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Abstract
The aim of this work is to develop an automated procedure based on machine learning capabilities for the identification of 
the pearlite islands within the two-phase pearlitic–ferritic steel. The input parameters for the custom implementation of a 
braided neural network are provided as a data set of scanning electron microscopy images of metallographic specimens. 
The procedures related to the processing of the data and the optimization parameters affecting the final architecture and 
effectiveness of the network learning stage are examined. The objective is to find the best solution to the problem of fer-
ritic–pearlitic microstructure segmentation, allowing further processing during, e.g., 3D reconstruction of data from serial 
sectioning. The work examines the various quality of input data and different U-Net architectures to find the one that can 
identify pearlite islands with the highest precision. Two types of images acquired from secondary electron (SE) and electron 
backscattered diffraction (EBSD) detectors are used during the investigation. The work revealed that the developed approach 
offers improvements in metallographic investigations by removing the requirement for expert knowledge for the interpreta-
tion of image data prior to further characterization. It has also been proven that artificial neural networks based on the deep 
learning process using extensible U-Net network architectures and nonlinear learning tools can identify pearlite islands 
within a two-phase microstructure, while the overtraining level remains low. Convolutional neural networks do not require 
manual feature extraction and are able to automatically find appropriate search functions to recognize pearlite structure areas 
in the training process without human intervention. It was shown that the network recognizes areas of analyzed steel with 
satisfactory precision of 79% for EBSD and 87% for SE images.

Keywords Artificial neural networks · Supervised learning · Microstructure characterization

1 Introduction

Steels remain one of the most important and extensively 
used classes of materials because of their excellent 
mechanical properties delivered at relatively low costs. 
However, the mechanical properties of steels are directly 
related to their microstructure and morphology. Depend-
ing on the cooling rate of steels, the ferrite (F), pearl-
ite (P), bainite (B), or martensite (M) microstructures 
could be formed due to the displacive and reconstructive 

transformations of austenite (A) crystal structure, which 
are accompanied with cementite precipitation at different 
diffusion rates [1]. It is well known that the volume frac-
tion, dimension, and morphology of these microstructure 
phases are greatly responsible for the mechanical proper-
ties of steels [2]. In this case, the correct classification of 
these microstructure features is crucial during the metal-
lographic investigation to understand their role in material 
performance. Before most scientific and engineering inves-
tigations, microstructural features of interest have to be 
detected and identified according to a representation suit-
able for quantification done, e.g., by dedicated software. 
This is achieved through segmentation, the process of 
partitioning an image into multiple homogeneous regions 
or segments. Segmentation constitutes a major transition 
in the image analysis pipeline, replacing pixels' intensity 
values with region labels [3]. However, such a procedure 
is most of the time difficult, as the metallographic analysis 
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requires expert knowledge, which significantly extends the 
investigation time. Classical segmentation methods like 
Otsu binarization or watershed offer a lot of options for 
automation [4]; however, only for microstructures with 
clearly distinguishable phases at the image, e.g., an optical 
image of ferrite and martensite in dual-phase steels [5]. 
These approaches fail when the distinction between the 
features is not straightforward, like in the case of common 
ferritic–pearlitic steels observed under electron micros-
copy. To overcome that issue, the capabilities of alter-
native solutions based on artificial neural networks are 
evaluated in the current work.

Modern computer systems analyze more and more data 
in order to obtain useful information and formulate conclu-
sions during, e.g., decision-making processes [6]. Despite 
continuous development, many systems for searching and 
recommending, e.g., multimedia content, rely mainly on 
manually prepared metadata—descriptors, category labels, 
and other attributes concisely representing their content. 
The process of creating this type of metadata is extremely 
tedious and time-consuming. The problem, which is related 
to the amount of processed data and the desired details of 
the description, quickly encounters limitations in terms of 
available human resources. It becomes necessary to generate 
the mentioned attributes in an automated way. However, for 
this to be possible, computer systems have to analyze media 
files at the level of their actual content. Understanding the 
content of images also opens the way to many applications 
beyond finding relevant characters or identifying patterns 
[7, 8]. In addition, for digital images, a number of param-
eters such as resolution, bit depth, data compression ratio, 
or color mode also have to be considered. The processing 
results may also be affected by the environment in which 
the images were taken or, finally, by the different settings 
of the object under study. Each of the mentioned problems 
may negatively influence the quality of metadata and, conse-
quently, the efficiency of the system used for their analyses. 
Therefore, during the preparation of information, several 
image transformations are additionally performed to nor-
malize the data [9].

