fig. 7 and Fig. 8. 
We choose the best features for both datasets, deciding to 
use the same sets in both cases.

After the features used in the study were concluded, 
it was possible to determine the best number of clusters 
using (as this analysis has to be done for a strictly defined 
set of features). The effect of such an analysis is presented 
in Fig. 9 for the ENF dataset. We can conclude that in this 
case, three clusters represent the data in the best way as 
that case has clearly the lowest values of the DB index 
as well as the highest values of the Calinski–Harabasz 
score and Silhouette score. Similarly, in Fig. 10, result 
of such investigation is presented for the DCB dataset. In 
this case, the results are more ambiguous, however taking 
into account that 5 clusters have the smallest value for DB 
index and the highest for Caliński–Harabasz and Silhouette 
beside 2 and 3 clusters (which can be discarded by analyz-
ing the trend for the first three quantities of clusters). Other 

Fig. 12   Effects of fuzzy C-mean clustering on DCB dataset (number of clusters set to 5) with following features A, c-freq, Counts/D, log(D), 
log(RT). For readability reasons only ticks at the boundary are left, as the results are presented in each versus each style in a grid
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candidates—7 clusters have little physical justification and 
values worse than 5 clusters. Therefore, we decided to use 
5 clusters for the DCB dataset and 3 clusters for the ENF 
dataset. From the point of view of fracture mechanics of 
analyzed materials, they can refer to some subsets of metal 
plasticity/damage, matrix cracking, fiber breaking, fiber 
kinking, delamination, and fiber–matrix de-bonding. Also, 
we observe the bridging effect during DCB tests, so it is 
also a possible source of acoustic events.

To better show the difference between a potential number 
of clusters in the ENF dataset in Fig. 11, silhouette charts for 
two cases (3 clusters and 5 clusters) are presented along with 
the average silhouette score of all clusters. The silhouette 
score compares how every data point belonging to a given 
cluster is similar to other points in this cluster in comparison 
to the similarity to data points outside of this data cluster. 
Therefore, the key information in Fig. 11 is the value of the 
average silhouette score (indicated by a red dashed line). For 
the case with 5 clusters, it is around 20% higher (0.46 versus 
0.38). Additionally, Fig. 11 also includes information about 

the distribution of silhouette scores for every data point with 
the distinction of clusters. Based on that, we can investigate 
two additional factors—the presence of the clusters that are 
entirely below the average silhouette score (here we don’t 
have such a case for both numbers of clusters—which is a 
good sign.) and the fluctuation in the score inside clusters 
(here fluctuations are bigger in the 5 cluster case, which 
confirms that it is worse case between two presented).

Finally, after determining the best number of clusters, 
it is possible to test three proposed methods of cluster-
ing: K-means, fuzzy C-means, and spectral clustering. 
The results for the dataset obtained from the DCB test of 
composite material are presented in Figs. 12, 13, and 14. 
In these figures, results are shown in the grid showing a 
combination of each of the 5 extracted features (amplitude, 
frequency, number of counts, duration, and rise time) with 
each other. So on the main diagonal, we can only see a distri-
bution of centroids for each feature (only for fuzzy c-means 
and k-means, as spectral clustering doesn’t have centroids 
defined). The grid is ‘symmetrical’ relative to this diagonal, 

Fig. 13   Effects of K-means clustering on DCB dataset (number of clusters set to 5) with following features A, c-freq, Counts/D, log(D), log(RT). 
For readability reasons, only ticks at the boundary are left, as the results are presented in each versus each style in a grid
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but we decided to leave both x versus y and y versus x charts 
on the grid as an esthetic choice. This form of presenta-
tion may seem not very straightforward, but problematic 
visualization of 5-dimensional data is one of the reasons 
to conduct such analysis with machine learning, and also 
the reason why usually manual analysis is limited to two/
three features only. Analyzing the difference between the 
three used methods few conclusions can be made. Regarding 
frequency–amplitude, K-means (Fig. 14) predict only one 
cluster in the lower frequencies (around 200) regardless of 
the level of amplitude, while both fuzzy c-means (Fig. 12) 
and spectral clustering (Fig. 13) suggest two clusters of data 
there—which is more along with general knowledge—which 
states that usually high-amplitude events have other causes 
than low-amplitude events. Fuzzy c-means have this split 
on constant amplitude, while spectral clustering (which is 
known for being able to catch convex geometry of clus-
ter) suggests a more complex split. This is along with our 

assumption that this method will be able to produce more 
interesting results. While amplitude/frequency analysis is 
the most common one, the analysis of other pairs shows 
why standard approach has to be enhanced. Three (fuzzy 
C-means, spectral) or four (K-means) other clusters that in 
the frequency–amplitude domain are overlapping (high fre-
quency/lower amplitude) are distinct if we analyze another 
domain like frequency–duration (i. e. green and dark pink/
blue clusters on spectral plot). The continuing dark pink and 
blue clusters (Fig. 13) are distinct if we analyze pairs of 
rise time—duration and rise time—counts. The conclusion 
based on these considerations is that we shouldn’t limit our 
acoustic emission to only two features as other features also 
contribute to it. The conclusion is that initial knowledge 
about found clusters would be very useful, as the literature 
lacks deep analysis of different features from AE focusing 
mostly only on amplitude and frequency.

