Skip to main content

Advertisement

Log in

Hydrogen evolution reaction (HER) activity of conical Co–Fe alloy structures and their application as a sensitive and rapid sensor for H2O2 detection

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this work, the conical Co–Fe alloy structures were synthesized by two different methods: a two- and a one-step. The synthesis of nanoconical structures with regular, well-defined geometrical features, called the two-step method, requires using porous Anodic Alumina Oxide (AAO) templates. Contrary, any advanced pre-preparation of the substrate is not necessary for the one-step method. The fabrication of cones is carried out from the electrolyte containing an addition of a crystal modifier. Co and Fe are applied as electrodes in an alkaline environment. Their catalytic performance can be enhanced by modification of the shape and size of their structures, and in consequence, developing their active surface area. Many methods were used to analyze the coatings, such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDS), Energy-Dispersive X-ray Spectrometry (EDAX), X-ray Photoelectron Spectroscopy (XPS), and X-ray diffraction analysis (XRD). The catalytic properties of the coatings were recorded during the hydrogen evolution reaction and the reduction of the hydrogen peroxide and compared with the catalytic activity of bulk alloy. Nanocones produced in AAO templates were characterized by significantly higher catalytic activity and sensitivity in both reactions. However, they were unstable in the time of the experiment duration. Cones synthesized by the one-step method can be successfully applied as a catalyst and H2O2 detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Authors can confirm that all relevant data are included in the article.

References

  1. Sulka GD, Brzózka A, Liu L. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochim Acta. 2011;56:4972–9. https://doi.org/10.1016/j.electacta.2011.03.126.

    Article  CAS  Google Scholar 

  2. Zaraska L, Jaskuła M, Sulka GD. Porous anodic alumina layers with modulated pore diameters formed by sequential anodizing in different electrolytes. Mater Lett. 2016;171:315–8. https://doi.org/10.1016/j.matlet.2016.02.113.

    Article  CAS  Google Scholar 

  3. Jani AM, Losic D, Voelcker NH. Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci. 2013;58:636–704. https://doi.org/10.1016/j.pmatsci.2013.01.002.

    Article  CAS  Google Scholar 

  4. Bashir S, Liu J. Nanomaterials and their application. In: Adv. Nanomater. Their Appl. Renew. Energy, Elsevier, 2015; p. 1–50. https://doi.org/10.1016/B978-0-12-801528-5.00001-4.

  5. Poges S, Jin J, Guild C, Li WN, Birnkrant M, Suib SL. Preparation and characterization of aluminum coatings via electroless plating onto nickel nanowires using ionic liquid plating solution. Mater Chem Phys. 2018;207:303–8. https://doi.org/10.1016/j.matchemphys.2017.12.079.

    Article  CAS  Google Scholar 

  6. Chime UK, Ezema FI, Marques-Hueso J. Porosity and hole diameter tuning on nanoporous anodic aluminium oxide membranes by one-step anodization. Optik (Stuttg). 2018;174:558–62. https://doi.org/10.1016/j.ijleo.2018.08.109.

    Article  ADS  CAS  Google Scholar 

  7. Bao R, Jiao K, He H, Zhuang J, Yue B. Fabrication of metal oxide nanowires templated by SBA-15 with adsorption-precipitation method. 2007; p. 267–270. https://doi.org/10.1016/S0167-2991(07)80314-4.

  8. Chung CK, Tu KT, Chang CY, Peng YC. Fabrication of thin-film spherical anodic alumina oxide templates using a superimposed nano-micro structure. Surf Coatings Technol. 2019;361:170–5. https://doi.org/10.1016/j.surfcoat.2019.01.032.

    Article  CAS  Google Scholar 

  9. Stepniowski WJ, Zasada D, Bojar Z. First step of anodization influences the final nanopore arrangement in anodized alumina. Surf Coatings Technol. 2011;206:1416–22. https://doi.org/10.1016/j.surfcoat.2011.09.004.