One of the drivers of innovation in the field of image 
recognition is the continuous increase in software quality 
and hardware performance. A breakthrough change in this 
aspect turned out to be the popularization of GPUs for gen-
eral applications, opening the way for the creation of models 
with much higher computational complexity [10]. The use 
of such processors also allowed the development of machine 
learning and deep learning approaches. The idea of using 
multi-layer artificial neural network (ANN) models is not 
new, as its beginnings can be traced back to the 1970s [11]. 
However, only the combination of computational capabili-
ties and several new, seemingly minor innovations allowed 
a qualitative leap in this area. As a result, the practical 

application of the created solutions increased in many areas, 
and they ceased to be exclusively academic [12].

Deep neural networks are now widely used in image and 
pattern processing. Examples of applications include face 
recognition, medical diagnosis, classification of material 
structure or defects, or detection of environmental objects 
[13]. Convolutional neural networks (CNN) are of particular 
use in image processing operations [14]. Wherever there is 
a need to focus on fragments containing specific and rela-
tively rare events, automatic content analysis methods are an 
invaluable tool for sifting through increasingly large digital 
archives [15].

Presented progress in the CNN possibilities in the area of 
image processing became a motivation for their application 
in material science investigations, especially in the area of 
metallographic analysis [16]. As mentioned earlier, in this 
case, expert knowledge is often the only reliable approach to 
extracting meaningful information from the microstructure 
images. For single images, such a procedure is satisfactory; 
however, when a large number of images are obtained, for 
example, during the serial sectioning procedure, manual fea-
ture extraction becomes extremely laborious [17]. One of the 
first successful applications of a neural network approach to 
cast iron microstructure processing is presented [18]. Seg-
mentation of steel microstructures with specific morpho-
logical features was also investigated by other approaches 
based on, e.g., ResNet [19] or VGGNet [20]. An interesting 
approach to developing an artificial neural network segmen-
tation tool for microstructures based on a numerically gen-
erated training data set was also proposed [21]. The U-Net 
architecture is recently often used for the segmentation of 
different types of microstructures, e.g., martensite–ferrite 
in dual-phase steels [22], martensite–austenite in bainitic 
steels [23]. Authors of [24] applied the same approach for 
ferrite, bainite and martensite segmentation in low carbon 
steel. An interesting systematic review of the segmentation 
of metallographic images is presented in [25].

These approaches proved that the neural networks could 
be used to support metallographic investigation when a large 
number of data from, e.g., mentioned serial sectioning or 
computed tomography analysis [26], needs to be processed.

Application of a serial sectioning procedure for imaging 
of large 3D microstructure volume is not often used, as it is 
usually based on time-consuming and very precise manual 
labor. However, at the same time, such an approach provides 
a significant amount of information about microstructure 
morphology. Additionally, if combined with the electron 
backscattered diffraction (EBSD) investigation, obtained 
texture information could be used as input data for advanced 
microscale modeling approaches [27].

However, EBSD-based approach encounters difficulties 
when two-component materials of similar crystallographic 
structure are considered like investigated within the work 
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ferritic–pearlitic steels. In this case, the EBSD investigation 
cannot provide information for separation between the two 
constituents as described in [17]. The alternative solution 
that was used to overcome this limitation is based on a com-
bination of information from the EBSD investigation with 
a series of 2D scanning electron microscopy (SEM/SE2) 
images of a ferrite-pearlite microstructure to clearly identify 
the morphology of both constituents. Unfortunately, there is 
no robust approach that can perform such identification auto-
matically in a reliable manner. The identification of pearlite 
islands has to be done manually [17], which becomes tedi-
ous, especially for a large number of 2D images. Therefore, 
as mentioned, the evaluation of the capabilities of deep 
neural networks in image processing is explored in current 
research. The general idea and methodology of the work are 
based on three stages, i.e., data preparation, data processing, 
and model optimization tasks, as presented in Fig. 1.

The work, in particular, examines the various quality of 
input data and different U-Net architectures to find the one 
that can identify pearlite islands with the highest precision. 
Two types of images acquired from secondary electron (SE) 

and electron backscattered diffraction (EBSD) detectors are 
analyzed during the investigation.