Fig. 14   Effects of spectral clustering on DCB dataset (number of clusters set to 5) with following features A, c-freq, Counts/D, log(D), log(RT). 
For readability reasons, only ticks at the boundary are left, as the results are presented in each versus each style in a grid
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Similarly, results for the dataset obtained from the 
DCB test of composite material are presented in Figs. 15 
16 and 17. Due to the lower number of clusters and char-
acter of the dataset itself, the results obtained from dif-
ferent methods are more aligned here in comparison to 
ENF case. Thus, with the potential less complex geom-
etry of clusters fast, straightforward methods such as 
K-means can give similar results to more sophisticated 
approaches. It is worth underlining that fuzzy C-means 
(Fig. 15) results are presented in a way that assigns a 
color based on the highest membership score. However, 
detailed information for each data point contains infor-
mation about the probability of membership to each clus-
ter, which can result in more natural information, as we 
can expect that in the overlapping area, the confidence 
of results is worse. Nevertheless, we can observe a split 
proposed for amplitude over 65 dB and below 50 dB.

In the case of DCB results, differences in clustering are 
visible between all three methods. The K-means method 

distinguishes only one cluster in lower frequencies. On the 
other hand, both other methods distinguish at least two split-
tings more or less over the amplitude parameter. Reported by 
researchers, boundaries based on frequency and amplitude 
can be various as shown in the review paper on acoustic 
emission in composite laminates by Saeedifar and Zarouchas 
[44], but the analysis of these examples suggests that the 
K-means method is the least realistic for this dataset. Spec-
tral clustering and fuzzy C-means are generally similar in 
location of the clusters with some differences in boundaries 
between clusters. It is hard to asses which clustering is bet-
ter, so in the next stage of the research campaign, authors 
will include additional tests that will enable checking the 
quality in a better way than comparing with literature prop-
ositions by post-mortem tests and non-destructive testing 
during tests. Contrary to DCB analysis, in the case of the 
ENF dataset, all of the proposed methods are giving similar 
results with small differences in cluster boundaries.

Fig. 15   Effects of fuzzy C-mean clustering on ENF dataset (number of clusters set to 3) with following features A, c-freq, Counts/D, log(D), 
log(RT). For readability reasons, only ticks at the boundary are left, as the results are presented in each versus each style in a grid
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4 � Conclusions

In the paper, results of preliminary studies on the fracture of 
fiber metal laminate composites are presented. Research is 
focused on investigating acoustic emission signals obtained 
during experimental DCB and ENF tests using machine 
learning:

•	 The acoustic emission signals dataset was pre-processed 
using SQL and Python scripts. In this process, for each 
acoustic emission event, features were assigned—includ-
ing basic ones like amplitude, frequency, duration, etc. as 
well as derived—calculated from basic ones. The impor-
tance of each feature was assessed by running a Lapla-
cian score analysis. This method is in the opinion of the 
authors, a good tool for determining the most useful set 
of features in further analysis. The preferred number of 
clusters was determined using three different methods: 
The Davies–Bouldin index, the Silhouette method, and 

the Calinski–Harabasz score. All three methods sug-
gested that the best number of clusters is 5 for DCB tests 
and 3 for ENF tests. However, the Silhouette method 
seems the least reliable in use for the composite tests 
acoustic events analysis. This is due to the complexity 
of obtained datasets and the overlapping of clusters. Two 
other methods are giving very similar results.

•	 For researched material, fuzzy C-means and spectral 
clustering were given similar clustering results with 
small differences. However, the K-means method for one 
of the datasets gave less realistic results and should be 
treated with caution in similar research. Ideally, K-means 
should be only used if the initial analysis shows that the 
potential cluster shape is not very convex.

•	 All tested clustering methods have a bias toward creating 
clusters with similar order of size, which is not desir-
able behavior in terms of composite test datasets, as we 
expect, for example, fiber events to be rarer than matrix 
cracking or delamination. This suggests that other clus-

Fig. 16   Effects of spectral clustering on ENF dataset (number of clusters set to 3) with following features A, c-freq, Counts/D, log(D), log(RT). 
For readability reasons, only ticks at the boundary are left, as the results are presented in each versus each style in a grid
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tering methods could be checked in future, which can 
include different-sized clusters more naturally. It should 
be one of the important issues to consider during the 
future choice of methods.

The purpose of the paper was achieved as we successfully 
realized data preparation, feature extraction, and determi-
nation of a number of clusters and tested three proposed 
methods of clustering. Presented approaches can be used in 
the next stages of our research campaign as well as by other 
researchers in similar problems. Significant discrepancies in 
literature data about particular damage case features bounda-
ries cause issues with assigning found clusters to the exact 
type of damage. Analysis of available reviews suggests that 
these boundaries may be dependent on particular types of 
hybrid composites. Because of that, in future research, as a 
conclusion from this paper, we propose to conduct prelimi-
nary studies with well-defined causes of damage and use this 

knowledge to better understand resultant clusters. It will also 
enable some of the supervised machine learning techniques 
to be used in the analysis of acoustic emission event datasets.
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