    Article  CAS  Google Scholar 

  10. Zaraska L, Sulka GD, Jaskuła M. Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surf Coatings Technol. 2010;205:2432–7. https://doi.org/10.1016/j.surfcoat.2010.09.038.

    Article  CAS  Google Scholar 

  11. Hashemzadeh M, Raeissi K, Ashrafizadeh F, Khorsand S. Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings. Surf Coatings Technol. 2015;283:318–28. https://doi.org/10.1016/j.surfcoat.2015.11.008.

    Article  CAS  Google Scholar 

  12. Kim MJ, Alvarez S, Chen Z, Fichthorn KA, Wiley BJ. Single-Crystal Electrochemistry Reveals Why Metal Nanowires Grow. J Am Chem Soc. 2018;140:14740–6. https://doi.org/10.1021/jacs.8b08053.

    Article  CAS  PubMed  Google Scholar 

  13. Skibińska K, Semeniuk S, Kutyła D, Jędraczka A, Żabiński P. Study on synthesis and modification of conical Ni structures by one-step method. 2021;66: 861–69. https://doi.org/10.24425/amm.2021.136391.

  14. Lee JM, Jung KK, Lee SH, Ko JS. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent. Appl Surf Sci. 2016;369:163–9. https://doi.org/10.1016/j.apsusc.2016.02.006.

    Article  ADS  CAS  Google Scholar 

  15. Wang N, Hang T, Shanmugam S, Li M. Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition. CrystEngComm. 2014;16:6937–43. https://doi.org/10.1039/c4ce00565a.

    Article  CAS  Google Scholar 

  16. Skibińska K, Huang M, Mutschke G, Eckert K, Włoch G, Wojnicki M, Żabiński P. On the electrodeposition of conically nano-structured nickel layers assisted by a capping agent. J Electroanal Chem. 2022;904: 115935. https://doi.org/10.1016/j.jelechem.2021.115935.

    Article  CAS  Google Scholar 

  17. Brzózka A, Szeliga D, Kurowska-Tabor E, Sulka GD. Synthesis of copper nanocone array electrodes and its electrocatalytic properties toward hydrogen peroxide reduction. Mater Lett. 2016;174:66–70. https://doi.org/10.1016/j.matlet.2016.03.068.

    Article  CAS  Google Scholar 

  18. Biswas S, Das S, Jena S, Mitra A, Das S, Das K. Pulse potentiostatic deposition of Fe Zn based intermetallic coatings and evaluation of its catalytic activity for hydrogen evolution reaction. Surf Coatings Technol. 2020;402: 126299. https://doi.org/10.1016/j.surfcoat.2020.126299.

    Article  CAS  Google Scholar 

  19. Jović VD, Jović BM, Lačnjevac U, Krstajić NV, Zabinski P, Elezović NR. Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions. J Electroanal Chem. 2018;819:16–25. https://doi.org/10.1016/j.jelechem.2017.06.011.

    Article  CAS  Google Scholar 

  20. Şahin Ö, Kilinç D, Saka C. Hydrogen production by catalytic hydrolysis of sodium borohydride with a bimetallic solid-state Co-Fe complex catalyst. Sep Sci Technol. 2015. https://doi.org/10.1080/01496395.2015.1016040.

    Article  Google Scholar 

  21. Chen J, Liu J, Xie JQ, Ye H, Fu XZ, Sun R, Wong CP. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range. Nano Energy. 2019;56:225–33. https://doi.org/10.1016/j.nanoen.2018.11.051.

    Article  CAS  Google Scholar 

  22. Wang Z, Zhang S, Lv X, Bai J, Yu W, Liu J. Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube. Int J Hydrogen Energy. 2019;44:16478–86. https://doi.org/10.1016/j.ijhydene.2019.04.235.

    Article  CAS  Google Scholar 

  23. Rahimi S, Shahrokhian S, Hosseini H. Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors. J Electroanal Chem. 2018;810:78–85. https://doi.org/10.1016/j.jelechem.2018.01.004.