2  Data pre‑processing

Details of the image acquisition process during the EBSD-
based serial sectioning procedure are described in [17], 
while only major steps are summarized below for the clarity 
of this research. The ferritic–pearlitic steel sample (0.12%C, 
0.35%Mn, 0.15%Si, 0.03%P, 0.03%S) was polished with 3 
and 1 μm diamond suspension, and the final step with col-
loidal silica. During the serial sectioning procedure, the 
polishing times were adjusted to remove approx. 3 μm layer 
of the material. After each polishing operation, the sample 
was subjected to metallographic investigation within the 
scanning electron microscopy. The high-resolution second-
ary electron image was taken first, and then the EBSD map 
was acquired. EBSD data were further used to calculate the 
image quality (IQ) maps that can be used to extract infor-
mation on the pearlite morphology (Fig. 2). Both the SE 

Fig. 1  Operations in subsequent 
stages of ANN model develop-
ment

Fig. 2  Examples of images of 
ferritic–pearlitic steel acquired 
from the a EBSD/IQ, b SEM/
SE detectors
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and EBSD/IQ images were used to evaluate the influence of 
different types of input data on the ANN learning process.

The preparation of an appropriate training dataset is a 
crucial step in performing a proper neural network learning 
process. Even the most advanced network architecture mod-
els will not produce measurable results with poor quality 
input data. In the case of image segmentation to extract the 
morphology of the pearlite islands from the ferrite matrix, 
the most important is the proper preparation of the binary 
mask, which represents the shape and location of the per-
lite. The preparation of the training dataset was divided into 
several steps.

For the preliminary dataset preparation stage, the labo-
rious manual extraction of pearlite island areas was per-
formed from both EBSD/IQ and SEM/SE images obtained 

during the serial sectioning procedure (Fig. 3). The manu-
ally marked contours were subjected to the in-house filling 
algorithm as presented in Fig. 4 to provide features masks 
required for further processing.

The initial data set contained 2 × 38 microstructural 
images with resolutions 1536 × 1103 px and 1280 × 1024 px, 
respectively. Then, the data augmentation techniques were 
applied to increase the training dataset. Each image was 
divided into smaller areas with sizes 256 × 256, 512 × 512, 
and 1024 × 1024 px. The set of rotations with respect to 
the ± 90° and 180° was then applied. Finally, each of the 
rotated images was also symmetrically reflected relative to 
the X-axis, Y-axis, and both the X-, Y-axis simultaneously. 
The augmentation procedure delivered the training data-
set with 2720, 1360, and 340 images with respect to their 

Fig. 3  Process of manual 
contours extraction procedure 
to identify pearlite islands for a 
SE, b EBSD/IQ detectors. The 
filled contours represent mark-
ers from the serial sectioning 
procedure

Fig. 4  Illustration of a manual 
identification process of the 
pearlite islands, b filling the 
pearlite contour to create the 
mask
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resolution. The final stage of the image preparation involved 
binarization operation to provide the ground truth masks for 
the neural network. Examples of the final binary images in 
the form of the ground truth masks processed from SE and 
EBSD/IQ images are shown in Fig. 5.

Six input data sets were developed according to the 
above-presented procedure for the initial analysis, as shown 
in Table 1.

To perform supervised learning of a neural network, it is 
necessary to divide the data into at least two parts: a learning 
set and a validation set (Fig. 6). Very often, the third subset 
of cases, the test set, is also separated from the collection, 
which is used for the final evaluation of the network quality 
(generalization ability). The main problem with the separa-
tion of subsets is the need to have each set of learning cases 

representative of the entire set. If unique cases are separated 
from the learning set, the model will not be able to correctly 
predict their properties. On the other hand, if standard cases 
are selected with very close or nearly identical counterparts in 
the learning set, the whole network quality assessment proce-
dure will be ineffective. Even the overlearned model will get 
very good predictions during validation and testing. A learn-
ing group is a set of data that is used to train the ANN. The 
model learns to classify the features appropriately and builds 
some dependencies based on this data. Therefore, it predicts 
possible outcomes and makes decisions based on the given 
data. A validation group is a dataset used to run an unloaded 
test of the trained model. It is important that the data in the 
validation set is not previously used for model learning, as it 
will then not be suitable for unbiased, unencumbered testing. 
Finally, a test group becomes important once the model and 
hyperparameters are defined. The set is used to investigate the 
ANN predictions with the data not used previously during the 

Fig. 5  Examples of ground truth masks generated from a EBSD/IQ, b SE images

Table 1  Data set size

No. Image size Input file extension Data 
set size 
images

1.1 256 × 256 SE 2720
1.2 256 × 256 EBSD/IQ 2720
2.1 512 × 512 SE 1360
2.2 512 × 512 EBSD/IQ 1360
3.1 1024 × 1024 SE 340
3.2 1024 × 1024 EBSD/IQ 340

Fig. 6  Concept of the data division between training, validation, and 
test data sets
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investigation. It is crucial that this data set has not been used 
before for learning or model validation.

The use of independent learning, validation, and testing 
groups is essential when a model contains many parameters 
and potential hyperparameters. To select the best possible 
model and the best possible data, one has to be very careful 
not to overfit the model. The more models, hyperparameters, 
and other options are analyzed, the larger the validation set is 
also required [28].

Therefore, from the developed set of images, training, vali-
dation, and testing data sets were extracted as presented in 
Table 2 from Chapter 3. The latter was not considered during 
the training process in the processing stage.

3  Processing

The processing stage is based on the concept of the U-Net 
convolutional deep learning neural network [28]. In the pro-
cessing stage, the dataset was divided, and the parameters for 
the neural network model were tested to select the most prom-
ising architecture. The change of activation function, dropout 
rate, and size of each convolution layer were evaluated during 
the research. The training process setup parameters that were 
analyzed are gathered in Table 2. The results from the training 
process are evaluated based on the accuracy metrics (ACC), 
which represent the accuracy of the binary mask obtained 
in the inference process [29]. A confusion matrix provides a 
summary of the predictive results in a classification problem. 
Correct and incorrect predictions are summarized in a table 
with their values and are broken down by each class (Fig. 7).

The ACC is defined as follows:

While the loss function, which is a Binary Cross-entropy 
(LOSS) has the form:

where ⌢yi the i-th scalar value in the model output, yi the tar-
get value, N the number of scalar values in the model output.

(1)ACC =
TP + TN

TP + TN + FP + FN
.

(2)LOSS = −
1

N

N
∑

i=0

yi log
⌢

yi +
(

1 − yi
)

log
(

1 −
⌢

yi

)

,

The U-Net CNN structure consists of contracting and 
expansive paths, as shown in Fig. 8. The contracting path 
starts as a typical convolutional network architecture [30, 
31]. It consists of the repeated application of two 3 × 3 
convolutions (unpadded convolutions), each followed 
by a batch normalization layer and a rectified linear unit 
(ReLU). A 2 × 2 max-pooling operation with a stride of 2 
for down-sampling, and after each down-sampling step, 
the number of feature channels is doubled. In contrast to 
the contracting path, the expansive path is composed of an 
up-sampling of the feature map followed by a 2 × 2 con-
volution (i.e., “up-convolution”) that halved the number 
of feature channels. Then a concatenation with the corre-
spondingly cropped feature map from the contracting path 
is used, and two 3 × 3 convolutions, each also followed by 
batch normalization and ReLU. The cropping is necessary 
due to the loss of border pixels in each convolution. At the 
final layers, 4 × 4, 2 × 2 and 1 × 1 convolutions are used to 
map each 8-component feature vector to the desired num-
ber of classes and to map the feature to the required value.

Therefore, many image features are used in the con-
tracting and expansive paths to reconstruct a new image 
of the same size as the input one. The final developed 
implementation of our U-Net is shown in Fig. 8. The batch 
normalization, ReLU, and dropout approach with sigmoid 
activation in the last layer, which is different from the clas-
sical U-Net [28], are used in the current research.