    Article  CAS  Google Scholar 

  24. Hang T, Li M, Fei Q, Mao D (2008) Characterization of nickel nanocones routed by electrodeposition without any template. Nanotechnology. 2008.https://doi.org/10.1088/0957-4484/19/03/035201.

    Article  PubMed  Google Scholar 

  25. Kurowska E, Brzózka A, Jarosz M, Sulka GD, Jaskuła M. Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim Acta. 2013;104:439–47. https://doi.org/10.1016/j.electacta.2013.01.077.

    Article  CAS  Google Scholar 

  26. Chen S, Yuan R, Chai Y, Hu F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta. 2013;180:15–32. https://doi.org/10.1007/s00604-012-0904-4.

    Article  CAS  Google Scholar 

  27. Sang Y, Zhang L, Li YF, Chen LQ, Xu JL, Huang CZ. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Anal Chim Acta. 2010;659:224–8. https://doi.org/10.1016/j.aca.2009.11.031.

    Article  CAS  PubMed  Google Scholar 

  28. Sitnikova NA, Borisova AV, Komkova MA, Karyakin AA. Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates. Anal Chem. 2011;83:2359–63. https://doi.org/10.1021/ac1033352.

    Article  CAS  PubMed  Google Scholar 

  29. Koza JA, Karnbach F, Uhlemann M, McCord J, Mickel C, Gebert A, Baunack S, Schultz L. Electrocrystallisation of CoFe alloys under the influence of external homogeneous magnetic fields-Properties of deposited thin films. Electrochim Acta. 2010;55:819–31. https://doi.org/10.1016/j.electacta.2009.08.069.

    Article  CAS  Google Scholar 

  30. Skibińska PŻK, Kutyła D, Kołczyk-Siedlecka K, Marzec MM, Kowalik R. Synthesis of conical Co-Fe alloys structures obtained with crystal modifier in superimposed magnetic. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00315-2.

    Article  Google Scholar 

  31. Skibinska K, Kolczyk-Siedlecka K, Kutyla D, Jedraczka A, Leszczyńska-Madej B, Marzec MM, Zabinski P. Electrocatalytic properties of Co nanoconical structured electrodes produced by a one-step or two-step method. Catalysts. 2021;11:544. https://doi.org/10.3390/catal11050544.

    Article  CAS  Google Scholar 

  32. Beamson G, Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. J Chem Educ. 1993; 70: A25. Doi: https://doi.org/10.1021/ed070pA25.5

    Article  Google Scholar 

  33. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257:2717–30. https://doi.org/10.1016/J.APSUSC.2010.10.051.

    Article  ADS  CAS  Google Scholar 

  34. Wagner JRJRAD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ. NIST Standard Reference Database 2001; 20. https://doi.org/10.18434/T4T88K.

  35. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal. 2004;36:1564–74. https://doi.org/10.1002/sia.1984.

    Article  CAS  Google Scholar 

  36. Skibińska K, Kołczyk-Siedlecka K, Kutyła D, Gajewska M, Żabiński P. Synthesis of Co–Fe 1D nanocone array electrodes using aluminum oxide template. Materials (Basel). 2021;14:1717. https://doi.org/10.3390/ma14071717.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by The National Science Centre (Grant number UMO2016/23/G/ST5/04058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Skibińska.

Ethics declarations

Conflict of interest

Katarzyna Skibińska declares that she has no conflict of interest. Dawid Kutyła declares that he has no conflict of interest. Anna Kula declares that she has no conflict of interest. Marta Gajewska declares that she has no conflict of interest. Mateusz M. Marzec declares that he has no conflict of interest. Piotr Żabiński declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skibińska, K., Kutyła, D., Kula, A. et al. Hydrogen evolution reaction (HER) activity of conical Co–Fe alloy structures and their application as a sensitive and rapid sensor for H2O2 detection. Archiv.Civ.Mech.Eng 22, 76 (2022). https://doi.org/10.1007/s43452-022-00402-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00402-y

Keywords

Navigation