Table 2  Training process setup 
parameters

No. Image size Training, validation and test data set 
size (%)

Epoch Batch

Scenario 1.1 256 × 256 [60/20/20][70/15/15][80/10/10] [30][50][70] [5][10]
Scenario 1.2 256 × 256 [60/20/20][70/15/15][ 80/10/10] [30][50][70] [5][10]
Scenario 2.1 512 × 512 [60/20/20][70/15/15][ 80/10/10] [30][50][70] [5][10]
Scenario 2.2 512 × 512 [60/20/20][70/15/15][ 80/10/10] [30][50][70] [5][10]
Scenario 3.1 1024 × 1024 [60/20/20][70/15/15][ 80/10/10] [30][50][70] [5][10]
Scenario 3.2 1024 × 1024 [60/20/20][70/15/15][ 80/10/10] [30][50][70] [5][10]

Fig. 7  The concept of the correct and incorrect predictions
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The U-Net was developed in the Keras framework, which 
is a high-level neural network API (Application Program-
ming Interface). Keras acts as an interface for the Tensor-
Flow library [30, 32]. In total, the U-Net network is con-
structed from 19 convolutional layers. The input tile size so 
that all 2 × 2 max-pooling operations are applied to a layer 
with an even x- and y-sizes was selected.

Examples of training data results from the developed 
model according to scenarios from Table 2 are presented in 
Figs. 9, 10 and 11.

The best training test results without optimization were 
obtained for 512 × 512 px resolution, as shown in Table 3 
and Fig. 12.

4  Post‑processing

Finally, the post-processing operation is focused on the main 
elements that influence the final ANN setup under study. 
Parameter optimization provides an opportunity to distin-
guish important variables from information that does not 
contribute much to the network output, which will even-
tually be discarded. This stage is based on the parameters 
used in Scenario 2.1 and 2.2. As mentioned, they have a 
favorable size of the input data set compared to the resolu-
tion 1024 × 1024 px. It should also be mentioned that for 
Scenario 1.1 and 1.2, the ACC values are also satisfactory; 
however, in this case, a large part of the dataset contained 
masks without or with a small number of perlite areas.

When a deep neural network ends up going through a 
training batch, where it propagates the inputs through the 
layers, it needs a mechanism to decide how it will use the 
predicted results against the known values to adjust the 
parameters of the neural network. These parameters are com-
monly known as the weights and biases of the nodes within 
the hidden layers. Optimizers are classes or methods used 
to change the attributes of the deep learning model, such as 
weights and learning rate, to reduce the losses. Optimizers 
are necessary for the model to improve training speed and 
performance [30]. TensorFlow and Keras libraries mainly 
support nine optimizer classes, consisting of algorithms like 
Adadelta, Adam, RMSprop, and more [33]. Multiple opti-
mizers have been investigated in this study. The learning rate 
has been set to 0.0001, batch size to 10 and epochs to 70.

The best-obtained results are shown in Table 4, and exam-
ples of identified pearlite islands are in Fig. 13.

As seen from Table 4, in the best case of the post-process-
ing stage, a decrease in classification error on the test dataset 
of more than 20% was achieved compared to the classifica-
tion without prior parameter modifications.

Based on the qualitative comparison from Fig. 13, it can 
be stated that the developed U-Net architecture achieves 
an acceptable segmentation level of the two-phase ferri-
tic–pearlitic microstructures. Additionally, from Table 4, 
it is visible that the neural network performs slightly bet-
ter with the SE image set than with the EBSD/IQ image 
sets. It can also be summarized that the U-Net model for 
the first data set (SE) achieved an average ACC for Adam 
(adaptive moment estimation) algorithm of 87%, which is 

Fig. 8  The developed U-Net network architecture for microstructure image segmentation
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better than the second-best algorithm AdaMax (extension 
to the Adam) with 81%. The second data set EBSD/IQ 
achieved an average ACC of 85.% for RMSprop, which is 
significantly better than the second-best algorithm with 
75% for Adam in this case.

For quantitative image comparison, the SSIM (Struc-
tural Similarity Index) and PSNR (Peak Signal-to-Noise 
Ratio) [29] indicators were used. The PSNR is used to 
calculate the ratio between the maximum possible signal 
power and the power of the distorting noise, which affects 
the quality of its representation. This ratio between two 
images is computed in decibel form. The PSNR is usu-
ally calculated as the logarithm term of the decibel scale 
because the signals have a very wide dynamic range. This 
dynamic range varies between the largest and the smallest 
possible values, which are changeable by their quality. The 
PSNR is expressed as:

where Pv maximum possible pixel value of the image, MSE 
mean square root error between two images.

The SSIM index is a quality measurement metric calcu-
lated based on the computation of three major components 
termed luminance, contrast, and structural or correlation 
term [34]:

where l luminance (used to compare the brightness between 
two images), c contrast (used to differ the ranges between 
the brightest and darkest region of two images), s structure 
(used to compare the local luminance pattern between two 

(3)PNSR = 10 log 10

(

Pv

MSE

)

,

(4)SSIM(x, y) =
[

l(x, y)
]�[

c(x, y)
]�[

s(x, y)
]�
,

Fig. 9  Evolution of the ACC and LOSS indicators during the training process for a Scenario 1.1, b Scenario 1.2
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images to find the similarity and dissimilarity of the images), 
α, β and γ are positive constants [33, 35].

The final validation of the predictions of the developed 
CNN setup is presented in a qualitative and quantitative man-
ner in Fig. 14 and Table 5, respectively.

Regarding Table  5, one can conclude that the model 
has a better individual recognition performance for EBSD/
IQ images but also more false-positive samples. For the SE 
images, results are mostly in a high level of accuracy.

Finally, it should be mentioned that thanks to data augmen-
tation that was employed during the study, the developed ANN 
model needs only a few annotated images and a reasonable 
training time of 2 h on NVIDIA RTX 2080 (8 GB) to provide 
reliable results.

5  Conclusions

Based on the research, it can be stated that designed and 
developed deep convolutional neural network model ena-
bles successful automated microstructure segmentation 
of complex two-phase ferritic–pearlitic microstructures. 
During the research, the influence of the image acquisi-
tion technique on network predictions was also evaluated. 
Images from the SE and EBSD/IQ detectors were tested 
with various network setups. It was also identified that the 
image pre-processing stage is crucial. Evaluating differ-
ent parameters, especially data augmentation setup and 
the image size that affect the network training procedure, 

Fig. 10  Evolution of the ACC and LOSS indicators during the training process for a Scenario 2.1, b Scenario 2.2
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are paramount. As a result, both datasets were augmented 
to multiply the data and obtain a target resolution of 
512 × 512 px, as the smaller or larger image size resulted 
in poor outcomes for all transfer learning models.

The work revealed that the presented approach offers 
improvements in the metallographic investigations by 
removing the requirement for expert knowledge for the 
interpretation of image data prior to further characteriza-
tion. It has also been proven that artificial neural networks 
based on the deep learning process using extensible U-Net 
network architectures and nonlinear learning tools can 
identify pearlite islands within a two-phase microstructure 
while the overtraining level remains low. Convolutional 

Fig. 11  Evolution of the ACC and LOSS indicators during the training process for a Scenario 3.1, b Scenario 3.2

Table 3  Processing test results for different scenarios from Table 2

Resolution and image extension no. ACC LOSS

Scenario 1.1 0.760 0.460
Scenario 1.2 0.880 0.130
Scenario 2.1 0.910 0.370
Scenario 2.2 0.912 0.280
Scenario 3.1 0.870 0.090
Scenario 3.2 0.840 0.300
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Fig. 12  Image processing output result for different resolutions and image source without optimization a for resolution 256 × 256 px, b for reso-
lution 512 × 512 px, c for resolution 1024 × 1024 px

Table 4  Post-processing for SE 
and EBSD/IQ

SE EBDS/IQ

Alg Train Validation Alg Train Validation

LOSS ACC LOSS ACC LOSS ACC LOSS ACC 

RMSprop 0.4150 0.8087 0.1499 0.9258 RMSprop 0.2650 0.8591 0.2799 0.9181
Adam 0.2018 0.8761 0.1310 0.9026 Adam 0.3088 0.7510 0.1910 0.9120
Adamax 0 3184 0.8189 0.3385 0.8862 Adamax 0.1438 0.7409 0.1385 0.8338

Fig. 13  Example of results from CNN identification of pearlite islands for a SE, b EBSD/IQ input data. From the top: original image, grand 
truth, and predicted image
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neural networks do not require manual feature extraction 
and are able to automatically find appropriate search func-
tions to recognize pearlite structure areas in the training 
process without human intervention. It was shown that the 
network recognizes areas of analyzed steel with satisfac-
tory precision of 79% for EBSD and 87% for SE images.

With that, the developed model could be used to sup-
port automated three-dimensional reconstruction opera-
tions of two-dimensional microstructure images acquired 
during the serial sectioning procedure.
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